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Motivation and contribution Recurrent neural networks (RNN) with long short-term memory
(LSTM) are recently proposed to model sequences without prior domain knowledge [3, 6]. In these
work, the authors empirically observed that RNN-LSTMs trained with vanilla optimization algo-
rithms, such as stochastic gradient descent (SGD) with a simple learning rate annealing schedule,
achieves good performances on a wide range of tasks. While this observation makes it easy to
train RNN-LSTMs, it remains a question whether more advanced optimization techniques, such as
AdaGrad [1] or momentum and its variations [2], can improve their performances.

We attempt to answer this question. We consider two benchmark problems: (1) language modeling
on Penn TreeBank and (2) named entity recognition (NER) on OntoNotes (v5.0) [5]. On these tasks,
we compare the performances of RNN-LSTMs trained with various optimization algorithms such
as SGD, AdaGrad and momentum. We further propose a novel optimization technique that achieves
better performance on both tasks. Our preliminary results show that our method is robust against
different scales of data, hence requires minimal tuning effort. For language model in particular, it
leads to 7% improvement for single model perplexity.

A new optimization algorithm We propose a novel training algorithm for RNN-LSTMs. Suppose
we have a function f : Rd → R and we want to find a vector θ ∈ Rd to minimize f(θ). We randomly
initialize θ0 ∈ Rd, then at time step t ≥ 1 we perform the following update

νt ←− µtνt−1 +
η

ε+
√∑t−1

j=0 (∇f(θj))
2
· ∇f(θt−1) (1)

θt ←− θt−1 − νt (2)

Here, νt and µt are the accumulated velocity vector and the momentum rate at time step t, respec-
tively; η is the learning rate, which remains unchanged throughout the process. All operations in
Eq. (1) are element-wise. Furthermore, ν0 = 0 and so we add a small amount ε into Eq. (1) to
avoid the singularity. Since this method is inspired by combining momentum and AdaGrad, we call
it AdaMomentum.

Experiments on language modeling To investigate the effect of different optimization algorithms
on the performance of RNN-LSTMs, we first consider the task of language modeling over the Penn
TreeBank corpus. We use the same settings with [6]: 929K training, 73K valid, 82K testing words
and a vocabulary of size 10K, with the out-of-vocabulary words mapped to the token 〈unk〉. Our
architecture is the RNN with 2 stacked layers of LSTMs [3]. Each LSTM layer, as well as our word
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embeddings, has dimension 256. We train the model using SGD, SGD with momentum, AdaGrad
and AdaMomentum, each for 13 epochs. We provide the hyper-parameters of these methods in
Table 1. We present the valid and test perplexity recorded every 500 batches Figure 1.

Table 1: Learning and momen-
tum rate η, µ of the algorithms.

Model η µ

SGD 1.0 −
Momentum 1.0 0.6

AdaGrad 0.01 −
AdaMomentum 0.02 0.9
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Figure 1: Valid (left) and test (right) perplexities every 500 batches of
the algorithms. The final test perplexities of SGD, Momentum, Ada-
Grad and our proposed AdaMomentum are 115, 108, 140, and 106 re-
spectively. This implies that momentum is very crucial to training lan-
guage models with RNN-LSTMs, and that combining AdaGrad further
improves the performance.

Experiments on named entity recognition We also consider the 4-type Chinese named entity
recognition task on the OntoNotes (v5.0) dataset [4]. The task is to recognize and classify the words
in a sentence into one of the 4 types: GPE, LOC, ORG, and PERSON. We keep only the sentences
of length between 2 and 80, leading to 14.700 training, 1.447 valid, and 1.697 test sentences. We
set the embedding size to 256 and use a 2-layer Bi-LSTM with 256 hidden units on each layer. As
in the language model experiment, we use different algorithms, including AdaMomentum, to train
different models for 30 epochs. We present the test token-level F1 score after each epoch in Fig. 2.
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Figure 2: Our proposed AdaMomentum achieves 0.75+
token-levelF1 score on test data, outperforming other meth-
ods. AdaMomentum converges quickly and stably, possess-
ing the merits of both AdaGrad and Momentum. Our perfor-
mance is lower than as reported [4] because we use a simpler
model.

Conclustion and future work With these preliminary results, we strongly believe that although
RNN-LSTMs can be trained quite easily with vanilla optimization algorithms, we can improve their
performances on many tasks by using more advanced techniques. Our future work will aim at
examining those techniques, especially AdaMomentum, on other tasks involving RNN-LSTMs and
at various scales of data, such as neural machine translation or question answering.
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