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Abstract—Transformer-based neural models are used in many
AI applications. Training these models is expensive, as it takes huge
GPU resources and long duration. It is challenging because typical
data like sentences have variable lengths, and Transformer’s
computation patterns are more complex than convolutional neural
networks. Existing systems either only focus on model inference
or optimization for only BERT-like encoder models. In this paper,
we present LightSeq2, a system to accelerate training for a
general family of Transformer models on GPUs. We propose a
series of GPU optimization techniques tailored to the specific
computation flow and memory access patterns of Transformer
models. LightSeq2 supports many model architectures, including
BERT (encoder-only), GPT (decoder-only), Transformer (encoder-
decoder), and vision Transformer. Our experiments for a variety of
models and benchmarks show that LightSeq2 is consistently faster
(1.4-3.5×) than previous systems on different GPUs. In particular,
it gains 308% training speedup compared with existing systems on
a large public machine translation benchmark (WMT14 English-
German).

Index Terms—Transformer, GPU Acceleration, Training, Natu-
ral Language Processing, Computer Vision

I. INTRODUCTION

Deep learning has been a prevailing approach to artificial
intelligence (AI). Among various deep models, Transformers
[1] have become one dominant choice of model architecture
in many AI tasks, including natural language processing
(NLP), computer vision (CV), and automatic speech recognition
(ASR) [2]–[6]. Variants of Transformer have been proven to
achieve state-of-the-art accuracy in text classification, question
answering, machine translation, and visual object recognition
tasks [2], [7], [8]. Transformer models typically require large
model size and training data to perform well. For example, a
GPT-3 model requires 3.1 million hours of training on modern
GPUs and it costs $4.6 million to complete a single trial [9].
Fig. 1 shows model sizes and estimated training costs for
several popular Transformer models. The training cost increases
roughly in proportion to the number of model parameters. With
the ever-growing model size, it becomes expensive to train
them. Accelerating the computation for Transformers in both
training and inference is critical.

*Partial work was done while at ByteDance.
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Fig. 1. Model size (number of parameters) and training time on Tesla V100
for popular Transformer-based models.

However, existing approaches for accelerating Transformer
computation are limited to either inference-only or encoder-
only models. LightSeq [10], TurboTransformers [11], and
FasterTransformer1 are recent systems targeting the serving of
Transformers, but they cannot support Transformer training.
DeepSpeed provides optimized training for Transformer [12],
but it only supports Transformer encoder layers (e.g., BERT
[2]). Tasks like machine translation requires full encoder-
decoder Transformer layers, criterion layers for calculating
generation loss, shared embedding, etc. These involve more
complex computation flow, as in the cross attention computation
between decoder and encoder layers. Therefore, it is nontrivial
to accelerate the training for full Transformers.

Other research on general computation acceleration for neural
networks include automatic hardware-oriented compilation
and quantized computation [13], [14]. However, automatic
compilation only supports fixed-length input, and find it difficult
to deal with a variable-length input such as natural sentences
for Transformer. Reducing the precision by quantization is
beneficial in terms of performance but they could also lead to
accuracy decrease to a certain extent, and accuracy is crucial
for model training.

Comparing to inference, there are several additional chal-
lenges to accelerate training for Transformers. First, in addition
to forward operators in inference, a training framework needs
high-performance kernels to calculate gradients of each layer

1https://github.com/NVIDIA/FasterTransformer
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TABLE I
COMPARING SYSTEMS FOR ACCELERATED TRANSFORMER TRAINING. OTHER SYSTEMS ONLY SUPPORT TRANSFORMER INFERENCE ARE NOT INCLUDED.

Training Components Sequence Length DL Frameworks
Libraries Embedding Encoder Decoder Criterion Trainer PyTorch TensorFlow

DeepSpeed % ! % % ! Multiples of 16 ! %

LightSeq2 ! ! ! ! ! Arbitrary ! !

during backward steps. Backward operators exhibit unique
challenges unseen in forward operators. For instance, the
sparse aggregation in Embedding’s backward step requires
dedicated kernel design; the complex calculation dependencies
in LayerNorm’s backward step hinders parallelism. Second,
the parameter update procedure in trainers (also known as
optimizers) needs to be accelerated. For example, trainer takes
25% of the time when training Transformer-Big using PyTorch
on eight V100 GPUs. Trainers need relatively high-precision
calculation for updating parameters. Finally, a training system
needs different techniques to optimize the memory management
comparing to inference systems. Training requires stashing
all the activations of previous layers for backward usage.
However, due to the large scale Transformer models can be,
it is crucial to save GPU memory in order to train larger
models. In this paper, we focus on accelerating the training for
Transformer models on modern GPUs. We aim to provide a
general system-level solution that works for all kinds of models
based on Transformer, and all kinds of training algorithms such
as stochastic gradient descent (SGD) and adaptive gradient
methods.

To this end, we propose LightSeq2, an efficient software
library for both training and serving Transformer models. It
provides system-level optimization without sacrificing accuracy
or changing any training behavior (learning rate, convergence
rate, initialization, numeric stability, etc.). LightSeq2 includes
three techniques for speedup, namely layer-specific kernels to
increase GPU utilization, fine-grain mixed-precision trainer, and
an improved strategy for efficient GPU memory management.
Firstly, we address the GPU low utilization issue through
fusing small kernels and rewriting kernels with dependencies
among other parallelism enhancing techniques, based on in-
depth analysis of Transformer-specific layers. Secondly, we
accelerate the trainer (i.e., parameter optimizer) by employing
batched update on reduced-precision parameters rather than
many individual updates on full-precision parameters. Finally,
we propose a memory manager that, aware of the Transformer
structure, can recycle the space of tensors unused in backward
pass to reduce peak memory consumption and avoid excessive
allocation/release calls. LightSeq2 is the first to accelerate the
whole process of Transformer training. Table I lists the differ-
ences between our proposed LightSeq2 and existing accelerated
Transformer training library. In summary, LightSeq2 enjoys
the following advantages:

• Highly efficient. LightSeq2 is fast and memory efficient
for training Transformers, as validated in multiple experi-
ments. Noticeably, LightSeq2 obtains up to 308% speedup

and only requires 65% GPU memory on eight NVIDIA
Tesla A100 GPUs in WMT14 English-German machine
translation task compared to PyTorch.

• Supporting rich models in Transformer family. Light-
Seq2 provides comprehensive efficient custom opera-
tors, including embedding, encoder layer, decoder layer,
and criterion. These enables BERT (encoder-only), GPT
(decoder-only), full Transformer with encoder-decoder,
etc. Therefore it is suitable for almost all NLP tasks
such as text classification, generation, summarization, and
machine translation.

• Flexible usage. In addition to manually integrating the
custom layers in model codes, the users can also use
LightSeq2 in popular training libraries without code
modification. The library provides seamless integration
with PyTorch and TensorFlow.

The source code is available at https://github.com/bytedance/
lightseq.

II. BACKGROUND

A. Transformer Models

The main idea of Transformer is using multi-head attention
(MHA) to map tokens in a sequence to feature representations.
The network can be an encoder, a decoder, or an encoder-
decoder architecture. Fig. 2 illustrates an encoder-decoder
Transformer for machine translation (MT). Given an input
sentence in the source language (e.g., German), the model
first breaks the input sequence into tokens, and convert tokens
into embedding vectors. These embeddings are processed by
encoder and decoder layers. Both the encoder and the decoder
contain multiple layers of MHA. Each MHA unit computes the
attentional weights of one token by calculating the similarity
scores to all token embeddings from the previous layer. The
current layer’s embedding is then calculated from a weighted
sum of embeddings of the previous layer. The decoder has two
differences. It calculates self-attention to only prefix tokens in
the decoder side. It includes additional cross attention from
decoder to encoder tokens. The output sequence is generated
token by token where each token probability is calculated from
Softmax layer.

The Transformer-based models have variable-length interme-
diate tensors, which may lead to frequent allocation and release
of GPU memory. There are several existing methods to deal
with this problem. TurboTransformers [11] uses a sequence-
length-aware allocator in their inference library to maximize
non-dependent GPU memory sharing and memory consumption
reduction. However, this also increases the frequencies of
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Fig. 2. Transformer architecture with full encoder-decoder for machine translation.

allocating and releasing the GPU memory. Thus it will slow
down the model inference. LightSeq [10] allocates the maximal
GPU memory in advance to prevent dynamic allocation and
release during training.

B. Model Training

There are four stages during each iteration of data-parallel
training.

1) The model receives a batch of training data and then
performs forward propagation, obtaining the final loss.

2) The model performs backward propagation using the
loss calculated after forward propagation, generating the
gradients of all parameters.

3) Gradients are gathered from all devices and then the
averaged gradients are computed and broadcast to each
device. There are two major families to complete this
process, all-reduce [15] and Parameter Server (PS) [16].

4) All parameters in each device are updated using the
averaged gradients. Since the initial state and gradient of
the parameters on each device are the same, the parameters
remain the same after one updated stage.

The bottleneck of the first and second stages is mainly in
computing, which depends on fast CUDA kernels. However, the
last two stages require better memory management, which will
speed up the copies of parameters and gradients. Many works
devote to accelerating these four stages, such as DeepSpeed,
Apex, DDP [17], etc. However, there is no work to accelerate
the complete training process. Fig. 3 is the time cost of the
four training stages. It can be found that model computing
and parameter updates account for a large proportion. After
training with LightSeq2, the time of the three stages is greatly
reduced, especially the parameter updates.

Different from model inference which only has the forward
propagation stage, model training is more challenging. First,
model training requires higher accuracy. Otherwise, the error
will be magnified after constant parameter updates. Second,
model training requires better memory management due to the
need for maintaining gradients and activation checkpointing
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Fig. 3. Time cost for Fairseq and LightSeq2 based on WMT-14 English-
German machine translation task, using Transformer-24e24d and 8 Tesla A100
GPUs.

used by backward propagation. Finally, model training requires
a fast trainer for parameter updates. However, for Transformer
models, the training needs not deal with incremental length in
auto regressive decoding, which is simpler than inference.

III. RELATED WORK

Many approaches have been proposed to speed up the
computation for deep neural models, which can be divided
into two categories, algorithm-specific and algorithm-agnostic.

Algorithm-specific methods accelerate the training process by
improving the model architectures [18]–[24], training strategies
[25]–[27], optimization algorithms [28], [29], data precision
[30]–[32], and others [33], [34]. Vyas et al. [18] use clustered
attention to group queries into clusters and compute attention
just for the centroids, resulting in a linear complexity model.
Gong et al. [26] propose a stacking algorithm to transfer
knowledge from a shallow model to a deep model, then
applies stacking progressively to accelerate BERT training.
Yang et al. [28] propose ADAHESSIAN, a second-order
stochastic optimization algorithm that dynamically incorporates
the curvature of the loss function via adaptively estimates of
the Hessian matrix. These techniques can speed up the model
training to a certain extent but may affect the model structure
and effect, so the universality is not good.



For algorithm-agnostic optimization, Apex2 developed many
commonly used GPU kernels using C++ and CUDA, including
LayerNorm, Softmax and Adam optimizer. It supports
automatic mixed precision computation similar to earlier
quantization idea [14] and distributed training. Unlike previous
works that change the training behavior, the engineering level
optimization strictly follows the training algorithm and has no
impact on anything other than speed. Our LightSeq2 further
enhances the performance of trainer with memory-efficient
mixed precision computation without sacrificing the accuracy.

DeepSpeed [35] integrates these small kernels into Trans-
former encoders, which boosts the training throughput on
a single GPU and scales well on multiple GPUs. However,
DeepSpeed has several limitations which hinder its usage in
NLP, CV, and ASR tasks, especially in sequence generation
tasks. First, DeepSpeed only optimizes Transformer encoder,
thus is not suitable for tasks requiring decoding modules (e.g.,
machine translation). Second, DeepSpeed does not optimize
the other module like embedding and criterion, which prevents
it achieving higher performance. Third, DeepSpeed requires
that the input length be an integer multiple of 16 due to the
implementations of some kernels, which introduces unnecessary
padding and computation. In contrast, LightSeq2 supports the
arbitrary shape of inputs. Fourth, DeepSpeed does not support
TensorFlow, which is also widely used in practice.

LightSeq (version 1.2) [10], TurboTransformers (version
0.5) [11], and FasterTransformer (version 4.0)1 are recent
systems targeting the serving of Transformers. All systems
exploit manually written CUDA kernels for accelerated forward
computation of layers in a Transformer. They also improve the
serving throughput by enhanced batch decoding strategies on
GPUs. However, neither supports Transformer training since
there are additional backward computation which is more
complex than the forward pass.

TVM [13] is a compiler that searches for candidate opti-
mizations in the neural network according to specific patterns
and automatically merge operators. It exposes graph-level and
operator-level optimizations to provide performance portability
to deep learning models. However, it is difficult to apply to
Transformer-based models due to the variable input lengths.

IV. THE LIGHTSEQ2 SYSTEM

This section will introduce the four techniques used in Light-
Seq2 in detail, including computational graph optimizations,
dependent reduction rewriting, accelerated mixed-precision
update for trainer, and dangling-tensor aware memory manager.

A. Computational Graph Optimizations

Deep learning frameworks usually use computational graphs
to represent the programs. Nodes represent operations like
addition and multiplication, and edges represent tensor data
flowing between operations.

We replace straightforward fine-grained GPU kernel func-
tions in PyTorch or TensorFlow implementations with coarse-
grain fused ones. Our customized operators avoid high overhead

2https://github.com/NVIDIA/apex

Y = Y ⋅ WO

Y = S ⋅ V

Reshape Y

Bias adding & Reshape Q, K, V

S = Q ⋅ K𝖳 / dk

Softmax

Q, K, V = Y ⋅ (WQ, WK, WV)

LayerNorm

LayerNorm

Y = Y ⋅ W1

Bias adding & ReLU & Dropout

Y = Y ⋅ W2

Self-Attention

FFN

Custom kernels

CuBLAS GEMM

Dropout

Bias adding & Dropout & Residual

Bias adding & Dropout & Residual

Fig. 4. LightSeq2’s optimized computational graph for Transformer with
pre-LayerNorm.

introduced by a mass of kernel function launches and GPU
memory I/O for intermediate results during forward/backward
propagation.

1) Transformer Layers: To all types of Transformers, we
design fused kernel operators for both encoder and decoder
layers.

The computational graph of a Transformer has two types
of operations. One involves GEMM, including linear trans-
formation and scaled dot product. The other is non-GEMM,
such as Dropout, LayerNorm, and Softmax. To ensure
the flexibility to cover various variants of the transformer-
based models, we focus on fusing non-GEMM kernels and
directly use the GEMM implementations from cuBLAS.The
non-GEMM operations can be further grouped into two
categories. One is element-wise operation (e.g., Dropout,
ReLU, Reshape and bias adding), and the other is reduction
operations (e.g. LayerNorm and Softmax). Element-wise
operations enable explicit parallelism and multi-kernel fusion.
Reduction operations require careful synchronization between
threads.

Fig. 4 shows optimized computational graph for Transformer.
The yellow boxes represent GEMM kernels and blue boxes
represent custom non-GEMM kernels. Adjacent fine-grained
element-wise kernels are fused into one coarse-grained kernel,
resulting in fewer kernel launches and intermediate results. For
example, the last kernel of the self-attention layer implements
bias adding, dropout, and residual kernels with only one kernel
launch.

2) Embedding Layer: The embedding layer is widely used in
most deep learning tasks to obtain the distributed representation
of one word or an image patch. Given a token embedding
lookup table E and positional embedding lookup table P, we
can get the representation y(w,p) of one token with index w
and position p:

y(w,p) = Dropout(s ·Ew +Pp),

where s is the embedding scale.



Considering an input sentence x with length l, let m denotes
the Dropout mask generated in the forward propagation.
We can efficiently compute the gradient of token w in the
embedding table:

∇E = s ·
∑

0≤i<l,xi=w

m(i) ⊙∇y(xi,i),

where ⊙ represents an element-wise product. We use ∇x to
denote ∂L

∂x , where L is loss from criterion layer, and x is any
intermediate layer output. This means summing up all gradients
of tokens w in the different positions in the sentence, which
can be implemented in parallel by atomicAdd operation in
CUDA to avoid interference from other threads.

3) Criterion Layer: The criterion layer is used to compute
the loss between the model output and the ground truth. The
loss is cross entropy for machine translation. Let h, a vector
of length V , denote the output of the decoder for one token,
where V is the vocabulary size, and y denote the one-hot
vector of length V representing the ground truth. The prevalent
cross-entropy loss with label smoothing can be formulated as

L(p,q) = −
∑
i

pi log(qi),

where p = (1−α)y+ α
V ·1 and q = Softmax(h). 0 ≤ α ≤ 1

is the smoothing parameter, and
∑

i qi = 1.
By plugging p and q into the loss function and calculating

the partial derivatives of hi, we can get the gradient of decoder
output as follows.

First, the gradient of Softmax function is:

∂qi

∂hj
=

{
−qiqj i ̸= j
qi(1− qi) i = j

,

We derive the gradient to decoder output in two situations. If
i is equal to the ground truth token index k, the gradient as:

∇hi =
∂L
∂hi

= − α

V

∑
j ̸=k

1

qj
· ∂qj

∂hk
− (1− α+

α

V
) · 1

qk
· ∂qk

∂hk

= qk − α

V
− 1 + α

.

The gradient for other slots are:

∇hi =
∂L
∂hi

= − α

V

∑
j ̸=k

1

qj
· ∂qj

∂hi
− (1− α+

α

V
) · 1

qk
· ∂qk

∂hi

= − α

V

∑
j ̸=k,j ̸=i

1

qj
· ∂qj

∂hi
− α

V
· 1

qi
· ∂qi

∂hi

− (1− α+
α

V
) · 1

qk
· ∂qk

∂hi
= qi −

α

V

.

Therefore the final gradient to the decoder output is:

∇hi =

{
qi − α

V − 1 + α if token i is the ground truth
qi − α

V otherwise
,

which is an element-wise kernel of q and can be executed in
parallel. Our Softmax operation will be introduced later. But
we do not directly calculate it. Instead, we calculate logarithm
of Softmax by adding additional logarithmic operations and
bias adding for forward and backward calculation.
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Fig. 5. The computation of cross attention in LightSeq2.

4) Layer-batched cross Attention: As shown in Fig. 5(a),
considering the model has n decoder layers, the context (vectors
like keys and values) in cross attention of decoder layer is
obtained by calculating the linear transformation of the encoder
output:

ykeyi = Wkey
i · x + bkey

i

yvalue
i = Wvalue

i · x + bvalue
i

where ykeyi and yvalue
i are the contexts in cross attention of i-th

decoder layer. Wkey
i and Wvalue

i are the parameter matrices.
bkey
i and bvalue

i are the bias vectors. x is the output of the
encoder. As shown in Fig. 5(b), we merged the computation of
the context of cross attention to reduce the launch of kernels
and improve the concurrency of matrix multiplication:

[ykey; yvalue] = [Wkey;Wvalue] · x+ [bkey;bvalue],

where

Wkey = [Wkey
0 ;Wkey

1 ; . . . ;Wkey
n−1]

Wvalue = [Wvalue
0 ;Wvalue

1 ; . . . ;Wvalue
n−1 ]

.

Splitting [ykey; yvalue] once will obtain context of all decoder
layers in forward propagation. For backward propagation,
LightSeq2 computes the gradient of loss with respect to x
(encoder output) after finishing the backward propagation of
0-th decoder layer.

B. Dependent Reduction Rewriting

LightSeq2 optimizes two batch reduction operations tradition-
ally taking a long time in the training, including LayerNorm
and Softmax.
LayerNorm normalizes the inputs x using

yi = wi ·
xi − µ(x)

σ(x)
+ bi,

where µ(x) and σ(x) stand for the mean and standard variance
of x respectively. Both are batch reduction operations. While
warp-level parallelism provided by CUDA allows inter-thread
communication for batch reduction over x, we cannot merge
these two reductions directly. Because calculating variance
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requires the mean. To speed up the forward pass, LightSeq2
adopts the following formula for reduction of variance:

σ(x) =
√
µ(x2)− µ(x)2.

In two reduction operations, both means of x and x2 are
computed in parallel.

To calculate the gradient, first let x̂i =
xi−µ(x)

σ(x) . Then the
gradient of xi is:

∇xi =
∑
j

∇yj ·wj ·
∂x̂j

∂xi
.

The derivation process of normalization partial differential ∂x̂j

∂xi

is not introduced in detail here for its popularity. Thus the final
gradient is:

∇xi =
wi∇yi

σ(x)
− 1

mσ(x)

∑
j

∇yjwj + x̂i

∑
j

∇yjwjx̂j

 ,

where m is the dimension of x, ∇xi and ∇yi are the gradients
of the i-th elements of input and output tensors respectively.

LightSeq2 rearrange the gradient calculation formula to
enable parallel computation:

∇xi =
wi∇yi

σ(x)
+ α ·

∑
j

wj∇yj + β ·
∑
j

wj∇yjxj ,

where α and β are coefficients that can be solved in parallel:

α =
[xi − µ(x)]µ(x)− σ(x)2

mσ(x)3
β =

µ(x)− xi

mσ(x)3
.

The two batch reductions
∑

j wj∇yj and
∑

j ∇wjyjxj can
be executed in parallel.

As LayerNorm is sensitive to the precision of floating
points, LightSeq2 stores half-precision float point (FP16) for
parameters and casts them to single-precision float point (FP32)
during computation to avoid additional I/O cost.
Softmax Attention in Transformer needs Softmax. The
forward process of Softmax can be expressed as yi =

exp(xi)∑
j exp(xj)

.

1 W = Parameter(total_size)
2 y = linear(W[start: end], x)

1 f_W = load_and_convert(W)
2 f_W = update(f_W, grad)
3 W = convert_and_save(f_W)

(a) Symbolic target link (Python).

1 W = Parameter(total_size)
2 y = linear(W[start: end], x)

1 f_W = load_and_convert(W)
2 f_W = update(f_W, grad)
3 W = convert_and_save(f_W)

(b) On-the-fly (GPU kernel).

Fig. 7. A simple implementation of the two key technologies in LightSeq2
trainer. (a) Symbolic target link is implemented with Python. It defines all
parameters into a continuous workspace (Line 1), and then uses corresponding
memory blocks to compute (Line 2). (b) On-the-fly mechanism is implemented
with GPU kernel. It first loads the only one parameter and converts it to float32
precision (Line 1). Then it updates the float32 parameters (Line 2). Finally, it
converts the parameters back to float16 precision and saves it into original
memory (Line 3).

For numerical stability, especially for mixed-precision train-
ing, it takes three steps to avoid overflow:

1) Find the maximal element of x, denoted as x′.
2) Deduct x′ from each element in x so that the exponential

never overflows, and then calculate the partition function
Z =

∑
j exp(xj − x′).

3) Calculate Softmax using yi = exp(xi − x′)/Z.
Both step 1 and 2 are reduction operations. The number of
reductions and reduction dimension are quite diverse in the
attention Softmax. For example, in common NLP tasks,
the reduction dimension ranges from a few to thousands and
the number of reductions ranges from thousands to millions.
To address this challenge, we implement multiple templates
suitable for diverse shapes and let key parameters (e.g., number
of blocks, warps per block, reduce times per block) tunable.
LightSeq2 runs templates and searches for parameters before
training to determine the optimal configuration for each shape.

C. Accelerated Mixed-Precision Update for Trainer

Trainer include numerical update algorithm for parameters
(e.g. Adam). In mixed precision training [36], parameters and
gradients are in FP16 during forward and backward propagation.
Since the update values, the product of learning rates and gradi-
ents, are often tiny, the trainer need to maintain FP32 copies of
parameters and gradients to ensure accuracy. A straightforward
system copies each piece of gradients/parameters in the model
to/from its FP32 partner in one training step (Fig. 6(a)). The
trainer kernel will load the FP32 gradient to update the FP32
parameters. This mechanism has two disadvantages:

1) Numerous pieces of gradients/parameters lead to multiple
fast-returning GPU kernels like copying and updating,
which reduce GPU utilization.

2) Redundant memory footprints are caused by the FP32
copy of gradients/parameters.

Our LightSeq2 alleviates them by the symbolic tensor linking
and the on-the-fly conversion. During the initialization of the
trainer, LightSeq2 copies all pieces of parameters/gradients
into one tensor called workspace orderly (Fig. 6(b)). Then
we reset and link them as fragments of workspace. During
each training step, LightSeq2 only executes the trainer kernel
once to update the workspace, which prevents launching
huge amount of fragmented GPU kernels on every piece of
parameters/gradients.
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Fig. 8. LightSeq2’s memory manager reuses pre-allocated memory as much as
possible. Tensors in the same column on the right side have no dependencies,
hence sharing the same pre-allocated memory block. So LightSeq2 only needs
to allocate the memory with the maximal size (the width of the memory block
on the right side) once before training starts.

Our trainer kernel loads the FP16 parameters/gradient from
workspace to register and converts it on-the-fly to FP32. Then
the parameters on register will be updated as usual. Finally,
the parameters will be converted on-the-fly to FP16 and saved
to workspace. Accessing memory with FP16 instead of FP32
reduces the data movement by half and avoids the FP32 copies
of parameters and gradients.

The cooperation between the symbolic tensor linking and the
on-the-fly conversion leads to both memory savings and latency
reduction without reducing accuracy. The experimental result on
Transformer-big model shows that the proposed trainer reduces
its memory usage by 2 GB and its runtime by 54.9% compared
to the Fairseq trainer with high kernel fusion from Apex. Fig.
7 is a simple implementation of the two technologies.

D. Dangling-Tensor Aware Memory Manager

In practice, training with a large batch contributes to fast
convergence and higher accuracy. However, large batch training
requires multiple GPU, gradient accumulation, or memory
offload due to the memory limit.

LightSeq2 reduces the memory footprint by compacting
memory with fewer allocation-and-releases at no extra cost.
LightSeq2 divides the GPU memory into permanent memory
with a fixed size to store parameters and gradients, and
temporary memory with variable sizes to store intermediate
tensors. To avoid the frequent allocation of temporary memory,
we scan the training set and estimate the upper bound of the
capacity. Thus temporary memory was allocated once with
the maximal size before training starts, and it is reused for
different batches and released after training finishes.
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Fig. 9. LightSeq2 software architecture, where FW represents forward and
BW represents backward. Python API supports both PyTorch and TensorFlow.
Blue represents external interfaces

Fig. 8 shows LightSeq2’s temporary memory cost in the self-
attention backward process. The left side describes the steps of
backpropagation. Each row on the right side lists the memory
occupancy of temporary tensors in one step. Tensors in the
same column reuse the same memory block. The sizes of the
orange and purple tensors are BLH and BL2N . The tensors
in the dashed memory blocks are not updated in that step, and
those in the solid blocks are updated. We can see that only
3BHL (the first three blocks) +max{3BHL,BL2N} (the
last block) bytes of memory are required, where B,H,L,N
denote the batch size, hidden dimension, max sequence length
and the number of heads respectively. In contrast, without using
the shared memory block strategy, a total of 9BLH +BL2N
bytes of memory will be required.

V. USABILITY DESIGN

We design LightSeq2 to be modular, usable and interopera-
ble.

A. Software Architecture

The software architecture of LightSeq2 consists of five
modules, as shown in Fig. 9. The lower two are internal and
the upper three are exposed to users.

The CUDA kernel module implements efficient CUDA kernel
operations, such as Softmax forward, Softmax backward, etc.
These kernels are optimized for various input shapes. LightSeq2
directly calls the external cuBLAS library for other kernels
like matrix multiplication (GEMM).

The C++ operator module encapsulates common operators in
C++ using above CUDA kernels to includes both forward and
backward procedures for encoders and decoders. In addition,
LightSeq2 also utilizes GPU memory reusing technology to
save GPU memory.

The Python API module provides many convenient APIs
in Python by encapsulating C++ operators. With these APIs,
Transformer model training can be implemented through just
a few lines of codes. The Python API supports models trained
with both PyTorch and TensorFlow.

The model zoo module implements many common models
using Python APIs above. LightSeq2 provides a model transla-
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Fig. 10. Training speed comparison on machine translation using different numbers of Transformer layers on both V100 and A100 GPUs. 6e6d denotes 6
encoder layers and 6 decoder layers.

1 from lightseq.training import LSTransformerEncoderLayer
2 config = LSTransformerEncoderLayer.get_config(
3 model="bert-base",
4 max_batch_tokens=4096,
5 max_seq_len=512,
6 fp16=True,
7 local_rank=0)
8 ls_layer = LSTransformerEncoderLayer(config)
9 # replace the 1st Hugging Face layer with LightSeq2

10 bert_model.layer[0] = ls_layer

Fig. 11. An example of Hugging Face BERT acceleration with LightSeq2.
After creating the LightSeq2 encoder layers, we only need to replace the
Hugging Face layers with them, and then train the model as normal.

tor to export models developed in other high-level frameworks
(e.g., Fairseq and Hugging Face) to our own operators.

B. Interoperability

LightSeq2 is deeply integrated with mainstream training
codebases, and users can use LightSeq2 for accelerated training
without modifying the code. For example, in Fairseq, users
only need to modify the startup command to LightSeq2-train
and specify the LightSeq2 Transformer module. In addition, the
original model in PyTorch or TensorFlow and LightSeq2 model
can be easily converted to each other to support accelerated
fine-tuning.

C. Example Usage

We provide both C++ and Python APIs for users. Fig. 11 is
a code snippet of accelerating Hugging Face BERT training
with LightSeq2. LightSeq2 provides a rich amount of built-in,
size-reconfigurable network architectures. Line 2-7 are used to
provide the configuration information of the encoder layer.

VI. EXPERIMENTS

We investigate the following questions in expertments.

TABLE II
MODELS IN EXPERIMENTS (IMPLEMENTED IN BOTH LIGHTSEQ2 AND

BASELINES).

Models Encoder Decoder Baseline

Transformer ! ! Fairseq + Apex

ViT ! % Hugging Face

BERT ! % DeepSpeed

GPT-2 % ! Hugging Face

1) Does LightSeq2 obtain consistent overall speedup for a
variety of models across different GPUs?

2) How much benefit does each optimization technique bring?
3) How much is the memory saving in LightSeq2?
4) How does LightSeq2 scale with respect to model sizes

and the number of GPUs?

A. Overall Speedup

1) Setup: Benchmarks: We include four tasks in the
experiments (Table II): machine translation using WMT14
English-German data [37], image classification using CIFAR-
10 data [38], text classification using GLUE data [39], and
language modeling using WikiText data [40]. The models are
Transformer (with full encoder-decoder), ViT, BERT and GPT-
2. We evaluate each network architecture with different sizes
and layer configurations to accommodate the need of a wide
range of use cases.

Platforms: We run experiments using NVIDIA Tesla V100
and Tesla A100.

Baselines: We choose the state-of-the-art implementations
for the benchmark tasks as the baselines: Fairseq [41],
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Fig. 12. LightSeq2 speedup of Vision Transformer on image classification
compared with Hugging Face.
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Fig. 13. Speedup on MRPC task using different BERT structures and eight
V100 GPUs. Here we use samples per second to measure the speed.

Hugging Face3, Apex4, and DeepSpeed5. As shown in Table II,
we use the out-of-the-box end-to-end implementation provided
by these baselines and tune the setup based on our run-time
environment. To measure the speed, we use words per second
compared with Fairseq and samples per second compared with
Hugging Face.

2) Transformer: We evaluate the performance of full Trans-
former on WMT14 English-German machine translation task.
The baseline is Fairseq Transformer with Apex optimization.
Fairseq implement Transformer with native Pytorch operators.
Apex can further improve the performance of Fairseq Trans-
former by providing custom optimized operators.

We train transformer models at three different sizes (e.g.,
6e6d represents six encoder and decoder layers) on eight
V100/A100 GPUs. The batch token size denotes the total
number of tokens in one mini-batch. Fig. 10 show that
LightSeq2 obtains a speedup of 1.4-2.8× on V100 and 1.5-
3.5× on A100 compared to Fairseq Transformer with Apex
optimization.

Due to the computational graph optimizations and dependent
reductions rewriting, LightSeq2 achieves higher computational
throughput and requires less GPU memory and I/O. As a
result, LightSeq2 obtains a higher speedup on A100 than V100.
Moreover, under scenario of training large model, the bottleneck
is memory bandwidth rather than computational throughput
due to the limited batch size. LightSeq2 also achieves higher
speedup for larger model. To sum up, LightSeq2 favors GPUs
with higher peak throughput and larger models.

3) ViT: We evaluate the performance of vision Transformer
(ViT) [8] on image classification task using CIFAR-10 dataset.

3https://github.com/huggingface/transformers
4https://github.com/NVIDIA/apex
5https://github.com/microsoft/DeepSpeed
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Fig. 14. LightSeq2 speedup of GPT-2 compared with Hugging Face. GPT-2
Base model is trained on V100 and GPT-2 Large model is trained on A100.
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Fig. 15. Speedup for a 12-layer Transformer (6e6d) on 8 V100 GPUs.
LightSeq2 has three variations, with kernel fusion only, training only, and the
full version.

The baseline is Hugging Face ViT, which is based on native
PyTorch operators.

We train ViT models of two different sizes on eight V100
GPUs. ViT-B-32 and ViT-L-32 represent the base and large
ViT models with patch size 32. The resolutions of the images
are all 224× 224. Thus the sequence lengths of the inputs of
the ViT are all 50. LightSeq2 can obtain a speedup of 1.2-1.7×
on ViT-B-32 and 1.2-1.5× on ViT-L-32 compared to Hugging
Face, as shown in Fig. 12.

The input shape of image classification task are quite
different from machine translation. LightSeq2 still outperforms
the Hugging Face in all configurations by large margins, which
verifies that our optimization is general for input shape and
also suitable for computer vision tasks.

The ViT model only has an encoder with a relatively
simple computational graph. With the increase of batch size,
the proportion of time for matrix multiplication (GEMM)
during training increases, which is not optimized by LightSeq2
currently. As a result of it, the speedup decreases as batch size
increases. When the batch size reaches the maximum (limited
by a 32 GB of GPU memory), LightSeq2 can still obtain a
speedup of 1.2× on ViT-B-32 and ViT-L-32, which shows the
efficiency of our optimization apart from GEMM.

4) BERT: We evaluate the performance of BERT (Trans-
former encoder only) on Microsoft Research Paraphrase Corpus
(MRPC) task of General Language Understanding Evaluation
(GLUE) benchmark.

The baseline is Hugging Face BERT and DeepSpeed BERT.
Hugging Face implements BERT with native Pytorch operators
and is widely used due to its public pre-trained models.
DeepSpeed6 optimizes the Transformer encoder layer and

6https://github.com/microsoft/DeepSpeedExamples/tree/master/bing bert
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token size 4096 and hidden dimension 256).

0.1 0.5 1 2 5 10 20 50 100
Total counts (M)

0.5

1.0

1.5

2.0

2.5

Sp
ee

du
p

PyTorch
TensorFlow
DeepSpeed
LightSeq2

(a) Dropout.

(256, 32)
(128, 64)

(85, 96)
(68, 128)

(64, 160)
(45, 192)

(42, 224)
(32, 256)

(28, 288)
(25, 320)

(Batch size, Sequence length)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Sp
ee

du
p PyTorch

TensorFlow
DeepSpeed
LightSeq2

(b) Softmax.

Fig. 17. Speedup for Dropout and Softmax operators.

achieves the fastest performance for training BERT. For a
fair comparison with DeepSpeed, we replace our efficient
embedding, criterion, and trainer operators with theirs and
individually verify the efficiency of our encoder layer.

We train BERT-Base and BERT-Large models on eight V100
GPUs and choose samples per second (SPS) as metric to
evaluate performance. As shown in Fig. 13, LightSeq2 obtains
a speedup of 1.44× for BERT-Base and 1.28× for BERT-Large
compared to DeepSpeed, which proves the efficiency of the
LightSeq2 encoder layer.

5) GPT-2: We evaluate the performance of GPT-2 (Trans-
former decoder only) on language modeling task using Wiki-
Text [42] dataset. Our baseline is Hugging Face GPT-2, which
is based on native PyTorch operators.

We train GPT-2 Base with 117M parameters on eight V100
GPUs and GPT-2 Large with 762M parameters on eight A100
GPUs. Iterations per second is chosen as the metric to evaluate
performance. As shown in Fig. 14, LightSeq2 obtains a speedup
of 1.7-1.8× for GPT-2 Base on V100 and 1.6-1.9× for GPT-2
Large on A100 compared to Hugging Face, which proves the
efficiency of the LightSeq2 decoder layer.

B. Speedup Breakdown

To demonstrate the benefits of our optimizations in detail,
we test the performance of LightSeq2 from operator and layer
level on one NVIDIA Tesla V100 GPU. To measure the speed,
we run each operator/layer for 10 times and take the average
time.

1) Operator-wise Speedup: We choose four common op-
erations, Dropout (element-wise), Adam (element-wise),
Softmax (reduction) and LayerNorm (reduction), to show
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Fig. 18. Speedup of trainer. Notice that LightSeq2 gains a consistent speedup
of 2.3× for Adam and 2.4× for SGD over Apex across different model sizes.
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Fig. 19. LightSeq2 speedup of different layers.

the efficient of CUDA kernels from LightSeq2. Our baselines
are their implementations from PyTorch, TensorFlow and
DeepSpeed.

Fig. 16 shows the performance of LightSeq2 LayerNorm.
LightSeq2 gains a speedup of about 4× despite of the batch
token size and hidden dimension. However, with the increase
of batch token size or hidden dimension, the speedup of
DeepSpeed drops significantly. Our technique shows high per-
formance even when the original kernel has limited parallelism.
If the number of elements is huge, the speed of DeepSpeed is
not even as good as PyTorch. On the other hand, TensorFlow
is not as fast as PyTorch in most cases, except when there are
too many elements.

Fig. 17(a) shows the performance of LightSeq2 Dropout.
As the number of elements increases, both DeepSpeed and
LightSeq2 become slower. When the number of elements is
greater than five million, DeepSpeed becomes slower than
PyTorch. The gap between TensorFlow and PyTorch becomes
smaller, but LightSeq2 still has a speedup of 1.2-1.5×.

Fig. 17(b) shows the performance of LightSeq2 Softmax.
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Fig. 20. GPU memory usage for machine translation on one V100.
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Fig. 21. GPU utilization for machine translation on one V100.

Unlike the other kernels, as the batch size and sequence length
increase, the speedup of LightSeq2 becomes larger, due to the
specific optimization for different input shapes. The trends of
DeepSpeed and TensorFlow are similar to the other kernels.

Fig. 18 shows the performance of LightSeq2 trainer. Light-
Seq2 gains a consistent speedup of 2.3× for Adam and 2.4× for
SGD over Apex despite of model size, which demonstrates the
benefits of the symbolic tensor link and on-the-fly conversion
as discussed in Section IV-C.

Finally, as shown in Fig. 15, we evaluate the speed of
only using kernel fusion or LightSeq2 trainer. As the batch
token size increases, the speedup decreases due to the growing
proportion of GEMM kernels. The gap between kernel fusion
and LightSeq2 trainer becomes larger as the batch token size
increases, which is consistent with Fig. 3. This is due to the
fact that the forward and backward processes dominate as the
batch token size grows.

2) Layer-wise Speedup: We evaluate the speedup of Light-
Seq2 layers over PyTorch implementations (Fairseq). The layer
configurations are the same as in Transformer-Big models.

The results of forward and backward propagation are in Fig.
19. We can draw the following conclusions:

• LightSeq2 obtains higher speedup in forward propagation
than in backward. This is because the time of backward
propagation contains the part of gradient copies.

• The speedup ratios of the encoder and the decoder decrease
rapidly as the sequence length becomes larger. However,
the speedups of embedding and criterion are stable. This
is because when the sequence length increases, the large
matrix multiplication in the encoder and the decoder
quickly saturates the GPU parallelism, leading to a sub-
linear improvement.

In all cases, LightSeq2 layers are faster than PyTorch, which
demonstrates the benefits of computational graph optimizations
as discussed in Section IV-A.
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Fig. 22. Scalability of LightSeq2. (a) Speedup on different numbers of A100
GPUs for 48e48d model. Here 5× 8 represents five nodes with eight GPUs
on each (40 GPUs in total). (b) Speedup for varying sizes of models on 5× 8
A100 GPUs. 60e60d has a total of 120 Transformer layers.

C. Benefit of Memory Optimization

We evaluate the memory efficiency on WMT14 English-
German machine translation task using V100 GPU. We use
Fairseq as baseline, both using a batch token size of 8192. All
experiments ran for 40 minutes to measure under a stable state.

Fig. 20 illustrates the GPU memory occupancy of both
Transformer-Base (6e6d, 512d, 8 heads) and Transformer-Big
(6e6d, 1024d, 16 heads) models. Fairseq consumes about 6
GB more GPU memory than LightSeq2 in both cases. For
example, Transformer-Base models based on Fairseq can not
run on a GPU with only 16 GB memory. Another phenomenon
is that the GPU memory of Fairseq will gradually increase
as it runs. This is because Fairseq dynamically allocates and
releases the GPU memory when the sequence lengths differ.
Thus, Fairseq needs to apply for additional GPU memory if a
long sequence is input into the model. In contrast, LightSeq2
allocates the maximal GPU memory in advance, so there will
be no memory change during the training. As shown in Fig. 10,
LightSeq2 can train deep models under large batch size (batch
size 15k for 6e6d Transformer and batch size 8192 for 12e12d
Transformer on 32 GB V100), whereas Fairseq Transformer
encounters out-of-memory error, which is useful for training
deep models.

Fig. 21 illustrates the GPU utilization of both Transformer-
Base and Transformer-Big models. In the whole training
process, LightSeq2 keeps a utilization rate of about 99% in both
cases. However, for Fairseq, the utilization of the Transformer-
Base model is very unstable. The lowest is only 80%, and in
most cases, it fluctuates between 87% and 93%, mainly due to
frequent memory allocation and release. The utilization of the
Transformer-Big model is much more stable, but the highest
is only 95%.

If the batch token size is smaller, the gap between the two
implementations will be more obvious. For example, when the
batch token size is reduced to 4096, the memory utilization
of the Transformer-Base model based on Fairseq is only 73%,
while the LightSeq2 is as high as 96%.

D. Scalability

To evaluate the scalability of LightSeq2, we extend the
experiments in Section VI-A2 to multiple nodes, each with
8 A100 GPUs. LightSeq2 provides specific optimizations for



the computation of Transformer and general optimizations for
popular trainers such as Adam and SGD. We adopt the same all-
reduce synchronization strategy from PyTorch. As the number
of nodes increases, LightSeq2 obtains a speedup of 1.14-1.41×
for 48e48d model on different numbers of GPUs (Fig. 22(a))
and 1.12-1.22× on 5× 8 GPUs for different sizes of models
(Fig. 22(b)). These results show that LightSeq2 scale well and
gain consistent speedup for distributed training scenario and
for increasing model sizes.

With the increase of number of GPUs or model sizes, the
proportion of time for synchronization during training increases.
As a result, the speedup decreases as number of GPUs or
model size increases. Nevertheless, LightSeq2 still obtains a
speedup of 1.12× on 5×8 A100 GPUs for a large Transformer
model with a total of 120 layers (60e60d), which shows the
system’s capability for large model on many GPUs. In the
future, LightSeq2 can be further integrated with synchronization
optimization techniques such as gradient compression, which
are orthogonal to the focus of the current paper.

VII. CONCLUSION

In this paper, we describe a series of engineering-based
GPU optimization techniques for fast Transformer training.
Compared with existing approaches, our system strictly follows
the standard training algorithm, therefore guarantees the quality
and reproducibility of existing models. We systematically
compare our work with existing state-of-the-art systems with
various settings and analyze each component’s performance,
demonstrating the solidness and scalability of the contribu-
tion. Compared to PyTorch and TensorFlow implementations,
LightSeq2 can obtain a speedup of up to 3× under different
configurations.

In the future, there are still room for additional optimization
such as padding removing and better memory management
strategy.
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