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S1 THE JONES CALCULUS AND GENERALIZED
MUELLER CALCULUS

Given amatrix𝑨 ∈ C𝑛×𝑛 with rows ®𝒂 𝑗 , let the stack operator acting
on 𝑨 be denoted as 𝑨𝒮. That is, 𝑨𝒮 = [®𝒂⊺1 , ®𝒂

⊺
2 , . . . , ®𝒂

⊺
𝑛 ]
⊺ is the

vectorized from of the matrix 𝑨: the column vector that arises by
stacking the rows of 𝑨.
We mention a well-known property of the Kronecker product:

Lemma S1.1. 𝑨𝑫𝑩
⊺ = 𝑪 if and only if (𝑩 ⊗ 𝑨)𝑫𝒮 = 𝑪𝒮 .

PRoof. See [Loan 2000]. □

Jones calculus. The Jones calculus [Savenkov 2009] is a simple
and useful formal method, where the transverse components of
light are written as a 2-element complex vector—the Jones vector—
and the actions of linear optical elements are quantified via 2 ×
2 matrices—the Jones matrices—that act upon these vectors. Let
®𝛙(®𝒌, 𝑡) be a plane wave, as in the paper, with wavevector ®𝒌 . Un-
der a given transverse basis 𝒙̂, 𝒚̂, the transverse components of this
plane wave are written as the Jones vector ®𝒋(®𝒌, 𝑡) = [𝒙̂ · ®𝛙, 𝒚̂ · ®𝛙]⊺ .
Let that plane wave be incident upon a particle, whose scattering
characteristics are quantified by the Jones matrix 𝑱 . The scattered
plane wave is then ®𝒋′ = 𝑱 ®𝒋. Jones matrices can be complex, quanti-
fying the phase-shifts induced by conductive particles. This calcu-
lus deals directly with the underlying electric field, and may only
quantify interactions with perfectly-coherent, perfectly-polarized
light.

GeneralizedMueller calculus. In order to derive a coherence-aware
linear calculus, Korotkova [2017] generalize the classical Mueller-
Stokes calculus into a two-point formalism.
We start with the cross-spectral density matrix, which is simply

the CSDs C𝛼𝛽 written in matrix form:

C (®𝒓1, ®𝒓2 ; 𝜔) ≜
〈
®𝑬 (®𝒓1) ®𝑬 (®𝒓2)†

〉
𝜔
=
C𝑥𝑥 C𝑥𝑦

C𝑦𝑥 C𝑦𝑦

 . (S1.1)

Note that, compared with the paper, we re-parametrize the CSDs
and the generalized radiance and irradiance such that ®𝒓1,2 = ®𝒑± 1

2
®𝝃 ,

where ®𝒑.®𝝃 are as defined in Eq. (7), are the two points at which
these quantities are evaluated. This notation is more common in
optical literature. The generalized Stokes parameters (Eq. (8) in the
paper) and the CSD matrix above describe the same information,
in different analytic forms. Observe that we may trivially write the
gSP as follows:

S
↔ [𝝁] = 𝑨mül C𝒮 , (S1.2)
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where the 𝑨mül, defined by Savenkov [2009, Eq. 3.12], is dictated
by Eq. (8):

𝑨mül ≜


1 0 0 1
1 0 0 −1
0 1 1 0
0 −i i 0

 (S1.3)

Let the local, spatially-varying scattering characteristics of amedium
be quantified by the Jones matrix 𝑱 ( ®𝒑), with ®𝒑 being a point in
the medium. Apply 𝑱 to the electric field ®𝑬 , and substitute into
Eq. (S1.1), yielding the CSD matrix of the radiation after interac-
tion, viz.

C (o) (®𝒓1, ®𝒓2 ; 𝜔) =
〈[
𝑱 (®𝒓1) ®𝑬 (®𝒓1)

] [
𝑱 (®𝒓2) ®𝑬 (®𝒓2)

]†〉
𝜔

=𝑱 (®𝒓1) C (®𝒓1, ®𝒓2 ; 𝜔)𝑱 (®𝒓2)† . (S1.4)

The above relates the CSD matrices of the incident radiation and
radiation immediately after interaction (but before propagation), C
and C′, respectively. Using Lemma S1.1 we deduce

C (o) (®𝒓1, ®𝒓2 ; 𝜔)𝒮 =
[
𝑱 (®𝒓2)★ ⊗ 𝑱 (®𝒓1)

]
C (®𝒓1, ®𝒓2 ; 𝜔)𝒮 , (S1.5)

and, finally, apply the equivalence relation between the CSDmatrix
and the generalized Stokes parameters, Eq. (S1.2), yielding,

S
↔ [𝝁]

(o) =𝑨mül
[
𝑱 (®𝒓2)★ ⊗ 𝑱 (®𝒓1)

]
𝑨−1
mül S

↔ [𝝁] , (S1.6)

which is a relation between the generalized Stokes parameters of
the radiation before and after interaction. The quantity

M
(
®𝒑1, ®𝒑2

)
≜ 𝑨mül [𝑱 ( ®𝒑2)★ ⊗ 𝑱 ( ®𝒑1)]𝑨−1

mül (S1.7)

is the generalized Mueller matrix. That is, M( ®𝒑1, ®𝒑2), acting upon
the generalized Stokes parameters, quantifies the same action as
the pair of Jones matrices 𝑱 ( ®𝒑1) and 𝑱 ( ®𝒑2) acting upon the CSD
matrix. Hence, M is the equivalent, matricial form of Eq. (S1.4),
giving rise to the generalized Mueller calculus [Korotkova 2017].

Discussion. Note that the scattered CSD matrix C′ and gener-
alized Stokes parameters vector S

↔ [𝝁]
(o) , which arise in Eqs. (S1.5)

and (S1.6), are local quantities before propagation. These quantities
carry units of intensity (spectral irradiance). Both the CSD matrix
and generalized Stokes parameters describe the same information.
We choose to employ a formalism based on the generalized Stokes
parameters and generalized Mueller calculus due to: (a)The equiva-
lent relation written in terms of the CSDmatrix and Jones matrices,
Eq. (S1.4), frustrates analytic progress because we may not take ad-
vantage of the properties of locally-stationary matter (Eq. (S2.8)).
This is because these matrices, C and 𝑱 , generally do not commute.
(b) The classical Mueller matrix 𝒎̄ that arises in Eq. (S2.8) is a sim-
ple, classical quantity, that is easy to understand and has seen wide
usage in computer graphics.
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S2 THE LIGHT-MATTER INTERACTION THEOREM
Propagation. The far-field Smythe diffraction formula can bewrit-

ten as [Zangwill 2013]

®𝑬 ′(®𝒓) = ie
i𝑘𝑟

𝜆𝑟
𝒓 ×

∫
P
d2 ®𝒑⊥

[
𝒏̂ × ®𝑬

(
®𝒑⊥

) ]
e−i𝑘 𝒓̂ ·®𝒑⊥ , (S2.1)

where P is a planar aperture (centred at the origin) with normal
𝒏̂, ®𝑬 is the monochromatic electric field that is incident upon the
aperture and ®𝑬 ′ is the scattered field. Using the far-field Smythe
diffraction formula, Steinberg and Yan [2021a, supplemental Sec.
7.2] derive a propagation formula for the CSD matrix. We trivially
generalize the above to diffraction by a volumetric region (under
the Born first-order approximation) by extending P to an arbitrary
three-dimensional volume. The far-field propagation formula for
the CSD matrix becomes:

C (o) (®𝒓1, ®𝒓2 ; 𝜔) =
cos2 𝜗𝑜ei𝑘 𝒓̂ · (®𝒓1−®𝒓2)

𝜆2𝑟2

∫
P
d3 ®𝒑1

∫
P
d3 ®𝒑2

×e−i𝑘 (𝒓̂1 ·®𝒑1−𝒓̂2 ·®𝒑2)𝜏𝜏𝜏 C (P)
(
®𝒓 ′1, ®𝒓

′
2 ; 𝜔

)
𝜏𝜏𝜏
⊺
, (S2.2)

which is a double three-dimensional Fourier transform with C (P)
being the CSD matrix of the radiation at the region P and 𝜗𝑜 the
inclination angle. 𝒓 and 𝑟 are the mean propagation direction and
distance. In the far field, 𝒓 ≈ 𝒓1 ≈ 𝒓2 and likewise 𝑟 ≈ 𝑟1 ≈ 𝑟2.
The transformation matrix 𝜏𝜏𝜏 transforms the incident CSD matrix
from its chosen transverse basis to the transverse basis of the scat-
tered radiation, viz. (simplified version of Steinberg and Yan [2021a,
supplemental Eq. 7.17])

𝜏𝜏𝜏 ≜
𝒙̂ ′⊥ · 𝒙̂ 𝒙̂ ′⊥ · 𝒚̂
𝒚̂′
⊥ · 𝒙̂ 𝒚̂′

⊥ · 𝒚̂
 , (S2.3)

where {𝒙̂, 𝒚̂} and {𝒙̂ ′, 𝒚̂′} are the given transverse bases of the in-
cident and scattered radiation, respectively, and 𝒙̂ ′⊥, 𝒚̂′

⊥ are the nor-
malized projections of the scattered transverse basis onto the inci-
dent transverse plane. The above is a simple rotation matrix with
angle 𝜑 , which is the angle between 𝒙̂ ′⊥ and 𝒙̂ (in the singular case
where 𝒙̂ ′ is perpendicular to the incident transverse plane, we take
the angle between 𝒚̂′

⊥ and 𝒚̂). The corresponding Mueller matrix
arises immediately:

𝑻 ≜𝑨mül [𝜏𝜏𝜏 ⊗ 𝜏𝜏𝜏]𝑨−1
mül =


1 0 0 0
0 cos 2𝜑 − sin 2𝜑 0
0 sin 2𝜑 cos 2𝜑 0
0 0 0 1

 . (S2.4)

We may now write the general diffraction formulae Eq. (S2.2) in
an equivalent Stokes parameters form:

S
↔ [𝝁]

(o) =
cos2 𝜗𝑜ei𝑘 𝒓̂ · (®𝒓1−®𝒓2)

𝜆2𝑟2

∫
P
d3 ®𝒑1

∫
P
d3 ®𝒑2 e

−i𝑘 (𝒓̂1 ·®𝒑1−𝒓̂2 ·®𝒑2)𝑻S
↔ [𝝁]
(P) .

(S2.5)

withS
↔ [𝝁]

(o) andS
↔ [𝝁]
(P) being the Stokes parameters vectors after prop-

agation and at the scattering volume, respectively. Applying Eq. (10)
to the above, we may write an equivalent propagation formula for

the radiance-carrying gSP L
↔ [𝝁]

L
↔ [𝝁]

(o) =
cos2 𝜗𝑜ei𝑘 𝒓̂ · (®𝒓1−®𝒓2)

𝜆2𝐴

×
∫
P
d3 ®𝒑1

∫
P
d3 ®𝒑2 e

−i𝑘 (𝒓̂1 ·®𝒑1−𝒓̂2 ·®𝒑2)𝑻S
↔ [𝝁]
(P) , (S2.6)

where 𝐴 is the projected area of 𝑃 in direction 𝒓 .

S2.1 Interaction With Matter
Locally-stationarymatter. Let the scattering characteristics of the

scattering region P be quantified by a Jones matrix 𝑱 ( ®𝒑), which
we now be regarded as a spatial stochastic process, describing the
spatially-varying polarimetric scattering potential of the medium.
The respective Mueller matrixM is defined via Eq. (S1.7). An auto-
correlation function of that process can defined as the generalized
Mueller matrix

𝝆 𝐽𝐽

(
®𝒑1, ®𝒑2

)
≜
〈
M

(
®𝒑1, ®𝒑2

)〉
, (S2.7)

where the operator 〈·〉 averages over the statistical ensemble of all
matter realizations that conform to the statistics of the process 𝑱
(not to be confused with 〈·〉𝜔 ).The quantity 〈M〉 qualifies as an au-
tocorrelation function, as it quantifies the ensemble-averaged mu-
tual scattering characteristics at a pair of points.

We now restrict the stochastic process 𝑱 to the class of locally-
stationary processes (a less restrictive class than weak stationarity)
[Silverman 1957]. This gives rise to locally-stationary matter [Stein-
berg and Yan 2021b]. Under this description of matter, the single-
point function 𝒎̄(®𝒓) ≜ 〈M(®𝒓, ®𝒓)〉 is the ensemble-averaged, local
Mueller matrix that describes the deterministic features of the mat-
ter (e.g., density and polarimetric properties of scattering particles
in a medium). The autocorrelation function of such a process takes
the form of a product of real, classical Mueller matrices:

𝝆 𝐽𝐽

(
®𝒑1, ®𝒑2

)
=𝒎̄

( ®𝒑1+®𝒑2
2

)
𝑹 𝐽𝐽

(
®𝒑1 − ®𝒑2

)
. (S2.8)

The Mueller matrix 𝑹 𝐽𝐽 is the stationary autocorrelation (a func-
tion of the difference vector ®𝒑1 − ®𝒑2 only) of the locally-stationary
process, which describes statistical perturbations across the matter.
These quantities are typically wavelength dependent.

Interaction formulae. The light-matter interaction is then quanti-
fied by the matter’s stochastic generalized Mueller matrix 𝝆 𝐽𝐽 . Set

S
↔ [𝝁o]
(P) (®𝒓1 − ®𝒓2 ; 𝜔) ≜𝝆 𝐽𝐽 (®𝒓1, ®𝒓2 ; 𝜔)S

↔ [𝝁 i]
(i) (®𝒓1 − ®𝒓2 ; 𝜔) , (S2.9)

where L
↔ [𝝁]

(i) and L
↔ [𝝁]
(P) are the incident canonical wave packet (Defi-

nition 3.1) before interaction with the matter and immediately after
interaction, but before propagation, respectively. The propagation
is then done via the wave packet propagation formula, Eq. (S2.6).
Substituting Eq. (S2.8) into Eq. (S2.6) yields

L
↔ [𝝁o]

(o) =
cos2 𝜗𝑜ei𝑘 𝒓̂ · (®𝒓1−®𝒓2)

𝜆2𝐴

∫
R3

d3 ®𝒑1

∫
R3

d3 ®𝒑2 e
−i𝑘 (𝒓̂1 ·®𝒑1−𝒓̂2 ·®𝒑2)

× 𝒎̄
( ®𝒑1+®𝒑2

2

)
𝑹 𝐽𝐽

(
®𝒑1 − ®𝒑2

)
𝑻S

↔ [𝝁 i]
(i) , (S2.10)

with 𝒎̄ and 𝑹 𝐽𝐽 as in the paper and we denote 𝐴 = 𝐴(P)/𝐴 (i) . Note,
we are now integrating over R3 × R3, the restriction to the scat-
tering region is assumed to be performed by 𝒎̄, i.e. set 𝒎̄( ®𝒑) ≡ 0
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when ®𝒑 ∉ P. Perform the variable changes ®𝝃 = ®𝒑1 − ®𝒑2 and ®𝜻 =
1
2 ( ®𝒑1 + ®𝒑2). Then, the quantities that appear in the integrand above
can be rewritten as follows:

e−i𝑘 (𝒓̂1 ·®𝒑1−𝒓̂2 ·®𝒑2) = e−i𝑘
1
2
®𝝃 · (𝒓̂1+𝒓̂2)e−i𝑘

®𝜻 · (𝒓̂1−𝒓̂2) , (S2.11)

𝒎̄
( ®𝒑1+®𝒑2

2

)
= 𝒎̄

(
®𝜻
)
, (S2.12)

𝑹 𝐽𝐽
(
®𝒑1 − ®𝒑2

)
= 𝑹 𝐽𝐽

(
®𝝃
)
, (S2.13)

and recall that a generalized irradiance is a function of ®𝝃 only. This
serves to decouple the double integral in Eq. (S2.10) into separate
spatial integrals for each integration variable, ®𝜻 and ®𝝃 .

The first integral becomes the following Fourier transform,which
can be understood as the angular spectrum function:

𝑴̃ (𝑘𝒓1 − 𝑘𝒓2) ≜
∫
R3

d3®𝜻 e−i𝑘
®𝜻 · (𝒓̂1−𝒓̂2) 𝒎̄

(
®𝜻
)

=(2π)
3
2ℱ

{
𝒎̄
}
(𝑘𝒓1 − 𝑘𝒓2) . (S2.14)

As 𝒓1 ≈ 𝒓2 and by the far-field assumption 𝒎̄ changes slowly as
a function of 𝒓, 𝒔, 𝑴̃ (0) is a very good approximation to that inte-
gral. The second integral is a Fourier transform of the product of
the matter’s stationary autocorrelation function with the incident
wave packet, viz.

®𝒇
(
𝑘 𝒓̂1+𝒓̂2

2

)
≜
∫
R3

d3®𝝃 e−i
𝑘
2
®𝝃 · (𝒓̂1+𝒓̂2)𝑹 𝐽𝐽

(
®𝝃
)
S
↔ [𝝁 i]

(i)

(
®𝝃
)
. (S2.15)

We first prove a pair of simple Lemmas.

Lemma S2.1. Let ΣΣΣ � 0 and 𝑩 be non-singular real matrices. Then,

ℱ
{
gΣΣΣ

(
𝑩®𝝃

)} (
®𝒒
)
=
|ΣΣΣ|1/2
|𝑩 | gΣΣΣ

−1
(
𝑩−1®𝒒

)
.

PRoof. Denote ΞΞΞ = 𝑩
⊺
ΣΣΣ−1𝑩, a positive-definite matrix, and

®𝝃 ′ = ΞΞΞ
1/2®𝝃 . AsΞΞΞ � 0,ΞΞΞ1/2 exists, is unique, real and positive-definite.

Then, d3®𝝃 = |ΞΞΞ| −1/2 d3®𝝃 ′, as |ΞΞΞ| −1/2 is the Jacobian, and

ℱ
{
gΣΣΣ

(
𝑩®𝝃

)} (
®𝒒
)
=

1

(2π) 3
2

∫
R3

d3®𝝃 e−i
®𝝃 ·®𝒒e−

1
2
®𝝃
⊺
𝑩
⊺
ΣΣΣ−1𝑩®𝝃

=
1

(2π) 3
2

|ΞΞΞ| −1/2
∫
R3

d3®𝝃 ′ e−i®𝝃
′ ·ΞΞΞ−1/2 ®𝒒e−

1
2 (𝜉′)2

=|ΞΞΞ| −1/2ℱ
{

g 𝑰
} (
ΞΞΞ−1/2®𝒒

)
= |ΞΞΞ| −1/2gΣΣΣ−1

(
𝑩−1®𝒒

)
,

where the Fourier transform of a Gaussian identity was used. □

Let S
↔ [𝝁 i]

(i) be an incident generalized irradiance, with shape ma-
trices 𝚯𝑥,𝑦,1/2. Let 𝑆𝑥,𝑦 be the irradiance carried by each transverse
component of S

↔ [𝝁 i]
(i) and 𝜒, 𝜍 as in Definition 3.1. Define the short-

hands

®𝑺 (i)𝑥,𝑦 ≜


𝑆𝑥,𝑦
±𝑆𝑥,𝑦
0
0

 and ®𝑺 (i)1/2 ≜
√
𝑆𝑥𝑆𝑦


0
0
𝜒
𝜍

 . (S2.16)

CoRollaRy S2.2. Given a generalized irradiance S
↔ [𝝁 i]

(i) with mean
propagation distance 𝑠 ,

ℱ
{
S
↔ [𝝁 i]

(i)

} (
®𝒒
)
=

∑
𝛼 ∈{𝑥,𝑦,1/2}

|𝚯𝛼 |
1/2g𝚯

−1
𝛼

(
𝑸
⊺
[𝝁]
(
®𝒒 + 𝑘𝒔

) )®𝑺 (i)𝛼 .

PRoof. Immediately via the shift property of the Fourier trans-
form and Lemma S2.1. □

Define p ≜ ℱ
{
𝑹 𝐽𝐽

}
, the Fourier transform of the stationary auto-

correlation function, i.e. the stationary power spectral density (Def-
inition 3.3.(i)). Applying Corollary S2.2, the convolution theorem
(Eq. (3)) and the approximation 1

2 (𝒓1 + 𝒓2) ≈ 𝒓 to Eq. (S2.15), and
simplifying, yields:

®𝒇 (𝑘𝒓) =(2π)
3
2ℱ

{
𝑹 𝐽𝐽S

↔ [𝝁 i]
(i)

}
(𝑘𝒓) = 8π3

[
p ∗ ℱ

{
S
↔ [𝝁 i]

(i)

}]
(𝑘𝒓)

=8π3
∑

𝛼 ∈{𝑥,𝑦,1/2}

���𝚯(i)
𝛼

��� 12 [p ∗ gΞΞΞ
(i)
𝛼

] (
®𝒉
)
®𝑺 (i)𝛼 , (S2.17)

where the convolution is with respect to the integration variable
®𝒒′, we define the shorthands

®𝒉 ≜ 𝑘 (𝒓 + 𝒔) and ΞΞΞ(i)
𝛼 ≜ 𝑸 [𝝁 i]

(
ΘΘΘ(i)
𝛼

)−1
𝑸
⊺
[𝝁 i] . (S2.18)

We also define the classical pBSDF as the averaged (over the entire
scattering region) Mueller matrix, viz.

𝑴 ≜
1
|𝑃 |

∫
𝑃
𝒎̄ =

1
|𝑃 | 𝑴̃ (0) . (S2.19)

Substituting Eqs. (S2.14) and (S2.17) into Eq. (S2.10) finally results
in:

L
↔ [𝝁o]

(o) =
cos𝜗𝑜ei𝑘 𝒓̂ · (®𝒓1−®𝒓2)

𝜆2 (2π) 3
2

𝑴
∑

𝛼 ∈{𝑥,𝑦,1/2}

���𝚯(i)
𝛼

��� 12 (p ∗ gΞΞΞ
(i)
𝛼

) (
®𝒉
)
𝑻 ®𝑺 (i)𝛼

(S2.20)

and up to the coherence functions. We used the fact that |𝑃 | /𝐴 =
1/cos𝜗𝑜 . Note, in the paper, Eq. (21), absorbs the 1/𝜆2 into the pB-
SDF, for succinctness.

The stationary power spectral density (PSD) function p and the
classical pBSDF fully quantify the matter’s scattering properties.
As the PSD p is real, the convolution that appears in Eq. (S2.20) is
real as well, and this convolution quantifies the wave-interference
effects. The classical Mueller matrix 𝑴 acts upon the classical in-
cident Stokes parameters vector (incident irradiance). The result-
ingL

↔ [𝝁o]
(o) is a (radiance-carrying) classical Stokes parameters vector,

that is constant up to the propagator term.
While Eq. (S2.20) quantifies the radiometric and polarimetric prop-

erties well, the coherence information was lost when we discarded
the small perturbations of the vectors 𝒓1, 𝒓2. We discuss the trans-
formation of the shape matrices on interaction with matter in the
paper.
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