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Rendering Discrete Participating Media with
Geometrical Optics Approximation

APPENDIX A
A BRIEF INTRODUCTION OF LORENZ-MIE THEORY

In this section, we briefly describe Lorenz-Mie theory [1],
[2] which has already been employed in computer graphics
[3], [4], [5], [6], [7]. For light scattering of an electromagnetic
wave from a homogeneous spherical particle, exact solu-
tions of the two scattering amplitude functions S; and S,
are given by:
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which express the scattered fields in terms of an infinite
series of spherical multipole partial waves. Here, a,(r)
and b, (r) are the Lorenz-Mie coefficients of particle size 7;
7, (cos 0) and 7, (cos 6) are derived from the Legendre func-
tions. Please refer to [7] for the details and the expressions
of a,(r), b, (r), m,(cos d), and 7,,(cos 0).

Inserting the expression of S(0,r) = S1(0,7) = S2(0,7)
into Eq. (3), we can obtain a well-defined form of the
extinction cross section as [8]
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For the scattering cross section, no simple closed-form for-
mula is available. It is generally approximated by [9], [10]
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with v = 2(1 + (B — 1)e#)/8? and 8 = 47rIm{nm, }/A. The
notation Re and Im take the real and imaginary part of a
complex number, respectively. The phase function is given
by [11]
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APPENDIX B
DERIVATION OF Ci(r) IN EQ. (12)

Substituting Eq. (11) into Eq. (3), we have
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in which P = {1,3,5,--- }.

APPENDIX C
GOA FOR PARTICLES WITH ABSORPTION

For particles with absorption, the refractive index is a com-
plex number, which could be written as 7, = n, + 7.
Defining the effective refractive index [12]:
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n = {5(773 — 0 + 2, sin® 6;)
1 (32)

1
g [nn? + (o — o — iy sin® 91)2]%}

we have

N Sin 6; = 1’ sin 6 (33)
where 0 is the effective refractive angle. When particles are
absorbing, the refractive angle 6, should be replaced by 6.
The overall phase shift is changed to
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The analytical expressions of phase shifts due to reflection
¢r,; and refraction ¢y ; are provided in [12].

Moreover, the amplitude functions in Eq. (7) should be
multiplied with the attenuation factor &, [12]:
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considering amplitude attenuation in the absorbing particle. P07 “0'3‘
Here, x is the effective absorption coefficient defined as 08 ‘\ﬁ‘ ¢ “\‘
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APPENDIX D Fig. 1. Variation of Cy’s RelMSE as a function of the radius r.

DERIVATION OF THE TRANSMITTANCE IN EQ. (18)

Considering a light ray x — y passing through a discrete APPENDIX F
participating medium, the transmittance betweenxandy = MORE COMPARISONS BETWEEN GOA AND
X — sw is calculated by LORENZ-MIE THEORY

s , This section provides more visual comparisons between
T(x,y) = exp {_ /0 7t (Vx—s'w)ds } GOA and Lorenz-Mie theory. In Fig. 4, we visualize the
s [T () [ N(r, x)dxdr curves of log S1(0) generated by GOA (red curves) and
=expl{ — / T'min IXE Vst ’ ds’ L Lorenz-Mie theory (blue curves), respectively. Here, we test
0 p(Vx—s'w) two different relative refractive indexes: n = 1.49 and
s [T Oy (r) [ e N(r,x)dxdr 1 = 1.56. The particle radius ranges from 0.1 gm to 100 pm.
= exp {— Tmin xEAxds p s/} Again, close agreements are found when r > 1 um with
0 p(A) > ds some differences existing mainly on the backward peaks.
[ Co(r) [eeaxs N(r,x)dxdr When r = 0.1 pm, large errors occur in any direction,
I o 1(A) : indicating that GOA does not work properly in this case.
37) Similar conclusions are reached when comparing GOA and
Lorenz-Mie theory for the generation of log S3(f) curves in

Here we set Vyx_go, to A X ds’. Fig. 5.
Although there are some mismatches between GOA and
Lorenz-Mie theory in the case of r = 2 pm, the influence
APPENDIX E on the appearance of rendered media is subtle. To see this,
we render a smooth cubic medium in Fig. 6 and Fig. 7
MORE DISCUSSIONS ON p with different scene configurations. The medium is assumed
In GOA, the parameter p is the number of chords that each  to comprise monodisperse particles. The extinction coeffi-
ray makes inside the particle. The ray is internal reflected p—  cient and the phase function are respectively determined
1 times before leaving the particle. Since higher-order rays by Lorenz-Mie theory and GOA in a preprocessing stage,
(p > 3) have negligible light intensities as compared with according to the particle radius r and the particle number
other lower-order rays (p < 3), they can be removed in the /N. However, for r = 0.1 pm we use the same extinction
computation of the scattering amplitude functions S; and coefficient derived from Lorenz-Mie theory in both cases
Ss. To validate this, we plot (|S1| 4 |S2|)/2 with increasing since GOA yields a negative value. This guarantees the

values of p in Fig. 2 for n = 1.33 and in Fig. 3 for p = fairness of comparison. Nonetheless, quite different appear-
1.40. As see, when p is small (i.e.,, p = 1), the simulated ances are achieved by Lorenz-Mie theory and GOA when
(|S1]+]S2])/2 curves have remarkable differences compared 7 = 0.1 pum due to the large discrepancy in S1(f) and

with the ground truths generated with a very high order S2(¢). The difference of translucent appearance becomes
(i.e., p = 100). However, the (|Si| + |S2])/2 curves with less noticeable when 7 goes up to 2 ym and shrinks further
p = 3 and p = 4 are almost identical, and closely match as r increases.

the ground truths. This implies that p = 3 is sufficient in
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Fig. 2. Visual comparisons of (|S1| + |S2|)/2 with increasing values of p in GOA. Here, we show different combinations of particle size r and
wavelength A, while the relative refractive index of the particle 7 is set to 1.33.
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Fig. 3. Visual comparisons of (|S1| + |S2|)/2 with increasing values of p in GOA. Here, we show different combinations of particle size r and
wavelength A, while the relative refractive index of the particle 7 is set to 1.40.
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Fig. 4. Visual comparisons of log |S1 | by Lorenz-Mie calculations (blue curves) with those by GOA (red curves). Firstrow: n = 1.49 and A = 0.6 pm.
Second row: = 1.56 and A = 0.6 um. The particle radius is setto » = 0.1, 1,2, 10 and 100 pm, respectively.
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Fig. 5. Visual comparisons of log |S2| by Lorenz-Mie calculations (blue curves) with those by GOA (red curves). Firstrow: n = 1.49 and A = 0.6 pym.
Second row: = 1.56 and A = 0.6 um. The particle radius is setto » = 0.1,1,2, 10 and 100 pm, respectively.
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Fig. 6. Rendering a smooth cubic medium with optical quantities derived from Lorenz-Mie theory (top row) and GOA (bottom row), respectively.
Here, the relative refractive index 7 is set to 1.49.
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Fig. 7. Rendering a smooth cubic medium with optical quantities derived from Lorenz-Mie theory (top row) and GOA (bottom row), respectively.
Here, the relative refractive index 7 is set to 1.56.



