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Rendering Discrete Participating Media with
Geometrical Optics Approximation

F

APPENDIX A
A BRIEF INTRODUCTION OF LORENZ-MIE THEORY

In this section, we briefly describe Lorenz-Mie theory [1],
[2] which has already been employed in computer graphics
[3], [4], [5], [6], [7]. For light scattering of an electromagnetic
wave from a homogeneous spherical particle, exact solu-
tions of the two scattering amplitude functions S1 and S2

are given by:

S1(θ, r) =
∞∑
n=1

2n+ 1

n(n+ 1)
[an(r)πn(cos θ) + bn(r)τn(cos θ)]

(26)

S2(θ, r) =
∞∑
n=1

2n+ 1

n(n+ 1)
[bn(r)πn(cos θ) + an(r)τn(cos θ)]

(27)
which express the scattered fields in terms of an infinite
series of spherical multipole partial waves. Here, an(r)
and bn(r) are the Lorenz-Mie coefficients of particle size r;
πn(cos θ) and τn(cos θ) are derived from the Legendre func-
tions. Please refer to [7] for the details and the expressions
of an(r), bn(r), πn(cos θ), and τn(cos θ).

Inserting the expression of S(0, r) = S1(0, r) = S2(0, r)
into Eq. (3), we can obtain a well-defined form of the
extinction cross section as [8]

Ct(r) =
λ2

2π

∞∑
n=1

(2n+ 1)Re

{
an(r) + bn(r)

η2m

}
. (28)

For the scattering cross section, no simple closed-form for-
mula is available. It is generally approximated by [9], [10]

Cs(r) =
λ2e−4πrIm{ηm}/λ

2πγ|ηm|2
∞∑
n=1

(2n+ 1)
(
|an(r)|2 + |bn(r)|2

)
(29)

with γ = 2(1 + (β − 1)eβ)/β2 and β = 4πrIm{ηm}/λ. The
notation Re and Im take the real and imaginary part of a
complex number, respectively. The phase function is given
by [11]

fp(θ, r) =
|S1(θ, r)|2 + |S2(θ, r)|2

4π
∑∞
n=1(2n+ 1)(|an(r)|2 + |bn(r)|2)

. (30)

APPENDIX B
DERIVATION OF Ct(r) IN EQ. (12)
Substituting Eq. (11) into Eq. (3), we have

Ct(r) =
4π

|k|2
Re

SD,j(0, r) +
∞∑
p=0

S
(p)
j (0, r)


=

4π

|k|2
Re

α2

2
+
∞∑
p=0

αεj(0)

√
1

4(p/η − 2)2
eiφ


=

4π

|k|2
Re

α2

2
+
∑
p∈P

αεj(0)

√
1

4(p/η − 2)2
cos(φ)


= 2πr2 +

2πr

|k|
∑
p∈P

εj(0)

|p/η − 1|
cosφ

(31)

in which P = {1, 3, 5, · · · }.

APPENDIX C
GOA FOR PARTICLES WITH ABSORPTION

For particles with absorption, the refractive index is a com-
plex number, which could be written as ηp = ηr + ηii.
Defining the effective refractive index [12]:

η′ =

{
1

2
(η2r − η2i + η2m sin2 θi)

+
1

2
[4η2r η

2
i + (η2r − η2i − η2m sin2 θi)

2]
1
2

} 1
2

(32)

we have
ηm sin θi = η′ sin θ′t (33)

where θ′t is the effective refractive angle. When particles are
absorbing, the refractive angle θt should be replaced by θ′t.
The overall phase shift is changed to

φ =

{
φp + φf + φr,j p = 0
φp + φf + φt,j p > 0

j = 1, 2. (34)

The analytical expressions of phase shifts due to reflection
φr,j and refraction φt,j are provided in [12].

Moreover, the amplitude functions in Eq. (7) should be
multiplied with the attenuation factor ξp [12]:

ξp = e−2χpα cos2 θ′t/ηm (35)
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considering amplitude attenuation in the absorbing particle.
Here, χ is the effective absorption coefficient defined as

χ =

{
1

2
(−η2r + η2i + η2m sin2 θi)

+
1

2
[4η2r η

2
i + (η2r − η2i − η2m sin2 θi)

2]
1
2

} 1
2

.

(36)

APPENDIX D
DERIVATION OF THE TRANSMITTANCE IN EQ. (18)

Considering a light ray x → y passing through a discrete
participating medium, the transmittance between x and y =
x− sω is calculated by

T (x,y) = exp

{
−
∫ s

0
σt(Vx−s′ω)ds′

}
= exp

{
−
∫ s

0

∫ rmax

rmin
Ct(r)

∫
x∈Vx−s′ω

N(r,x)dxdr

µ(Vx−s′ω)
ds′
}

= exp

{
−
∫ s

0

∫ rmax

rmin
Ct(r)

∫
x∈A×ds′ N(r,x)dxdr

µ(A)× ds′
ds′
}

= exp

{
−
∫ rmax

rmin
Ct(r)

∫
x∈A×sN(r,x)dxdr

µ(A)

}
.

(37)

Here we set Vx−s′ω to A× ds′.

APPENDIX E
MORE DISCUSSIONS ON p

In GOA, the parameter p is the number of chords that each
ray makes inside the particle. The ray is internal reflected p−
1 times before leaving the particle. Since higher-order rays
(p > 3) have negligible light intensities as compared with
other lower-order rays (p ≤ 3), they can be removed in the
computation of the scattering amplitude functions S1 and
S2. To validate this, we plot (|S1| + |S2|)/2 with increasing
values of p in Fig. 2 for η = 1.33 and in Fig. 3 for p =
1.40. As see, when p is small (i.e., p = 1), the simulated
(|S1|+|S2|)/2 curves have remarkable differences compared
with the ground truths generated with a very high order
(i.e., p = 100). However, the (|S1| + |S2|)/2 curves with
p = 3 and p = 4 are almost identical, and closely match
the ground truths. This implies that p = 3 is sufficient in
computing S1 and S2 with GOA.

For evaluating the extinction cross section Ct, we can
further reduce p to 1. This simplification will lower the
computational cost while introducing negligible error, as
verified in Fig. 1. Here, we adopt the Relative Mean Squared
Error (RelMSE) between p = 3 and p = 1:

RelMSE{Ct} =

(
Cp=3

t − Cp=1
t

)2
(
Cp=3

t

)2 (38)

to measure the error of Ct. As seen, the RelMSE of Ct is very
low, especially for r > 1 µm.
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Fig. 1. Variation of Ct’s RelMSE as a function of the radius r.

APPENDIX F
MORE COMPARISONS BETWEEN GOA AND
LORENZ-MIE THEORY

This section provides more visual comparisons between
GOA and Lorenz-Mie theory. In Fig. 4, we visualize the
curves of logS1(θ) generated by GOA (red curves) and
Lorenz-Mie theory (blue curves), respectively. Here, we test
two different relative refractive indexes: η = 1.49 and
η = 1.56. The particle radius ranges from 0.1 µm to 100 µm.
Again, close agreements are found when r > 1 µm with
some differences existing mainly on the backward peaks.
When r = 0.1 µm, large errors occur in any direction,
indicating that GOA does not work properly in this case.
Similar conclusions are reached when comparing GOA and
Lorenz-Mie theory for the generation of logS2(θ) curves in
Fig. 5.

Although there are some mismatches between GOA and
Lorenz-Mie theory in the case of r = 2 µm, the influence
on the appearance of rendered media is subtle. To see this,
we render a smooth cubic medium in Fig. 6 and Fig. 7
with different scene configurations. The medium is assumed
to comprise monodisperse particles. The extinction coeffi-
cient and the phase function are respectively determined
by Lorenz-Mie theory and GOA in a preprocessing stage,
according to the particle radius r and the particle number
N . However, for r = 0.1 µm we use the same extinction
coefficient derived from Lorenz-Mie theory in both cases
since GOA yields a negative value. This guarantees the
fairness of comparison. Nonetheless, quite different appear-
ances are achieved by Lorenz-Mie theory and GOA when
r = 0.1 µm due to the large discrepancy in S1(θ) and
S2(θ). The difference of translucent appearance becomes
less noticeable when r goes up to 2 µm and shrinks further
as r increases.
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Fig. 2. Visual comparisons of (|S1| + |S2|)/2 with increasing values of p in GOA. Here, we show different combinations of particle size r and
wavelength λ, while the relative refractive index of the particle η is set to 1.33.
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Fig. 3. Visual comparisons of (|S1| + |S2|)/2 with increasing values of p in GOA. Here, we show different combinations of particle size r and
wavelength λ, while the relative refractive index of the particle η is set to 1.40.
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(a) r = 0.1 µm
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(b) r = 1 µm
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(c) r = 2 µm
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(d) r = 10 µm
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Fig. 4. Visual comparisons of log |S1| by Lorenz-Mie calculations (blue curves) with those by GOA (red curves). First row: η = 1.49 and λ = 0.6 µm.
Second row: η = 1.56 and λ = 0.6 µm. The particle radius is set to r = 0.1, 1, 2, 10 and 100 µm, respectively.
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(a) r = 0.1 µm
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(b) r = 1 µm
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(c) r = 2 µm
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(d) r = 10 µm
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Fig. 5. Visual comparisons of log |S2| by Lorenz-Mie calculations (blue curves) with those by GOA (red curves). First row: η = 1.49 and λ = 0.6 µm.
Second row: η = 1.56 and λ = 0.6 µm. The particle radius is set to r = 0.1, 1, 2, 10 and 100 µm, respectively.
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(a) r = 0.1 µm, N = 1014 (b) r = 1 µm, N = 1011 (c) r = 2 µm, N = 2 · 1010 (d) r = 10 µm, N = 109 (e) r = 100 µm, N = 107

Fig. 6. Rendering a smooth cubic medium with optical quantities derived from Lorenz-Mie theory (top row) and GOA (bottom row), respectively.
Here, the relative refractive index η is set to 1.49.

(a) r = 0.1 µm, N = 1014 (b) r = 1 µm, N = 1011 (c) r = 2 µm, N = 2 · 1010 (d) r = 10 µm, N = 109 (e) r = 100 µm, N = 107

Fig. 7. Rendering a smooth cubic medium with optical quantities derived from Lorenz-Mie theory (top row) and GOA (bottom row), respectively.
Here, the relative refractive index η is set to 1.56.


