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Fig. 1. We present a new method to compute multiple bounces for microfacet BSDFs. Our method uses a position-free approach, eliminating the need to
trace the heights of previous approaches, significantly reducing noise (see insets). It applies to btoh rough conductors and rough dielectrics. (a) and (b):
equal-time comparison with Heitz et al. [2016] for rough conductors (from left to right: copper (GGX model, 𝛼 = 0.1), aluminum (GGX model, 𝛼 = 0.6) and gold
(GGX model, 𝛼 = 0.5)). (c) and (d): comparison with Heitz et al. [2016] for a rough dielectric (GGX model, 𝛼 = 1.0). We support both height-correlated and
height-uncorrelated shadowing-masking functions. This figure uses the height-correlated model.

Bidirectional Scattering Distribution Functions (BSDFs) encode how a mate-
rial reflects or transmits the incoming light. The most commonly used model
is the microfacet BSDF. It computes the material response from the microge-
ometry of the surface assuming a single bounce on specular microfacets. The
original model ignores multiple bounces on the microgeometry, resulting in
an energy loss, especially for rough materials. In this paper, we present a new
method to compute the multiple bounces inside the microgeometry, elimi-
nating this energy loss. Our method relies on a position-free formulation of
multiple bounces inside the microgeometry. We use an explicit mathematical
definition of the path space that describes single and multiple bounces in a
uniform way. We then study the behavior of light on the different vertices
and segments in the path space, leading to a reciprocal multiple-bounce de-
scription of BSDFs. Furthermore, we present practical, unbiased Monte Carlo
estimators to compute multiple scattering. Our method is less noisy than
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existing algorithms for computing multiple scattering. It is almost noise-free
with a very-low sampling rate, from 2 to 4 samples per pixel (spp).
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1 INTRODUCTION
Material properties or reflectance encodes how materials interact
with the incoming light. Having good material appearance proper-
ties is essential for photorealistic rendering. Microfacet models are
widely used both in real-time applications and in the high-quality
offline rendering. They predict the appearance of the material from
the statistical properties of its surface’s microgeometry. The most
common model, Cook-Torrance [Cook and Torrance 1982; Walter
et al. 2007], assumes that the surface is made of planar specular
microfacets, and computes the material response by integrating a
single bounce over this microgeometry. The BSDF is connected to
the distribution of microfacet normals. By nature, the Cook-Torrance
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model ignores the light that has bounced several times on the mi-
crogeometry, resulting in an energy loss. The effect is especially
visible when the surface has a high roughness.

Multiple algorithms have tried to enhance the microfacet mod-
els by computing multiple bounces. The common idea is that the
shadowing-masking term of the Cook-Torrance model actually en-
codes the proportion of light that was not reflected in the first
bounce. This light that was blocked by the microgeometry is used
as input to compute the multiple-bounce term.

There are several models for the shadowing-masking term of the
Cook-Torrance BRDF model: the V-groove model assumes that for
each microfacet, there is another one next to it forming a V-shaped
groove with it; the Smith model assumes the independent distribu-
tion of microfacets heights and normals, treating the microfacets
as randomly distributed microflakes. The former is easier for nu-
merical analysis and provides explicit analytical solutions, the latter
requires a double indefinite integral to compute the shadowing-
masking term; some microfacet distributions still have an analytical
term for the shadowing-masking.
Two algorithms use the V-groove model to compute multiple

bounces in the microgeometry, and provide an analytical formula
for the missing energy [Lee et al. 2018; Xie and Hanrahan 2018].
However, the V-groove model has several issues that can make
it undesirable: discontinuities or singularities in the shadowing-
masking term, an overall shiny appearance even for very rough
surfaces, and the inability to model transparent materials.

The Smith model results in a better overall appearance for the ma-
terial, but there is no explicit formula to compute multiple bounces
of light. Heitz et al. [2016] showed that it was nevertheless possible
to compute multiple scattering effects inside the microgeometry
using randomwalks. Their simulation takes into account the heights
inside the microgeometry, leading to a very accurate result, at the
expense of computation time.

In this paper, we present a new understanding of multiple-bounce
microfacet BSDFs. Inspired by the position-free approach that Guo
et al. [2018] applied to layered materials, we analyze and formulate
the path space as the light undergoes an arbitrary number of bounces
inside general microfacet BSDFs. In this path space, we study the
behavior of light at the vertices and segments along different paths,
introducing the vertex term and the segment term, respectively.
At the core of our method is a deeper understanding of the

position-free property of all BSDFs, extended from macro-scale [Guo
et al. 2018] to micro-scale. In Sec. 3, we demonstrate that with our
position-free formulation, all points at micro scale share the same
statistics, especially the normal distribution. Therefore, any light
path bouncing away from a shading point and inflicting the next
bounce will be incident to the same shading point again from its last
outgoing direction. This immediately leads to a nice height-free
property — we do not need the micro-scale height distribution, and
we do not have to trace the height, keeping its height as micro-scale.

To quantify the energy of the light that undergoes further bounces,
we propose two kinds of different shadowing-masking functions in
our multiple-bounce BSDF: the height-uncorrelated and the height-
correlated function. The height-uncorrelated shadowing-masking
function studies the visibilities completely irrelevant to the height,

Table 1. Notations.

Mathematical notation
Ω± full spherical domain
Ω+ upper spherical domain
𝜔𝑖 ·𝜔𝑜 dot product
|𝜔𝑖 ·𝜔𝑜 | absolute value of the dot product
⟨𝜔𝑖 , 𝜔𝑜 ⟩ dot product clamped to 0
𝜒+ (𝑎) Heaviside function: 1 if a > 0 and 0 if a ≤ 0

Physical quantities used in microfacet models
𝜔𝑔 = (0, 0, 1) geometric normal
𝜔𝑚 microfacet normal
𝜔𝑖 incident direction (𝜔𝑖 ·𝜔𝑔 could be < 0)
𝜔𝑜 outgoing direction
Λ(𝜔) the Smith Lambda function
𝐷 (𝜔𝑚) normal distribution function
𝐹 (𝜔𝑖 , 𝜔𝑚) Fresnel factor
𝐺1 (𝜔,𝜔𝑚) masking function
𝐺 local

1 (𝜔,𝜔𝑚) masking (local)
𝐺dist

1 (𝜔) masking (distant)
𝜌 (𝜔𝑖 , 𝜔𝑜 ) multiple-bounce BSDF

while the height correlated one averages/integrates different visibil-
ities at different heights, thus is also independent of specific heights,
and provides a better match with the Heitz et al. [2016]. However,
note specifically that both of them are reasonable approximations
to the real visibility, both of them preserve energy conservation,
and neither of them requires tracking the height.
With our explicit position-free formulation, acquiring the mul-

tiple scattered energy from BSDFs becomes much more efficient,
because better Monte Carlo estimators can be immediately applied
to solve the integration. We propose practical Monte Carlo esti-
mators, path tracing (PT) and bidirectional path tracing (BDPT).
Our method provides result similar to Heitz et al. [2016], with a
significantly decreased noise level for evaluation-only tasks, even
with very low sample counts, as low as 2− 4 spp. It passes the white
furnace test. It works with dielectrics, anisotropic materials and
commonly-used normal distributions such as Beckmann and GGX.
An open source implementation of our methods is available at

https://github.com/wangningbei/sourceCodeMBBRDF.

2 RELATED WORK
Microfacet models. Torrance and Sparrow [1967] introduced the

microfacet model for reflection on rough surfaces. They extract
the overall material reflectance from a statistical description of the
surface microgeometry, made of specular microfacets. The model
focuses on a single bounce over this microgeometry, and gives a full
BRDF model from the surface characteristics. The most important
parameter is the probability distribution of the microfacet normals
(normal distribution function, or NDF). The model depends on two
other terms: the Fresnel term, connected to the composition of the
material, and the shadowing-masking term, encoding how much
of the incoming light goes into this first bounce. The model was
introduced to the graphics community by Cook and Torrance [1982]
and extended to rough dielectrics by Stam [2001]. Later, Walter
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et al. [2007] introduced more normal distribution functions to the
microfacet model, like GGX.

The normal distribution function has a strong impact on the over-
all aspect of the BRDF. Initial works used the Beckmann distribu-
tion [Beckmann and Spizzichino 1963; Cook and Torrance 1982; Tor-
rance and Sparrow 1967]. Trowbridge and Reitz [1975] introduced
a different distribution, corresponding to microfacets distributed
on half-ellipsoids. It was rediscovered by Walter et al. [2007] as the
GGX distribution. Other statistical distributions have been intro-
duced, see e.g., [Bagher et al. 2012; Ribardière et al. 2017]. The work
by Dong et al. [2016] shows that microfacet theory is accurate up to
a certain scale, comparing it directly with scalar diffraction theory.

Ashikhmin and Premože [2007] extracted the NDF frommeasured
BRDFs. The technique was extended by Dupuy et al. [2015] and
Ribardière et al. [2019]. None of them can solve the multiple-bounce
issue of the microfacet model.

Shadowing-masking. The shadowing-masking term is important
for energy conservation in the microfacet model. It encodes how
much of the incoming light was blocked by the microgeometry
(shadowing) as well as how much of the reflected light was blocked
(masking). To compute it, we need amodel of the surfacemicrogeom-
etry. Initial work [Cook and Torrance 1982; Torrance and Sparrow
1967] relied on the V-groove model: for each microfacet, there is
another microfacet facing it with the same slope. The V-groove
model results in simple computations, as occlusion only depends
on the current microfacet slope. The resulting shadowing-masking
term has discontinuous derivatives.
Smith [1967] computes the shadowing-masking term from the

NDF, assuming that the orientations and positions of the micro-
facets are independent. The shadowing-masking term is computed
from the NDF through a double integration. The resulting term is
smooth, and varies more consistently with the roughness of the
NDF. Walter et al. [2007] and Heitz [2014] explain and expand the
Smith shadowing-masking term for more distributions and take into
account the correlation between incoming and outgoing direction.

Multiple-bounce in microfacet models. By nature, the microfacet
models only express the light reflected after a single bounce on
the surface microgeometry. Light that bounces several times is not
represented, resulting in an energy loss. The effect is particularly
visible for rough surfaces. Kelemen and Szirmay-Kalos [2001] intro-
duce multiple-scattering to the microfacet BSDF by computing the
portion of light blocked by the shadowing-masking term and rein-
troducing it as a diffuse component. The method was extended by
Jakob et al. [2014] on dielectric and conductor in layered materials.

Heitz et al. [2016] proposed a multiple-bounce method treating
the microfacets randomly distributed microflakes, resulting a ran-
dom walk solution, which reaches an agreement with the simulated
data from surfaces [Heitz and Dupuy 2015]. Dupuy et al. [2016]
introduced a unified model between multiple bounce in microsur-
faces and microflakes. Schüssler et al. [2017] extended the approach
to normal-mapped surfaces. Westin et al. [1992] encoded multiple
scattering by using random walks in microgeometry, and Falster
et al. [2020] combined Westin’s approach with wave optics. These
methods match the simulated data very well, but do not have an

explicit solution. The random walk simulation results in large vari-
ance in the rendered results. Compared to theirs, our method has
an explicit formula, although our method still relies on Monte Carlo
methods to solve this formula. However, without the need of trac-
ing the height during random walks, our method produces less
noise. This explicit formulation enables the use of more advanced
light transport methods such as bidirectional path tracing, further
reducing the variance.
All these methods use the Smith shadowing model. By contrast,

using the V-groove model allows for analytic solutions for multiple-
bounce [Lee et al. 2018; Xie and Hanrahan 2018]. The drawbacks are
those of the V-groove model: too shiny for rough surfaces, discon-
tinuous derivatives, and not compatible with transparent materials.
Lee et al. [2018] redistribute energy to mask the discontinuities, but
at the cost of reintroducing randomness.
Kulla and Conty [2017] approximate multiple bounces in micro-

facets by mixing the single scattering an azimuthally invariant lobe.
Turquin [2019] proposed an even simpler multiple bounce compu-
tation approach, by scaling the single bounce results. The scaling
factor is precomputed based on the surface roughness, the outgoing
angle and the index of refraction for dielectrics. These methods
are fast, but the multiple bounce term does not have the properties
observed in simulations.
Meneveaux et al. [2018] proposed an analytical model for the

multiple reflections of light between the interface and the substrate
for interfaced Lambertian materials, but ignores the multiple reflec-
tions between microfacets. Xie et al. [2019] proposed to represent
the multiple scattering with Gaussians or the Real NVP neural net-
work, and used these models for rendering at run-time. Both of two
models produce close to energy-conserving results, but with no
performance reported.

Position-free formulation for layered materials. The position-free
path integral formula was proposed by Guo et al. [2018] for the eval-
uation and sampling of layered materials, and is recently improved
by Xia et al. [2020] and Gamboa et al. [2020] with a more advanced
sampling method or a more efficient estimator.

The biggest advantage of the position-free formulation is that, it
allows explicit representation of light transport in the local subspace
of the shaded point. Then, advanced methods and estimators can
be exploited to reduce variance. Inspired by this line of work, we
formulate the multiple bounce of light transport within BSDFs using
the position-free path integral.

3 POSITION-FREE MULTIPLE-BOUNCE BSDF
FORMULATION

In this section, we describe our path formulation of general light
transport for any bounces of microfacet BSDFs. We first introduce
our position-free formulation with the definition of a path, then
dive into its components on vertices (vertex term) and segments
(segment term). We show that the vertex term controls the local light
transport that reflects / refracts according to the Fresnel and NDF,
while the segment term is responsible for global light transport
that accounts for occlusions and multiple scattering. After that,
we present detailed derivations of both terms and analyze their
properties.
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3.1 Motivation

A

B

A B

Fig. 2. From the micro scale, Heitz et al. [2016] trace the height for each
bounce (left), while our method is based on our position-free observation
(right). With our position-free formulation, all points (e.g., 𝐴 and 𝐵) at
micro scale share the same statistics, especially the normal distribution.
Therefore, any light path bouncing away from a shading point and inflicting
the next bounce will be incident to the same shading point again from its
last outgoing direction. The independence also explains why both directions
require the shadowing-masking function — shadowing from d𝑖 to determine
at 𝐴 the proportion of energy able to proceed to the next bounce, and
masking from −d𝑖 to determine the visible normals at 𝐵.

Our key idea is to use a position-free formulation for the integra-
tion of multiple-bounces inside the microgeometry. It is based on
two observations: first, at the macro scale, BSDFs use a position-free
formulation: the point at which the incident light arrives and the
point from which the outgoing light leaves are considered to be
identical, regardless of how many bounces the light undergoes in
the microgeometry. Second, at the micro scale, the Smith shadowing
theory [1967] assumes that the positions and normals of the mi-
crofacets are uncorrelated. This leads to an obvious but important
observation: all points in the micro scale can be considered the same,
statistically. BSDFs are also position-free in the micro scale (Fig. 2).
Note specifically that the position-free formulation is irrelevant

to specific height distributions. Different height distributions (often
referred to as 𝑃1 in related literature, and typically assumed to be
either Gaussian or uniform), are only used to derive the shadowing-
masking functions. Interestingly, as discussed in Heitz et al. [2016]
and implicitly suggested in the Appendix by Walter et al. [2007],
the choice of height distribution functions does not even affect the
final result of the shadowing-masking functions, since the height
distribution is canceled out in the derivation. Our method, following
the position-free formulation, is independent of any specific type
(e.g., uniform) of height distributions, similar to previous work.

A direct consequence of the position-free formulation is that the
outgoing direction for the current bounce is identical to the incom-
ing direction for the next bounce. This leads to two considerations:
First, the occlusion comes in pairs between consecutive bounces,
so we consider vertices and segments separately. Second, it is pos-
sible that an incident ray reaches a microfacet while coming from
lower hemisphere of the macrosurface. Thus, we will need a full-
spherical formulation of the shadowing-masking functions, instead
of the usual hemispherical formulation. Heitz et al. [2016] implicitly
suggested the full-spherical definition for their visible normal distri-
bution function (VNDF), resulting in a mixed shadowing-masking
function computation (independent of the height for the incoming
direction and dependent of the height for the outgoing direction).

However, the full-spherical formulation of the height-correlated
shadowing-masking function is still unknown.

3.2 Position-free path integral
We define the light transport at any shading point s, potentially
undergoing multiple bounces, as a path integral for a given pair of
query directions 𝜔𝑖 and 𝜔𝑜 .

The light might bounce several times before exiting the microsur-
face, and we define each bounce as a vertex 𝑏𝑖 . We treat the position
of the vertices as identical and focus on the two adjacent directions,
rather than positions or depth. This makes our position-free path
formulation completely independent of positions, even simpler than
for layered materials which requires a depth to be recorded and is
only position-free “horizontally”.

Fig. 3. A light path is defined by 𝑥 = (d0, 𝑏0, d1, 𝑏1, . . . , 𝑏𝑘−1, d𝑘 ) .

A direction is mostly the same as that in macro scale. We use
d𝑖 as a unit vector on S2 to denote the light bouncing among the
microfacets. The only difference is that we use the natural flow
of light, i.e., assuming the incident pointing inwards instead of
outwards any vertex 𝑏𝑖 .
Now we define a light path 𝑥 as a sequence of vertices and

directions: 𝑥 = (d0, 𝑏0, d1, 𝑏1, . . . , 𝑏𝑘−1, d𝑘 ), as shown in Figure 3.
The first and last directions are aligned with the macro incident and
outgoing directions of a BSDF query, i.e., d0 = −𝜔𝑖 and d𝑘 = 𝜔𝑜 .
The path contribution 𝑓 (𝑥) of a light path is the product of

vertex terms 𝑣𝑖 (on each vertex) and segment terms 𝑠𝑖 (on each
direction):

𝑓 (𝑥) = 𝑠0𝑣0𝑠1𝑣1 · · · 𝑣𝑘−1𝑠𝑘 . (1)

Based on our earlier analysis, we define the vertex term 𝑣𝑖 to
represent local interactions between the light and the microfacets. It
consists of everything except the shadowing-masking term, i.e., the
normal distribution function 𝐷 , the Fresnel term 𝐹 and the Jacobian
term together. This vertex term for reflection is defined as:

𝑣𝑖 =

𝐹

(
−d𝑖 ,𝝎𝑖

ℎ

)
𝐷

(
𝝎𝑖
ℎ

)
4
��𝝎𝑔 · (−d𝑖 )

�� , (2)

where 𝝎𝑔 is the macrosurface normal.
We also define a vertex term for transmission. It has the same

formulation as the bidirectional transmission distribution function
defined in Walter et al. [2007], without the shadowing-masking
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term:

𝑣𝑖 =

���−d𝑖 · 𝝎𝑖
ℎ𝑡

��� ���d𝑖+1 · 𝝎𝑖
ℎ𝑡

�����𝝎𝑔 · (−d𝑖 )
�� 𝜂2

𝑜

(
1 − 𝐹

(
−d𝑖 ,𝝎𝑖

ℎ𝑡

))
𝐷

(
𝝎𝑖
ℎ𝑡

)
(
𝜂𝑖

(
−d𝑖 · 𝝎𝑖

ℎ𝑡

)
+ 𝜂𝑜

(
d𝑖+1 · 𝝎𝑖

ℎ𝑡

))2 ,

(3)
where 𝜂𝑖 and 𝜂𝑜 are indices of refraction for the media on the
incident and transmitted sides of the surface, respectively, and

𝝎𝑖
ℎ𝑡

=
𝜂𝑖

(
−d𝑖 ·𝝎𝑖

ℎ𝑡

)
+𝜂𝑜

(
d𝑖+1 ·𝝎𝑖

ℎ𝑡

)𝜂𝑖 (−d𝑖 ·𝝎𝑖
ℎ𝑡

)
+𝜂𝑜

(
d𝑖+1 ·𝝎𝑖

ℎ𝑡

) is the half vector for transmission.

The segment term 𝑠𝑖 describes the amount of energy leaving
the previous vertex (if any) and arriving at the next (if any). We
formulate it in detail in the next subsection.
The path space Ω(𝝎𝑖 ,𝝎𝑜 ) is the set of all possible paths with

their first directions equal to −𝝎𝑖 and the last directions equal to
𝝎𝑜 . Denoting the length of a path 𝑥 as the number of directions in
this path, a subspace Ω𝑘 is then the set of all possible paths with
the same length 𝑘 , and we immediately have Ω = ∪𝑘≥2Ω𝑘 .

The path space measure 𝜇 (𝑥) is a product of solid angle measures
𝜎 at all vertices along the path toward their outgoing directions.
That is, for a path with length 𝑘 ,

𝜇 (𝑥) =
𝑘−1∏
𝑖=0

𝜎 (𝑑𝑖 ) . (4)

Finally, we define the multiple-bounce BSDF 𝜌 (𝜔𝑖 , 𝜔𝑜 ) as an
integral over the set of paths Ω(𝜔𝑖 , 𝜔𝑜 ):

𝜌 (𝜔𝑖 , 𝜔𝑜 ) =
∫
Ω (𝜔𝑖 ,𝜔𝑜 )

𝑓 (𝑥) d𝜇 (𝑥). (5)

3.3 Full-spherical segment term and height-uncorrelated
shadowing-masking term

Fig. 4. The segment term 𝑠𝑖 includes two different parts: 𝑒𝑖 and 𝑝𝑖 , where
𝑒𝑖 represents the exit probability for d𝑖 at bounce 𝑖 − 1 and 𝑝𝑖 accounts for
the effect of occluding microfacets preventing the direction d𝑖 from hitting
the next vertex 𝑏𝑖+1 at bounce 𝑖 .

The meaning of the segment term 𝑠𝑖 is intuitive. It tells the outgo-
ing directional energy distribution at vertex 𝑏𝑖 along direction d𝑖+1.
But before receiving energy at the next bounce, we need to ensure
that the reflected / refracted light will participate in the next bounce.
We formulate the segment term into two different parts (Fig. 4) as

𝑠𝑖 = 𝑒𝑖 · 𝑝𝑖 . (6)

The first part 𝑒𝑖 is the exit probability and the second part 𝑝𝑖 is
the incident probability for the bounce 𝑖 +1. When the light bounces

on vertex 𝑏𝑖−1, suppose there is no shadowing and masking, 100%
of the reflected / refracted energy towards d𝑖 (given by the vertex
term 𝑣𝑖−1) will remain not occluded as the light leaves the vertex
𝑏𝑖−1. But with potential shadowing and masking, part of the energy
will be occluded as the light exits, inflicting the next bounce, while
the other part of the energy will never touch the microstructure
again, thus stopping further bounces of the light.

Reflection. We mathematically define the exit probability as

𝑒
(0<𝑖<𝑘)
𝑖

=

{
1 −𝐺1

(
d𝑖 ,

−d𝑖−1+d𝑖
∥−d𝑖−1+d𝑖 ∥

)
, if d𝑖 · 𝜔𝑔 > 0

1, if d𝑖 · 𝜔𝑔 ≤ 0,
(7)

where𝐺1 is the usual single-sided shadowing-masking term [Smith
1967], the proportion of microfacets that are not occluded from
a given direction. Also, when the light bounces downwards the
macrosurface, the next bounce is always guaranteed to happen, as
the macrosurface is watertight.

There are two special cases — the first and the last segments. For
the first segment, since it does not have to exit any previous vertex,
its value is always 𝑒0 = 1. The other special case on the last bounce
is easily understood, as we would like to continue the next bounce
for all other vertices except the last one, where we actually need
the path to stop bouncing to keep its total length to 𝑘 . Therefore,
the exit probability becomes the “inverse” of others as

𝑒
(𝑖=𝑘)
𝑖

=

{
𝐺1

(
d𝑖 ,

−d𝑖−1+d𝑖
∥−d𝑖−1+d𝑖 ∥

)
, if d𝑖 · 𝜔𝑔 > 0

0, if d𝑖 · 𝜔𝑔 ≤ 0,
(8)

Fig. 5. Under themicrofacet theory, it is possible that an incident ray coming
from the lower hemisphere (the other side of the macro normal) be reflected,
either by the actual microsurfaces (left), or by the microflakes in the Smith
theory (right).

Now we take a look at the incident probability 𝑝𝑖 , which accounts
for the effect of occluding microfacets preventing the direction d𝑖
from hitting the next vertex 𝑏𝑖+1 (if any). From the definition, we
immediately know that this is the single-sided shadowing-masking
term 𝐺1. However, in this case, we must explicitly deal with the
possible incident direction d𝑖 from below the macrosurface to the
vertex 𝑏𝑖+1, as seen in Fig. 5.

The full-spherical shadowing-masking term 𝐺1 was implicitly
indicated by Heitz et al. [2016] as the absolute value of its original
hemispherical version. But to our knowledge, there is no explicit
explanation or derivation available. Therefore, we provide a de-
tailed derivation in the supplemental materials, and provide our
conclusion:

𝐺1 (𝜔,𝜔𝑚) = 𝐺 local
1 (𝜔,𝜔𝑚)𝐺dist

1 (𝜔) , (9)

where𝐺 local
1 (𝜔,𝜔𝑚) = 𝜒+ (𝜔 · 𝜔𝑚), which is 1 when 𝜔 and 𝜔𝑚 are

facing in the same direction, i.e., 𝜔 · 𝜔𝑚 > 0, and is 0 otherwise.
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𝐺dist
1 is the distant shadowing / masking term, in our full-spherical

case:

𝐺dist
1 (𝜔) =

���� 1
1 + Λ(𝜔)

���� = {
1/(1 + Λ (𝜔)) , if 𝜔 · 𝜔𝑔 > 0,
−1/(1 + Λ (𝜔)) , if 𝜔 · 𝜔𝑔 ≤ 0, (10)

Λ(𝜔) is the Smith Lambda function, which is analytical for both
Beckmann and GGX models. More details could be found in Heitz
et al. [2016].

With the explicit full-spherical shadowing-masking function, we
are able to define 𝑝𝑖 as

𝑝
(𝑖<𝑘)
𝑖

= 𝐺1

(
−d𝑖 ,

−d𝑖 + d𝑖+1
∥ − d𝑖 + d𝑖+1∥

)
, (11)

and 𝑝𝑘 = 1 since the last segment exiting the surface will not hit
any more vertices.

Transmission. The formula for transmission is more complex than
the reflection case. In the microfacet model, the incident angle be-
tween a ray and the macrosurface normal cannot decide whether the
ray originates from the outside or the inside of an object, especially
with the shadowing-masking function extended to the full-spherical
domain. Therefore, it is common to keep track of and switch the
status (inside or outside) along a path [Heitz et al. 2016] whenever
a refraction event happens. We follow this approach, and we also
analyze the exit probability based on the incident angle, resulting
in four cases. The exit probability for the middle bounce is:

𝑒
(0<𝑖<𝑘)
𝑖

=


1 −𝐺1

(
d𝑖 ,𝝎𝑖

ℎ𝑡

)
, if d𝑖 · 𝜔𝑔 > 0 and d𝑖−1 is inside

1 −𝐺1
(
−d𝑖 ,𝝎𝑖

ℎ𝑡

)
, if d𝑖 · 𝜔𝑔 < 0 and d𝑖−1 is outside

1, if d𝑖 · 𝜔𝑔 ≤ 0 and d𝑖−1 is inside
1, if d𝑖 · 𝜔𝑔 ≥ 0 and d𝑖−1 is outside.

(12)

These four cases correspond to a combination of positions and
directions for d𝑖 and d𝑖−1. The first two cases are similar to the first
case of Eqn. 7, the last two cases to the second case. In the first case,
the ray goes from the inside to the outside of the surface, and the
outgoing direction d𝑖 points upwards. The outgoing ray intersects
the surface with probability 1 − 𝐺1

(
d𝑖 ,𝝎𝑖

ℎ𝑡

)
. The second case is

the reverse: the ray goes from the outside to the inside, and the
outgoing direction points downwards. In the third case, the ray goes
from the inside of the surface towards the outside, and the outgoing
direction d𝑖 points downwards. As the macrosurface is continuous,
the outgoing ray will always intersect the surface. The fourth case
is similar, with reversed incoming and outgoing directions.
For the last bounce, the exit probability is:

𝑒
(𝑖=𝑘)
𝑖

=


𝐺1

(
d𝑖 ,𝝎𝑖

ℎ𝑡

)
, if d𝑖 · 𝜔𝑔 > 0 and d𝑖−1 is inside

𝐺1
(
−d𝑖 ,𝝎𝑖

ℎ𝑡

)
, if d𝑖 · 𝜔𝑔 < 0 and d𝑖−1 is outside

0, otherwise.
(13)

The first and the second cases are the same as Eqn. 12, except
that the ray d𝑖 should leave the surface with probability𝐺1 (d𝑖 ,𝝎𝑖

ℎ𝑡
),

similar to Eqn. 8. In the other cases, the ray will be blocked, resulting
in zero probability to exit.

Similar to the reflection case, the 𝑝𝑖 for transmission is defined as

𝑝
(𝑖<𝑘)
𝑖

=


𝐺1

(
−d𝑖 ,𝝎𝑖

ℎ𝑡

)
, if − d𝑖 is outside,

𝐺1
(
d𝑖 ,𝝎𝑖

ℎ𝑡

)
, if − d𝑖 is inside,

(14)

and 𝑝𝑘 = 1 since the last segment exiting the surface will not hit
any more vertices.

So far, we have the complete segment term 𝑠𝑖 derived. Note that
there is no double counting of occlusion along the same direction
d𝑖+1, as 𝑒𝑖 is for exiting vertex 𝑏𝑖 and 𝑝𝑖+1 is for entering vertex 𝑏𝑖+1.
They are different vertices, even with our position-free formulation.

3.4 Height-correlated shadowing-masking term
In the previous section, we derive our multiple-bounce BSDF model
using a separable fashion: the incident and outgoing contributions
are completely separated into two different segment terms. We
used the height-uncorrelated version of the shadowing-masking
function at each bounce, a product of two 𝐺1 functions, each in-
dependent of specific heights. This first model provides energy
conservation and passes the white furnace test (Sec. 5). The height-
correlated shadowing-masking function is more accurate than the
height-uncorrelated version, since it models the correlation between
masking and shadowing due to the height of the microsurface [Ross
et al. 2005]. Therefore, we want to use it to compute the multiple-
bounce part of the BSDF.
In this section, we derive a height-correlated multiple-bounce

BSDF model, which is full-spherical and fits our position-free formu-
lation. We present below our formulations for reflection and trans-
mission, then organize them in the segment term for the multible-
bounce part of the BSDF. The height-correlated shadowing-masking
function analyzes the visibilities at all heights and then averages/in-
tegrates them at a specific bounce, thus is conceptually different
to “keeping specific heights at different bounces” as in previous
work [Heitz et al. 2016].

Reflection. The height-correlated distant shadowing-masking func-
tion for reflection is [Ross et al. 2005]:

𝐺dist
2 (𝜔𝑖 , 𝜔𝑜 ) =

1
1 + Λ(𝜔𝑖 ) + Λ(𝜔𝑜 )

, (15)

where both 𝜔𝑖 and 𝜔𝑜 are from the upper hemisphere: 𝜔𝑖 · 𝜔𝑔 >0
and 𝜔𝑜 · 𝜔𝑔 > 0.

To extend Eqn. 15 to the full-spherical domain, the derivationmust
start from the definitions of 𝐺dist

2 and Λ. We leave the details in the
supplementary material, and provide our re-organized formulation
for Eqn. 15:

1
1 + Λ(𝜔𝑖 ) + Λ(𝜔𝑜 )

=

cos𝜃𝑖cos𝜃𝑜∫
Ω+ (⟨𝜔𝑖 , 𝜔𝑚⟩cos𝜃𝑜 + ⟨−𝜔𝑜 , 𝜔𝑚⟩cos𝜃𝑖 ) 𝐷 (𝜔𝑚) d𝜔𝑚

,

(16)

which is currently still limited to cos𝜃𝑖 = 𝜔𝑖 · 𝜔𝑔 > 0 and cos𝜃𝑜 =

𝜔𝑜 · 𝜔𝑔 > 0.
We denote the height-correlated distant shadowing-masking func-

tion as 𝐺 (𝑖=𝑘)
2 (𝜔𝑖 , 𝜔𝑜 ) for the last bounce and 𝐺

(𝑖<𝑘)
2 (𝜔𝑖 , 𝜔𝑜 ) for

the middle bounce for clarity.
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From Eqn. 16, we first propose our full-spherical formulation for
the last bounce. This is similar to the traditional shadowing-masking
function which gives the probability that neither 𝜔𝑖 nor 𝜔𝑜 will be
blocked:

𝐺
(𝑖=𝑘)
2 (𝜔𝑖 , 𝜔𝑜 ) =

{ 1
−Λ(−𝜔𝑖 )+Λ(𝜔𝑜 ) , if 𝜔𝑖 · 𝜔𝑔 > 0,

1
Λ(−𝜔𝑖 )+Λ(𝜔𝑜 ) , if 𝜔𝑖 · 𝜔𝑔 ≤ 0. (17)

Since only one of 𝜔𝑖 and 𝜔𝑜 can come from the lower hemisphere,
we assume that it’s 𝜔𝑖 , without loss of generality.

The shadowing-masking function for the middle bounces were
never computed before. To compute them, we need to extend our
understanding of shadowing-masking functions: we define them as
the probability that a specific bounce can happen. This corresponds
with our earlier analysis regarding the segment terms. This defini-
tion reduces automatically to the traditional shadowing-masking
function for single-bounce BSDFs, and it is suitable for our last
bounce as well. At the middle bounces, our extended definition im-
mediately tells us that we need the incident direction unblocked and
the outgoing direction blocked, so the middle bounce can happen
(otherwise, it must be the last bounce since it will exit without being
blocked):

𝐺
(𝑖<𝑘)
2 (𝜔𝑖 , 𝜔𝑜 ) =

{ 1
|Λ(−𝜔𝑖 ) | −

1
|Λ(−𝜔𝑖 ) |+Λ(𝜔𝑜 ) , if 𝜔𝑜 · 𝜔𝑔 > 0,

1
|Λ(−𝜔𝑖 ) | , if 𝜔𝑜 · 𝜔𝑔 ≤ 0,

(18)
Again, we leave the detailed derivation in the supplementary.

Transmission. Similar to the reflection case, we also derive the
height-correlated shadowing-masking functions for transmission.
The original height-correlated shadowing-masking function [Pinel
et al. 2005] is

𝐺dist
2 (𝜔𝑖 , 𝜔𝑜 ) = 𝐵 (1 + Λ (𝜔𝑖 ) , 1 + Λ (𝜔𝑜 )) , (19)

where 𝐵 is the Beta function and 𝜔𝑖 and 𝜔𝑜 are on opposite sides of
the microsurface.
This formulation is valid on a hemisphere; it does not hold in

the full-spherical case: If the ray 𝜔𝑖 locates at the front-side of
the microsurface, Eqn. 19 requires that it should also at the front
side of the macrosurface. However, 𝜔𝑖 could come from the lower
hemisphere of the macrosurface, and still at the front-side of the
microsurface.
Similar to the reflection case, we first extend Eqn. 19 to the full-

spherical domain for the last bounce as follows:

𝐺
(𝑖=𝑘)
2 (𝜔𝑖 , 𝜔𝑜 ) = 𝐵( |Λ(−𝜔𝑖 ) |, 1 + Λ(𝜔𝑜 )), (20)

then, for the middle bounce, our new formulation is:

𝐺
(𝑖<𝑘)
2 (𝜔𝑖 , 𝜔𝑜 ) =

{ 1
|Λ(−𝜔𝑖 ) | , if (𝜔𝑜 · 𝜔𝑚) (𝜔𝑜 · 𝜔𝑔 ) ≤ 0,

1
|Λ(−𝜔𝑖 ) | − 𝐵( |Λ(−𝜔𝑖 ) |, 1 + Λ(𝜔𝑜 )), otherwise.

(21)
The derivation is similar to the reflection case.

Height-correlated segment term. We can now express the amount
of energy that undergoes further bounces, using our new defini-
tion for the height-correlated shadowing-masking term. We rewrite
the exit probability 𝑒𝑖 at each bounce using our height-correlated

shadowing-masking functions:

𝑒
(𝑖=𝑘)
𝑖

=


𝐺

(𝑖=𝑘 )
2 (−d𝑖−1,d𝑖 )
𝐺dist

1 (−d𝑖−1)
, if d𝑖 · 𝜔𝑔 > 0

0, if d𝑖 · 𝜔𝑔 ≤ 0,
(22)

and

𝑒
(𝑖<𝑘)
𝑖

=
𝐺

(𝑖<𝑘)
2 (−d𝑖−1, d𝑖 )
𝐺dist

1 (−d𝑖−1)
. (23)

The 𝑝𝑖 term is unchanged (Eqn. 11). When multiplying the seg-
ment terms for all bounces together, the denominator𝐺dist

1 in 𝑒𝑖 will
be canceled out by 𝑝𝑖−1, leaving only the height-correlated term for
each bounce.

3.5 Properties and analysis
Now that we have a complete multiple-bounce BSDF formulation,
we briefly analyze it to check that it has the right properties.

Position-free. Our BSDF formulation is completely independent
of the positions of individual vertices along a light path. This imme-
diately demonstrates that both in the macro scale and in the micro
scale, our method is position-free. As a result, there is no need to
keep track of the height of a vertex as in [Heitz et al. 2016]. Our far-
field assumption comes from the commonly-used derivation of the
height-correlated or uncorrelated shadowing masking terms [Heitz
2014; Walter et al. 2007]. In both height-correlated and uncorrelated
cases, heights are implicitly integrated.

Generality. One can easily verify the generality of our path for-
mulation in Eqn. 5. It reduces to classic single-bounce BSDFs, if we
limit the length of paths to 2. Therefore, our formulation is a general
definition of BSDFs.

Normal mapping support. In Schussler et al. [2017], it is pointed
out that regular normal mapping on hemispherical BSDFs will in-
evitably confuse the sides of incident and outgoing directions, lead-
ing to black regions when the specified normals deviate much from
the original. However, since our BSDF formulation is full-spherical,
directly applying normal mapping will never cause similar issues.
Therefore, no additional effort needs to be done to support correct
normal mapping. We demonstrate this in Fig. 7.

Variance reduction. Our variance reduction comes from two fac-
tors: firstly, our position-free formulation does not explicitly trace
heights, leading to much less variation in the integrand. Secondly,
we can deploy more advanced Monte Carlo estimators such as a
bidirectional path tracers, leading to further variance reduction. We
consider the aggregated contribution from all heights at each bounce
in our model, while Heitz et al. [2016] explicitly trace the height,
leading to more variance. As mentioned before, our explicit path
integration enables any Monte Carlo solutions to it. This property
allows us to introduce much more efficient estimators, such as Bidi-
rectional Path Tracing (BDPT) than previous random walk methods,
which reduces the variance significantly, as we show next in Sec. 4.
Note specifically that Heitz et al. [2016] use multiple importance
sampling (MIS) to combine the contribution from two random walk
paths, one pure forward and the other backward. This approach
is far from a complete BDPT, since it ignores all the connections
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between internal bounces. Our explicit formulation is different from
theirs and allows full bidirectional approaches, enabling connection
of half paths from both directions, reusing much more samples and
resulting in less variance.

Reciprocity. From the structure of the path integral, we can see
that its overall reciprocity lies in the individual vertex terms and
segment terms. The reciprocity of the vertex terms is trivial to verify,
since they are essentially traditional microfacet BSDFs without the
shadowing-masking terms. In the supplemental materials, we prove
that the height-uncorrelated segment terms are also reciprocal, and
provide an experiment to demonstrate this. Therefore, our entire
height-uncorrelated BSDF formulation is reciprocal. However, the
reciprocity of height-correlated BSDF formulation does not hold. A
counter example is also provided in the supplementary. The differ-
ent reciprocity properties are because we rely on different height
correlation, which will be discussed next.

Height correlation. We have presented our position-free BSDF
model using both the height-correlated and the height-uncorrelated
shadowing-masking functions. We first emphasize again that both
are reasonable approximations to the real visibility/occlusion prob-
lem at micro scale, both satisfy energy conservation and pass the
white furnace test, but neither requires a specific height at each
bounce. The height-correlated shadowing-masking function ignores
the height, while the height-uncorrelated averages/integrates the
height.
Quality-wise, we demonstrate that our height-correlated model

has a better match with the simulated ground truth (Fig. 6), and is
also closer to Heitz et al. [2016]. The main difference between our
height-correlated multiple-bounce BSDF and Heitz et al. [2016] is
that our model assumes the position-free property among bounces,
which means the incident rays for each bounce always come from
the distance. Therefore, we can see that the random walk method
by Heitz et al. [2016] is neither height-uncorrelated nor height-
correlated. Precisely speaking, it should be labeled height-specific in
light transport, and height-mixed in its shadowing-masking func-
tions. The former is straightforward to understand, because it does
record specific heights at different bounces. The second term is
slightly out of the scope of our focus, and we simply point out that
Heitz et al. [2016] use height-correlated shadowing-masking term
for the first bounce and use separable shadowing-masking function
for other bounces: considering the height for the masking function,
while ignoring the height for the shadowing function.

A brief summary on different height correlation models: our
height-uncorrelated model is simple to compute, reciprocal, but
less accurate (only in terms of the closeness to simulated multiple-
bounce energy distribution); our height-correlated model can still be
explicitly written, is closer to the ground truth, but is not reciprocal;
Heitz et al. [2016] is height-specific, slow to converge, similarly close
to the ground truth as compared to our height-correlated model, but
is reciprocal. We can conclude from the comparison that different
height correlation models indeed play an important role in the final
appearance model.

4 MONTE CARLO PATH INTEGRAL ESTIMATORS
With our explicit and position-free path formulation, any Monte
Carlo method can be used to compute the integral. In this section,
we propose two estimators for BSDF evaluation: unidirectional path
tracing (PT) and bidirectional path tracing (BDPT) to evaluate the
multiple scattering path integral, inspired by the position-free in-
tegral that solves the BSDFs of layered materials [Guo et al. 2018].
We show how to efficiently sample our multiple-bounce BSDFs, and
the computation of the corresponding probability density functions.
Throughout this section, we use conductors as examples, without
loss of generality.

4.1 Path Tracing
We first propose a unidirectional estimator using path tracing for
BSDF evaluation:

𝜌 (𝜔𝑖 , 𝜔𝑜 ) ≈
1
𝑁

𝑗=𝑁∑
𝑗=0

𝑓 (𝑥)
pdf (𝑥) , (24)

where 𝑁 is the sample count, 𝑥 is a sampled path starting from d0
and pdf (𝑥) is the probability density function (PDF) of the sample
path. We set N as 1 for each BSDF evaluation. Since the path has
to be ended with 𝜔𝑜 , it’s impossible to reach such a direction with
directional sampling only, thuswe perform the next event estimation
(NEE) from the final outgoing direction𝜔𝑜 for each bounce, resulting
in:

𝜌 (𝜔𝑖 , 𝜔𝑜 ) ≈
1
𝑁

𝑗=𝑁∑
𝑗=0

𝑖=𝑘+1∑
𝑖=2

𝑓 (𝑥𝑖 )
pdf (𝑥𝑖 )

, (25)

where 𝑥𝑖 = (d0, 𝑏0, d1, 𝑏1, . . . , 𝑏𝑖−2, d𝑖−1) represents a path with
length 𝑖 from the path space Ω𝑖 and 𝑓 (𝑥𝑖 ) is computed with Eqn. 1.
The PDF of a path pdf (𝑥𝑖 ) is computed as the product of all the PDF
to sample the internal directions, from d1 to d𝑖−2:

pdf (𝑥𝑖 ) =
𝑗=𝑖−3∏
𝑗=0

pdf (−d𝑗 , d𝑗+1), (26)

where pdf (−d𝑗 , d𝑗+1) represents the PDF of sampling d𝑗+1 from
−d𝑗 . Note that both 𝑓 (𝑥𝑖 ) and pdf (𝑥𝑖 ) are evaluated recursively.
For the specific sampling method and corresponding PDF val-

ues, we simply refer to the distribution of visible normals (VNDF)
sampling technique [Heitz and d’Eon 2014].

Finally, note that our path tracing method provides an unbiased
estimation of the multiple-bounce BSDFwith Russian roulette [Arvo
and Kirk 1990]. This is in essence different from the multiple-bounce
BSDFs under the V-groove assumption [Lee et al. 2018], in which a
maximum bounce must be specified, balancing between potential
energy cutoff and computational overhead.

4.2 Bidirectional path tracing
We now present an even more efficient bidirectional estimator, fol-
lowing the classical bidirectional approach in light transport. We
first trace rays from both d0 and −d𝑘 with maximum length 𝑘 + 1
and generate a camera path and a light path. Then we combine
them, choosing 𝑠 directions from camera path, and 𝑡 directions from
the light path, where 0 < 𝑠 < 𝑘 + 1 and 0 < 𝑡 < 𝑘 + 2 − 𝑠 . If 𝑠 = 1,
then only d0 is chosen from the camera path. Similarly, if 𝑡 = 1, then
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only d𝑘 is taken from the light path. For each generated path 𝑥𝑖 , we
compute its contribution 𝑓 (𝑥𝑖 ), pdf (𝑥𝑖 ), and the MIS weight𝑤 (𝑥𝑖 ).

The path contribution 𝑓 (𝑥𝑖 ) of path 𝑥𝑖 with length 𝑖 is computed
with Eqn. 1, by accumulating all the vertex terms and the segment
terms along the path. Since our height-correlated BRDF is not re-
ciprocal, to ensure consistency, we compute the contribution of
all paths from the macro-scale incident direction 𝜔𝑖 , to the macro-
scale outgoing direction 𝜔𝑜 , regardless of whether the paths are
constructed by backward path tracing (in PT) or by connecting the
vertices from the two subpaths (in BDPT).

The PDF is computed by accumulating the 𝑠 PDFs from the camera
path and 𝑡 PDFs from the light path:

pdf (𝑥𝑖 ) =
𝑗=𝑠∏
𝑗=1

pdf (−d𝑗−1, d𝑗 )
𝑗=𝑘∏

𝑗=𝑘−𝑠
pdf (d𝑗 ,−d𝑗−1), (27)

Note that, we start from 1 rather than 0, as the both d0 and d𝑘 are
not sampled.

Regarding the MIS weight, for a given path 𝑥𝑖 with length 𝑖 , there
are 𝑖 − 1 possible ways to generate this length, by taking different
numbers of directions from the camera path and the light path. We
sum up all the PDF for each possible way as

∑
𝑥
𝑗
𝑖
, and then compute

the MIS weight with the balance heuristic, as:

𝑤 (𝑥𝑖 ) =
pdf (𝑥𝑖 )∑
pdf (𝑥 𝑗

𝑖
)
. (28)

Finally, we get the bidirectional estimator for multiple-bounce
BSDF as:

𝜌 (𝜔𝑖 , 𝜔𝑜 ) =
𝑖=𝑘+1∑
𝑖=2

𝑓 (𝑥𝑖 )𝑤 (𝑥𝑖 )
pdf (𝑥𝑖 )

. (29)

The bidirectional estimator produces results with less variance,
since there are implicitly more paths used for estimation. The paths
are also weighted in a proper way, which allows to further reduce
variance.

Also, from the definition of paths in our formulation, we can
see that they are completely consisted with directions, thus is com-
pletely position-free. This is different from Guo et al. [2018], where
the position-independence is only in the horizontal direction, while
they keep trace of the depths into the different layers for their path
formulations.

4.3 Importance sampling and PDF of multiple bounces
Importance sampling is required to fit our BSDF in a path tracing
framework. It’s straight forward to do sampling in our BSDF. For a
given incident direction 𝜔𝑖 , the sample function should answer the
final 𝜔𝑜 and compute the sampling weights.
Let’s consider bounce 𝑖 . Starting from d𝑖 , we use the VNDF im-

portance sampling to generate an outgoing direction d𝑖+1. With this
sampled direction, we compute the Fresnel factor and use it as a
probability to decide reflecting or refracting the ray. Then we check
whether d𝑖+1 points towards the macrosurface. If so, we continue
sampling. Otherwise, we compute the masking function𝐺1 (d𝑘+1)
and use it as a probability to choose to leave the surface or perform-
ing more bounces. If choosing to leave the surface, 𝜔𝑜 is obtained.

If the maximum bounces are reached, but the ray has not left the
surface, the sampling fails, which is usual in the light transport.
For conductor material, the sampling weights include all the

Fresnel factor along the path, since all the other terms are canceled
out by the VNDF sampling and the exit surface sampling. For a rough
dielectric BSDF, the weight is 1, since all the terms are canceled out.

The PDF function of a BSDF is used in MIS. Given an𝜔𝑖 and𝜔𝑜 , it
should answer the PDF for this setting. Since we are using a random
walk in our BSDF, it’s impossible to get the exact PDF for an 𝜔𝑖

and 𝜔𝑜 pair. Hence, we use the same method as Heitz et al. [2016],
combining the PDF of single-scattering and a diffuse term PDF.

5 RESULTS AND COMPARISON
We have implemented our algorithm inside the Mitsuba renderer
[2010] for both rough conductor and rough dielectric BSDFs. The
implementation of Heitz et al. [2016] is from the author’s website,
with bidirectional random walk. All timings in this section are mea-
sured on a 2.20GHz Intel i7 (48 cores) with 32 GB of main memory.
For the reference images, we simply refer to the converged result
using the same method. This is because in theory there is no ground
truth, and Heitz et al. [2016] and our method converge to different
results. Therefore, to have a fair estimation of noise level, we com-
pare different methods with the converged results of these methods
as references.

Comparison of lobes for individual bounces. In Fig. 6 and the sup-
plemental materials, we compare the visualized lobes for individ-
ual bounce between our method (both height-uncorrelated and
height-correlated), Heitz et al. [2016] and the simulated data which
is obtained by ray tracing on a generated surface with Beckmann
distribution [Heitz and Dupuy 2015]. We perform the comparison on
rough diffuse (albedo set as 1), rough conductor (Fresnel set as 1) and
rough dielectric BSDFs, considering both isotropic (𝛼 = 0.25, 𝛼 = 0.5
and 𝛼 = 1) and anisotropic (𝛼 = (1.0, 0.1)) cases. We visualize the
lobes with 𝜔𝑖 elevation angles of 0.0, 0.5 1.0 and 1.5 radians. 𝐸𝑟 and
𝐸𝑡 denote the total amount of reflected and transmitted energies,
respectively. We only show the images for materials with roughness
𝛼 = 1 with 𝜔𝑖 elevation angles of 0.0 and 1.5 radians in Fig. 6, and
more images are shown in the supplemental materials.

For all the bounces with all the incident angles, our height-corre-
lated model produces very similar results as Heitz et al. [2016], while
our height-uncorrelated model has larger difference from Heitz et
al. [2016] mostly at grazing angles. Note that all these three methods
pass the white furnace test.

Evaluation-only comparison. Our method is especially suitable
to render under sharp lighting and in evaluation-heavy situations,
thus, we first show some results with direct lighting only. In Fig. 8,
we show a yellow rough diffuse material (GGX model, 𝛼 = 1.0) lit by
a directional light source. Even our model (PT) shows less variance
than Heitz et al. [2016]. In Fig. 9, we show a copper sphere (GGX
model, 𝛼 = 1.0) lit by a directional light. Both of our PT and BDPT
methods produce much less noise than Heitz et al. [2016], with a
slight performance overhead, and our BDPT approach produces the
best result. Fig. 1 (c) and (d) show a single slab with a rough dielectric
BSDF (GGX model, 𝛼 = 1.0). Both our path tracing and our BDPT
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Fig. 6. Comparison between ourmultiple-bounce BSDFmodels (both height-
uncorrelated and height-correlated), Heitz et al. [2016] model and simulated
data, for rough diffuse, conductor and dielectric materials with roughness
1.0. 𝜃 is the angle between the incident direction and the normal to the
macrosurface.

Ours (height-corr.)

Schüssler et al. 2017Microfacet model

Ours (height-uncorr.)

Fig. 7. Comparison between our methods, Schüssler et al. [2017] and the
microfacet model on a metal sphere with a normal map. Our method does
not have the black artifacts inmicrofacetmodels. Since Schüssler et al. [2017]
use a different model, it produces a different result from ours, as expected.

Heitz et al. 2016, 0.57sOurs, 0.61s Ours, 0.56s 
PT, height-uncorr. PT, height-corr.

MSE: 2.25e-4 MSE: 2.73e-4 MSE: 4.11e-4 

Fig. 8. Comparison between our methods (PT) and Heitz et al. [2016] on
a rough diffuse material (GGX model, 𝛼 = 1.0) under a directional lighting
with 64 spp.

produce better results than Heitz et al. [2016], while our path tracing
method is faster than Heitz et al. [2016] and our BDPT reduces the
noise significantly with acceptable extra time cost. With only two
samples per pixel, our method (BDPT) produces results close to
noise-free. In Fig. 10, we show the Mean Square Error (MSE) as a
function of varying sampling rate for our method (BDPT and PT)
and Heitz et al. [2016] in the Sphere scene and the Single Slab scene,
considering directional lighting only. With only two samples per
pixel, our method is able to produce very close result to the ground
truth, while Heitz et al. [2016] produces result with a lot of noise.
Increasing the sampling rate improves the quality for both methods,
but our method remains consistently better. In the supplemental
materials, we show more convergence comparisons between our
method and Heitz et al. [2016] over varying roughness. For all these
configurations, our method shows better quality.

Equal-time comparison. In Fig. 1(a) and (b), we show three deer
statues (copper (GGX model, 𝛼 = 0.1), aluminum (GGX model, 𝛼
= 0.6) and gold (GGX model, 𝛼 =0.5)) on an aluminum floor (GGX
model, 𝛼 = 0.1), lit by an environment map and a point light. To
better show the effect of the BSDF evaluation, we use 64 spp for
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Fig. 9. Comparison between our methods (PT), our methods (BDPT), Heitz
et al. [2016] and the classical microfacet model on a rough conductor BSDF
(GGX model, 𝛼 = 1.0) with 4 spp. Both our unidirectional and bidirectional
methods produce less noise than Heitz et al. [2016], while our bidirectional
approach produces even higher-quality results than our path tracing ap-
proach, with some extra time cost.
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Fig. 10. The error (MSE) with logarithm scale of our method (both BDPT
and PT) and Heitz et al. [2016] over varying sampling rate on the Sphere
scene (Figure 9) and Single Slab scene (Figure 1(c) and (d)). In both scenes,
our method with PT is constantly better than Heitz at all different sampling
rates, and our method with BDPT always gives the best results.

the environment map lighting. To achieve equal time, we use 8 spp
for our method and 14 spp for Heitz et al. [2016] for the point light
source. Our results have much less noise than Heitz et al. [2016]’s
result. We also report the MSE of the entire image, which confirms
the high quality of our results.

Comparisonwith othermethods. In Fig. 11, we compare ourmethod
with Lee et al. [2018] (nonsymmetric). The result of Lee et al. [2018]
inherits the drawback of V-groove approaches, and the results look
too glossy. our method and Heitz et al. [2016] are based on the
Smith shadowing method, and produce similar results. In Fig. 12, we
compare our method with Kulla and Conty [2017]. Their method is
based on an average Fresnel term, instead of accumulating the Fres-
nel term contributions during multiple scattering. This results in a

Ours (PT, height-corr.)

Lee et al. 2018Heitz et al. 2016

Ours (PT, height-uncorr.)

MSE: 2.01e-4 MSE: 1.62e-3 

MSE: 1.89e-4 MSE: 1.88e-4 

Fig. 11. Comparison between our methods (PT), Heitz et al. [2016] and Lee
et al. [2018] for a rough conductor BSDF (Beckmann model, 𝛼 = 1.0). The
result by Lee et al. [2018] is too glossy; this issue is a typical drawback of
the V-groove shadowing-maskingg model.

Ours (PT, height-uncorr.)

Heitz et al. 2016

Ours (PT, height-corr.)

MSE: 1.83e-4 MSE: 1.85e-4 

MSE: 1.19e-3 MSE: 2.00e-4 

Kulla and Conty 2017

Fig. 12. Comparison between our methods (PT), Kulla and Conty [2017] and
Heitz et al. [2016] for a rough conductor BSDF (GGX model, 𝛼 = 1.0). Kulla
and Conty [2017] average the Fresnel term over all directions, resulting in a
significantly different color.

significant difference in color. Our method and Heitz et al. [2016]
use the Fresnel term at each bounce, resulting in the correct color.

Complex lighting comparison. In Fig. 13, we compare against Heitz
et al. [2016] on more complex lighting, considering both indirect illu-
mination and environment lighting. Our results are almost identical
to Heitz et al. [2016]. In this scene, our method does not significantly
reduce the noise. There are two reasons: first, in this scene, light
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Isotropic rough conductor, Beckmann

α = 0.1
Isotropic rough dielectric, Beckmann

α = 0.1, 0.6

Anisotropic rough conductor, GGX

Isotropic rough dielectric, GGX
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Fig. 13. Our result (rendered with PT, height-correlated) and Heitz et al. [2016] on different materials at roughly equal time. The material settings are shown in
the image. We visualize the difference (5× scaled) between ours and Heitz et al. [2016].

transport is complex and responsible for most of the noise; second,
our method for sampling BSDFs produces similar noise as Heitz et
al. [2016]. Hence, our method is especially suitable to render under
sharp lighting and in evaluation-heavy situations.
In Fig. 14, we show the results of our methods (PT) with height-

correlated and height-uncorrelated segment terms, Heitz et al. [2016]
and single-bounce microfacet model for rough dielectric BSDFs with
varying roughness. Both of our methods produce results very similar
to Heitz et al. [2016] and has almost identical costs. We also show
the white furnace test results of the four methods, by rendering
these materials lit by a constant white environment map. Both of
our methods and Heitz et al. [2016] pass the white furnace test.

Real-time rendering. We implemented our method using shaders
inside the Unreal Engine 4 (UE4), to show that it can be used for
real-time rendering. We implemented both PT and BDPT versions,
using a fixed sampling rate of 1 spp. We limit the number of bounces
to two, as it already covers most of the energy. All timings in this
section are measured on an NVIDIA RTX 2080 Ti graphics card. We
exploit the modern rasterization pipeline, readily available in UE4,
to generate high quality image sequences with the help of Deep
Learning Super Sampling (DLSS).
Fig. 15 and the companion video show that both our PT and

BDPT methods correctly produce the appearance from multiple-
bounce BSDFs, and that our BDPT method is almost noise-free. The
computational overhead of our method over single scattering is
only about 0.10 ms (for PT) and 0.19 ms (for BDPT). Our method
has potential applications in real-time rendering. We also provide a
ShaderToy implementation of our method (showing both PT and
BDPT) in the supplemental materials. We could not implement
Heitz et al. [2016] in Unreal Engine 4 (UE4), due to its complexity.
According to Figure 10 and Figure 5 in the supplemental materials,
even after 5 ms, the results from Heitz et al. [2016] are still much
noisier than our BDPT method.

6 DISCUSSION AND LIMITATIONS
Height distribution function. Our method is independent of the

choice of a height distribution function, since it is canceled out
during the computations on the Λ function. In this respect, it is
identical to Heitz et al. [2016]. As shown in both the paper and
supplemental materials of Heitz et al. [2016], both Gaussian and
uniform height distribution functions provide the same results. We
haven’t found existing previous work that studied the impact of
different height distributions on multiple scattering; this would be
an interesting venue for future work.

In our experiments, BDPT always provides better results than PT,
since there are much more paths constructed with BDPT. Moreover,
unlike traditional BDPT which requires costly visibility query, our
microscale BDPT doesn’t require ray-scene intersection, making it
much more efficient. However, for real-time applications, the BDPT
might still be too complex, and may require extra optimization for
an efficient GPU implementation.

Limitations. We have identified main limitations for our method:
First, our height-correlated shadowing-masking function does not
have reciprocity. Second, for performance reasons, our model cur-
rently focuses on NDFs with an analytical Λ functions, such as
Beckmann and GGX. Third, although it has a low variance, our
method still does not have a closed-form solution. Finding an ana-
lytical solution would be a strong extension to this work. Forth, we
propose both height uncorrelated and height-correlated shadowing-
masking functions. Both of them are approximations to the accu-
rate shadowing-masking functions. Using a height-direction cor-
related shadowing-masking function would improve accuracy, as
mentioned in Heitz [2014], but it would require rewriting the path
formulation. Furthermore, the lack of closed-form multi-bounce
PDF makes sampling less efficient and leads to the similar variance
as in Heitz et al. [2016] under complex lighting. Turqin’s approxi-
mation [2019] can be used for approximating the PDF, however it
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White Furnace Test White Furnace Testroughness: 0.1 roughness: 0.6 roughness: 1.0

Ours (PT, height corr.), 22.83 s 

Ours (PT, height uncorr.), 21.42s 

Heitz et al. 2016, 20.41 s 

Microfacet model, 16.05 s 

MSE: 6.10e-3

MSE: 6.11e-3

MSE: 6.78e-3

Fig. 14. Comparison between our methods (PT) with both height-uncorrelated and height-correlated segment terms, Heitz et al. [2016] and microfacet model
on rough dielectric BSDFs (GGX model) with varying roughness (0,1, 0.6 and 1.0), rendered with 64 spp. Our models produce results very similar to Heitz et
al. [2016] and have almost identical time. The left-most and right-most images show the white furnace test results of BSDFs with roughness 0.1 and 1.0.

might lead to high variance when their proposed lobes mismatch
the shape of the real lobe.

7 CONCLUSION AND FUTURE WORK
We have proposed a new formulation for multiple-bounce micro-
facet BSDFs under the Smith assumption. We start by deriving an
explicit mathematical definition of the path space that describes
single and multiple bounces in a uniform way and study the be-
havior of light on the different vertices and segments in the path
space. Then we pose the evaluation of our multiple-bounce BSDF as
a position-free path integral and solve it with both path tracing and
bidirectional path tracing. Our method produces much less noise
than prior work, and is almost noise-free with very low sampling
rate (2− 4 spp) for BSDF evaluation tasks, thus is especially suitable
to render under sharp lighting and in evaluation-heavy situations
scenes with small lights.

In the future, aside from eliminating the limitations of our method,
it would be interesting to explore the possibility of applying our
formulation on detailed surfaces with actual NDFs rather than sta-
tistical NDFs. Also, with our explicit formulation, coming up with a
better sampling approach than the visible NDF sampling may also
be useful to further reduce the variance. It is also worth looking into
the possibilities to combine our method with precomputation-based
methods, using pre-generated tables or textures to further speed up
our run-time performance.
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Microfacet model (single scattering), 2.41 ms Ours (PT), 2.51 ms Ours (BDPT), 2.59 ms

Fig. 15. Comparison between the microfacet model (single scattering only) and our methods (PT and BDPT, both 1 spp) implemented in shaders in UE4 on
three material balls with different roughness (0.9, 0.5 and 0.2). Our methods (PT and BDPT) bring obvious color changes, especially when roughness is high.
With DLSS that is readily available in UE4, even using only 1 spp, both our PT and BDPT methods achieve low noise level, and our BDPT is almost noise-free
for all three materials. We use the height-uncorrelated model in the UE implementation.
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