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Figure 1: We present a neural latent representation for BRDFs and a BRDF layering network based on it. Our method is able to
produce closely matching layered results to the Monte Carlo simulation in Guo et al. [2018] with less cost, and works well with
spatially-varying parameters.

ABSTRACT
Bidirectional reflectance distribution functions (BRDFs) are perva-
sively used in computer graphics to produce realistic physically-
based appearance. Many common materials in the real world have
more than one layer, like wood, skin, car paint, and many decorative
materials. However, precise simulation of layered material optics is
non-trivial. The most accurate approaches rely on Monte Carlo ran-
dom walks to simulate the light transport within the layers, leading
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to high variance and cost. Other approaches are efficient, but less
accurate. In this paper, we propose to perform layering in the neu-
ral space, by compressing BRDFs into latent codes via a proposed
representation neural network, and performing a learned layering
operation on these latent vectors via a layering network. Our BRDF
evaluation is noise-free and computationally efficient, compared to
the state-of-the-art approach; it is also a first step towards a “neural
algebra” of operations on BRDFs in a latent space.
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1 INTRODUCTION
Bidirectional reflectance distribution functions (BRDFs) are per-
vasively used in computer graphics to produce vivid and realistic
appearance. Layered materials are common in the real world: car
paints, skin andwood are just a few examples. The BRDFs of layered
materials are more complex to render than single-layer materials,
since the light might bounce several times within the layers before
exiting the surface. The challenge of representing and rendering
layered materials has attracted a large amount of research.

Existing approaches including approximate analyticmodels [Wei-
dlich and Wilkie 2007] have been proposed to solve this problem.
Among them, the Monte Carlo simulated approaches are most ac-
curate, at the cost of expensive random walk and high variance,
which makes them less practical. The other approaches are either
less accurate or require large memory footprints.

In recent years, neural networks for representing spatially vary-
ing bidirectional reflectance distribution functions (SVBRDFs) and
bidirectional texture functions (BTFs) have received attention ([Rai-
ner et al. 2019], [Rainer et al. 2020], [Kuznetsov et al. 2021], and
[Takikawa et al. 2021]). These neural approaches mostly focus on
efficient compression ([Rainer et al. 2019], [Rainer et al. 2020], [Taki-
kawa et al. 2021]) and query ([Kuznetsov et al. 2021]). They have
greatly reduced the storage overhead, successfully making high-
dimensional SVBRDF and BTF data practically usable in rendering.
However, none of these methods consider layered materials.

We propose to represent both analytic and measured BRDFs with
a latent space, and then perform a layering operation between the
latent vectors with a layering network. The layering neural network
replaces the expensive random-walk, resulting in a simple, noise-
free and computationally efficient evaluation scheme for layered
BRDFs.

2 RELATEDWORK
Neural based SVBRDF/BTF/BRDF compression. SVBRDF/BTF com-

pression shares the same sense that compressing high dimensional
data into compact representationswith ourmethod. Recently, Kuzne-
tsov et al. [2021] represent and render a variety of material ap-
pearances at different scales, and Sztrajman et al. [2021] represent
each BRDF with a decoder structure, resulting in better quality, at
the cost of more storage for each BRDF. We categorize the afore-
mentioned approaches as specialized methods, because one neural
network only represents one material/BRDF in these works, result-
ing in high quality, but heavy storage overhead and difficulty for
operations.

The other kind of approaches are generalized methods. Rainer et
al. [2019] proposed a neural representation for BTFs, using a latent
vector to represent each texel, but requiring to train an autoencoder
per BTF and does not generalize across materials. Later, Rainer
et al. [2020] introduced a unified model to represent all materials,
with lower quality as a trade-off. Specifically, neither of them work
well for highly specular materials, compared to our method. Some
other researches focus on compressing single BRDFs, instead of
SVBRDFs/BTFs into latent representation. Hu et al. [2020] utilize
a convolutional neural network to compress and reconstruct mea-
sured BRDFs slices and manage to edit specific attributes in the
latent space. Also, there is a concurrent work by Zheng et al. [2021],

using neural processes to compactly represent measured BRDFs and
classifiers to qualitatively tweak certain attributes of the BRDFs.

BRDF layering operations. Layering is an important operation for
BRDFs, which has been addressed by several lines of work. Some
Fourier-based methods ([Jakob et al. 2014], [Jakob 2015], and [Zelt-
ner and Jakob 2018]) rely on expensive computation per parameter
setting, which makes it difficult to handle spatially-varying tex-
tures. The Monte Carlo based methods ([Guo et al. 2018], [Gamboa
et al. 2020], and [Xia et al. 2020]) are able to produce high-quality
results, and support spatially-varying textures, thus we treat them
as ground-truth. However, the required random walks lead to extra
variance (noise). Tracking directional statistics ([Belcour 2018], [Ya-
maguchi et al. 2019], and [Weier and Belcour 2020]) expresses the
directional statistics (e.g., mean and variance) of a layered BRDF
and track the statistical summary at each step, resulting in real-
time performance. However, they are a fundamentally approximate
way of representing the underlying functions. Compared to all of
these works, our method represents a BRDF with a latent vector,
and performs the operations on the latent vectors. Our layering
results are very close to Monte Carlo based approaches, avoiding
the expensive random walk and additional variance (noise).

3 NEURAL BRDF REPRESENTATION AND
LAYERING

In this section, we present our solution to neural BRDF represen-
tation and the layering operation. We first formulate the problem
(Sec. 3.1). Then, we show how to represent BRDFs with our general-
purpose BRDF decoder structure (Sec. 3.2). Finally, we introduce a
layering neural network to produce layered materials (Sec. 3.3).

3.1 Overview and formulation
We focus on representing individual BRDFs and providing a layer-
ing operation on them. A BRDF is a 4D function 𝑓 (𝝎𝑖 ,𝝎𝑜 ), where
𝝎𝑖 and 𝝎𝑜 are the incoming and outgoing directions on the unit
hemisphere. Note that this definition can be extended to bidirec-
tional scattering distribution functions (BSDFs) by considering full
unit spheres for directions. For simplicity, we do not represent
two-sided BSDFs in this paper. However, we do implicitly consider
BSDFs when layering one BRDF atop another: the top BRDF is
assumed be the reflective component of a BSDF, i.e., to transmit all
energy that is not reflected, and this affects the layering operation.

We will start from compressing any BRDF in a compact neural
form:

Representation: 𝑓 (𝝎𝑖 ,𝝎𝑜 )
𝑁rep
−−−→ 𝑽𝑓 , (1)

where 𝑽𝑓 is known as a latent vector and 𝑁rep is a neural represen-
tation projecting operator. This operator is implemented through
optimization (searching for a latent vector that decodes to the input
BRDF), as we introduce in later chapters.

Once the BRDFs are represented as latent vectors, we treat them
as operands, and provide a layering operator that act upon them:

Layering: {𝑽top, 𝑽bottom, 𝐴, 𝜎𝑇 }
𝑁layering
−−−−−−→ 𝑽layered . (2)

Above, 𝑽top and 𝑽bottom represent the latent vectors for BRDFs at
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Figure 2: The structure details of the evaluation network. All residuals and skip connections are added before the normalization
and activation layers.
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Figure 3: The structure of layering network. 𝐴 and 𝜎𝑇 are
scalars that represent the albedo and the extinction coeffi-
cients. 𝑽top and 𝑽bottom are the latent vectors to represent the
top layer and the bottom layer respectively.

the top layer and the bottom layer, respectively. 𝐴 and 𝜎𝑇 are the
single-scattering albedo and extinction coefficients for the partici-
pating medium inserted between the two layers.

3.2 Neural BRDF representation

Representation
Network

Back-propagation ①

Back-propagation ②

Figure 4: The high-level architecture of the neural BRDF
representation. The network only includes a decoder, which
is used for both BRDF evaluation and representation.

We would like to find a general-purpose neural network that
is able to compress any input BRDF 𝑓 (𝝎𝑖 ,𝝎𝑜 ) into a latent vector
𝑽𝑓 . We do not want to pre-specify the discretization of the input
BRDF, as there is no single satisfactory discretization. Instead, we
opt to define an evaluation network architecture, which takes a
latent vector as well as incoming and outgoing directions as input,
and returns the corresponding BRDF value. To project a BRDF into
the latent space, we simply optimize for a latent vector that gives
back the input BRDF at any desired discretization.

We design the architecture of our Neural BRDF evaluation net-
work as shown in Figure 4. It takes a latent vector and an incoming-
outgoing pair as query, and outputs the corresponding BRDF value.

The network is trained by back-propagation on a dataset of BRDFs,
as detailed below.

Note that we have two back-propagation routes, one for the
latent vector, the other for the weights of the evaluation network.
When we are training the network, we use all values of BRDFs
across the dataset, and we back-propagate the gradient through
both routes 1○ and 2○, updating the weights in the network and
the latent vectors simultaneously. In this way, our network learns
to use different latent vectors to represent different BRDFs. Once
we have trained the evaluation network, to project any new BRDF
into the latent space, we freeze the network parameters and only
back-propagate to the latent vector via route 1○. This projection
takes about 10 to 45 seconds to converge on an RTX 2080Ti GPU.
We illustrate the detailed architecture of our evaluation network in
Fig. 2. We treat every channel of the RGB color space separately,
and we do not clamp any high dynamic range values.

We do not require the projected BRDFs to be parametric or
measured, nor do we care whether they are already layered or
not. We do however make two assumptions for simplicity. First,
we assume that all BRDFs are isotropic for now, mainly for the
efficiency of the training dataset. Second, we assume that none of
the BRDFs are normal-mapped; this operation is harder to learn
and easier to achieve by altering local shading coordinates during
rendering.

Our evaluation network can successfully represent BRDFs from
commonly seen materials. We can also define a latent texture, where
each texel is a latent vector representing a BRDF. In this way, we can
use this latent texture to describe SVBRDFs, as will be demonstrated
on more examples in Sec. 5.

Discussion. In Table 1, we compare our method against three
related works, regarding the representation accuracy for specular-
ity, ability to represent SVBRDFs, and the generality of the model.
Regarding representation accuracy, both Sztrajman et al. [2021] and
our method are able to handle sharp specular BRDFs, while Rainer
et al. [2019] and Rainer et al. [2020] are less accurate. However,
Sztrajman et al. [2021] require a decoder for each BRDF representa-
tion, which means that when a spatially varying BRDF is processed,
they need to prepare all kinds of different decoders for each texel,
bringing significant storage overhead. For a 4𝐾 resolution texture
as example, Sztrajman et al. [2021] store 4𝐾 × 4𝐾 × 32 floats, and
decode them into 4𝐾 × 4𝐾 × 675 floats. Then a dynamic loading and
permuting process of the floats into network weights at run-time
is also required, which is difficult for parallelization in GPU. In
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Table 1: Comparison of different BRDF representation methods, considering the ability to preserve specularity, the cost storing
and evaluating SVBRDFs and the cost obtaining a new BRDF representation. A quantitative comparison between Sztrajman et
al. [2021] and our method is discussed in Section 3.2 below. (∗ need to decompress all latent vectors to decoders for evaluation.)
(★ then compress the new decoder into a latent vector.)

Method Spec. preservation To store SVBRDFs To evaluate SVBRDFs To represent a new material

Rainer et al. [2019] ✗ one latent vector per BRDF one decoder per SVBRDF Train a new en/decoder
Rainer et al. [2020] ✗ one latent vector per BRDF one decoder for all BRDFs Run the encoder

Sztrajman et al. [2021] ✓ one latent vector per BRDF∗ one decoder per BRDF Train a new decoder★
Ours ✓ one latent vector per BRDF one decoder for all BRDFs Optimize the latent vector

contrast, our method only requires 4𝐾 × 4𝐾 × 32 × 3 floats plus a
generalized decoder of 1𝑀 floats in total. Regarding the generality,
Sztrajman et al. [2021] require network training for each BRDF, and
Rainer et al. [2019] require training for each single SVBRDF, while
our method only require a latent vector optimization per BRDF.

3.3 Neural BRDF layering

Rough Dielectric BSDF

Medium with
Absorption and Scattering

Any BRDF (optionally layered)

Figure 5: Our configuration for layered BRDFs includes a top
layer using a rough dielectric, a bottom layer using any BRDF
and a homogeneous participating media in the middle.

The layering operation on BRDFs (Figure 5) includes complex
light transport interactions among the layers. The most accurate
way to layer BRDFs is using a Monte Carlo random walk [Guo
et al. 2018], but this is expensive, especially when there are dense
volumetric media between the interfaces; the random walk also
introduces variance.

We instead propose to learn the layering operation in the latent
space. We consider a two-layer operation, consisting of a top layer
with a rough dielectric BSDF (whose transmission component is
implied as the energy complement of the top BRDF, with no energy
lost in the interface itself) and a bottom layer with any BRDF, and
a layer of homogeneous participating media with albedo 𝐴 and
extinction coefficient 𝜎𝑇 (assuming isotropic scattering) between
the interfaces. We do not use anisotropic scattering nor do we
compensate for energy loss in microfacet BRDFs, though these
effects could be added to the training data. Note that our two-
layer setup can handle multi-layered configurations by recursively
applying the layering operation, as we discuss in Sec. 5.1.

Our layering network has a similar MLP-based structure to the
evaluation network, taking two latent vectors which represents
the top layer and bottom layer as input, together with the albedo
and extinction coefficients of the volumetric medium. It directly
outputs one target latent vector to represent the layered BRDF.
Similar to the evaluation network, our layering network also deals

Table 2: Different distributions that we use to sample the
parameter space of BRDFs.U(𝑥,𝑦) represents a continuous
uniform distribution in the interval (𝑥,𝑦), and V(𝑋 ) is a
discrete uniform random variable in a finite set 𝑋 .

Parameter Sampling Function

Roughness 𝛼 U(0.216, 1)3
IOR 𝜂 U(1.05, 2)
Fresnel 𝑅0 U(0, 1)
Scattering albedo 𝐴 1 −U(0, 1)2
Extinction coefficient 𝜎𝑇 V({0, 1, 2, 5})

with RGB channels independently. The detailed structure of our
layering network is shown in the Fig. 3.

Our representation allows several further operations beyond lay-
ering, such as interpolation, mipmapping and importance sampling
in rendering. See the supplementary material for details.

4 DATA, TRAINING AND RENDERING
4.1 Dataset
We use the Mitsuba renderer [Jakob 2010] to generate the training
dataset of BRDFs, consisting of rough conductors, rough dielectrics
and layered BRDFs [Guo et al. 2018]. The dataset could be enriched
with other types of BRDFs as needed for the application. All BRDFs
have a single channel; RGB color is achieved by independently
processing each channel with varying parameters. We generate 300
rough conductor BRDFs and 300 rough dielectric BRDFs, together
with 12, 720 layered BRDFs [Guo et al. 2018] by randomly layering
them into 2 layers; additionally, we also generate 1, 800 three-layer
BRDFs, which means that their bottom layers are already layered
BRDFs. We use the three-layer BRDFs to finetune the layering
network, after it has been first trained with two layers, as described
in Sec. 5.1.

Each rough dielectric BRDF has two parameters: roughness 𝛼1
and the index of refraction (IOR) 𝜂. Each rough conductor BRDF
also has two parameters: roughness 𝛼2 and a Schlick Fresnel approx-
imation with 𝑅0 controlling the reflectance at 0 degrees. Therefore,
each two-layer BRDF has six parameters: 𝛼1, 𝜂, 𝛼2, 𝑅0, the albedo
𝐴 and the extinction coefficient 𝜎𝑇 . In our implementation, we
use the GGX model as the normal distribution function at inter-
faces, and only consider isotropic BRDFs, although other effects
could be included. We use the Henyey-Greenstein phase function
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(𝑔 = 0) for all the medium within the layered BRDFs. All layers in
layered BRDFs have unit thickness, and these appearances can be
adjusted via the extinction coefficients. The sampling distributions
of different parameters are shown in Table 2.

For each BRDF, we sample 254 pairs of incoming and outgoing
directions. Since we only consider the reflection, we perform a
stratified sampling along the elevation angle 𝜃 and azimuth angle
𝜑 on the upper hemisphere, where 𝜃 ∈ [0, 𝜋2 ) and 𝜑 ∈ [0, 2𝜋). For
each sampled incoming and outgoing direction pair, we compute
the BRDF value via microfacet model for rough conductor/dielectric
BRDFs or Guo et al. [2018] for layered BRDFs. Then we store the
incoming direction, outgoing direction and the BRDF value (without
the cosine term).

Representation network.We use 12, 000 two-layer BRDFs as our
training set, and the other 720 two-layer BRDFs as validation. Note
that although we do not use rough conductor/dielectric BRDFs
to train this network, they can still be represented, because their
appearances could be regarded as special cases of layered BRDFs
for certain parameters.

Layering network. We project 12, 720 two-layer BRDFs and their
components (300 rough conductor and 300 rough dielectric BRDFs)
from the dataset into the latent space with the trained representa-
tion network. Then these projected latent vectors are used directly
as supervision to train the layering network, with the same propor-
tions of training and validating set as in the representation network.
The 1, 800 three-layer BRDFs are later used to finetune this network.

4.2 Training
The representation network is trained first, as the layering network
relies on the representation network.

Representation Network. During training this network, the shared
network parameters and the latent vectors of current input BRDFs
are updated simultaneously in every iteration. We calculate the 𝐿1
loss, which better preserves color and avoids artifacts, compared
to the 𝐿2 loss, according to our experiments. The 𝐿1 loss is defined
as: 𝐿𝑜𝑠𝑠 = 1

𝑁

∑
𝑁 |𝑓 pred − 𝑓 gt |, where 𝑁 denotes the number of

BRDFs in a batch, 𝑓 pred and 𝑓 gt represents BRDF values output by
our network and the ground-truth. We use learning rates 3 × 10−4
for the network weights and 1× 10−4 for the mutable latent vectors
in training set. Both learning rates decay by 0.9 after every epoch.
We initialize all the latent vectors to 1, and we train the network
for 50 epochs in about 40 hours on an RTX 2080Ti GPU.

Layering Network.We supervise this network with latent vectors
as both inputs and outputs, via the latent vectors obtained from
our trained representation network, and optimize it by the 𝐿1 loss
with the initial learning rate of 3 × 10−3. The learning rate decays
by 0.7 for every 50 epochs. It takes us about 10 hours to train this
network on an RTX 2080Ti GPU for 1, 000 epochs. Additionally, we
finetune the layering network with 1, 800 three-layer BRDFs.

4.3 Rendering pipeline
For rough conductor/dielectric BRDFs, we represent them by the
latent vector using our representation network; for layered BRDFs,
we perform the layering operation and get the layered latent vector;
for SVBRDFs, we prepare a latent texture, where each texel stores
a latent vector.

Now, we use our Neural BRDF models in rendering by path
tracing. First, we store all incoming and outgoing directions and
lighting values of each ray at all intersections into buffers. Second,
for each buffer pixel with the Neural BRDF type, we infer the rep-
resentation network for the BRDF value. Finally, we calculate the
radiance of path tracing to get output images, applying specific
reconstruction filters, such as Gaussian filters.

We also integrate our implementation into the MIS framework.
According to the different sampling strategies (light sampling, BRDF
sampling or MIS), we store all queries and the pdf information for
each part above into buffers. Then we calculate the reflectance via
our network and finally combine the weighted results, if needed.
To get the importance sampling pdf for BRDFs under our neural
representation, we train another small network to predict a pdf
proxy which has a Gaussian lobe and a Lambertian lobe. See the
supplementary material for more details of this network.

In order to accelerate GPU inference, we implement the infer-
ence in CUDA via NVIDIA Cutlass CUDA Templates and compile it
into Python libraries. Thanks to the optimizations in Cutlass, there
is no obvious increase in the time cost when the film resolution
rises, as long as it does not run out of the GPU memory. We compile
several libraries for different buffer sizes in advance, and dynam-
ically decide which to use during rendering. Eventually, a single
BRDF evaluation per pixel with resolution 1920 × 1080 costs 5 ms.

5 RESULTS
We have implemented our method inside the Mitsuba renderer
[Jakob 2010] and compared our method with previous works, in-
cluding Guo et al. [2018] and Belcour [2018]. Since the method by
Guo et al. [2018] does not introduce any approximations other than
Monte Carlo noise, we use it as the reference. All the implemen-
tations are taken from the authors’ websites. All timings in this
section are measured on an Ubuntu Linux workstation with an Intel
Xeon E5-2650 v4 @ 2.20GHz CPU (8 cores), 64 GB of main memory
and an RTX 2080Ti GPU (11 GB).

5.1 Quality validation
Wefirst validate our layering operation, then demonstrate rendering
results on more complex scenes.

Layering network. In Figure 6, we compare results from our
layering network against Guo et al. [2018] (as reference with a
high sampling rate) across different BRDF configurations: different
roughness for the top and bottom layers and varying scattering
albedos for the medium in between. Our results are close to the
reference. In Figure 7, we compare our layered materials with Bel-
cour [2018] and Guo et al. [2018]. Our method produces results
close to the reference and with less noise, and our shading speed is
faster than Belcour [2018] (though note that we utilize the GPU for
network inference). This confirms the effectiveness of our layering
network.

Our layering network can be applied recursively to obtain ma-
terials with multiple (3 or more) layers. In Figure 8, we show the
results of BRDFs with more layers using our layering network, and
we find our result still close to the reference. Our layering network
can also work for measured BRDFs, even though they are totally un-
seen for the network during training stage. In Figure 9, we show the
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Figure 6: Comparison of outgoing radiance between our layering model and Guo et al. [2018] on varying roughness for both top
and bottom layers and varying scattering albedos for the medium. Our layering network produces results close to the reference.
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Figure 7: Comparison between Belcour [2018], our method
and Guo et al. [2018] (reference) and their shading time.With
equal number of samples, our method produces closer result
to the reference, as compared to Belcour [2018]. All three
methods have the same cost for path tracing per sample,
while our shading time is shorter.

results of our layering network (without any fine-tuning) with mea-
sured BRDFs in MERL dataset [Matusik 2003], which demonstrates
that our method can be applied effectively in unseen measured
materials.

5.2 Complex scenes
In Table 3, we report the scene settings (and additional equal time
MSE comparison with Guo et al. [2018]). Please also check out the
accompanying video, where we show animations of the complex
scenes and elaborate the detailed parameters of our layered BRDFs.
Again, the cost of our method includes CPU time and GPU time,
and the GPU is only used for inference of our neural networks.

Shoe. In Figure 10, we compare our method with Guo et al. [2018]
on the Shoe scene under a point light and environment lighting.
The surface of the Shoe is defined with a normal mapped BRDF
consisting of two layers and a constant medium in between. With
only 1 spp, our method is already close to noise-free (since the
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Figure 8: Comparing the visualization of outgoing radiance
of our layering results and those from Guo et al. [2018] for
BRDFs with multiple (3 to 6) layers. We apply our layering
network consecutively from bottom to up. Though error will
accumulate, our results are still close to the reference.

highlights mostly come from the point light in direct illumination),
thanks to our noise-free layering and evaluation operations.

Globe and Teapot. In Figure 11, we show a Globe scene and a
Teapot scenewith two-layer BRDFs, andwe define spatially-varying
albedos of the interface between two layers. In both scenes, the top
of the BRDF is a relatively smooth dielectric varnish layer and the
bottom is a rough conductor. We compare our method against Guo
et al. [2018] at equal time, finding that our result has much less noise.
Additionally, we can arbitrarily specify spatially-varying scattering
parameters (e.g., albedos) in the medium interface between layers
(as well as spatially-varying roughness, shown in the accompanying
video) to display various patterns. Each edit requires a re-evaluation
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Figure 9: Comparison between the rendering results of our
layering network with materials in MERL dataset [Matusik
2003] and the reference by Guo et al. [2018]. Our method can
produce very close results to the reference.
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Figure 10: Comparison between our method and Guo et
al. [2018] in the Shoe scene. Our method has low noise even
at 1 spp (noise only comes from the environment lighting
and indirect illumination).

Table 3: We tabulate the scene settings, time consumption
(minutes) and error (MSE) in all scenes, compared with Guo
et al. [2018] in equal-time.

Scene Resolution
Ours Guo et al.[2018]

Time
Spp MSE Spp MSE

Still Life (Fig. 1) 1024 × 1024 512 1.0 × 10−3 64 2.0 × 10−3 4.82
Globe (Fig. 11) 1024 × 1024 256 9.3 × 10−4 24 2.3 × 10−3 2.42
Teapot (Fig. 11) 720 × 480 256 6.0 × 10−4 12 5.4 × 10−3 0.97

of our layering network, which is fast compared to the rendering
itself.

Still Life. Figure 1 shows a variety of spatially-varying effects,
including varying roughness, varying Fresnel, varying albedos of
the interface, and normal mapping. Again, we can see that our
method produces almost identical results to the reference on all
these configurations within much less time.

5.3 Discussion and limitations
Our method is able to represent a large range of single- and multi-
layer BRDFs with both specular and diffuse appearances, and the
latent representation can be easily used to produce different effects.
However, there are some approaches that we have not tried but
may be potentially helpful. We also have identified some main
limitations of our method and discuss the key points below.

Bidirectional Transmittance Distribution Functions (BTDFs). When
training our layering network, we only use the reflection informa-
tion from each BRDF layer to get the reflectance of the final layered
material. When a BRDF is used as the top interface of a layering,
its corresponding BTDF will be implicitly inferred by the layering
network, and is never constructed explicitly. On the other hand, an
extension to full neural BSDFs would be interesting and useful for
other effects (e.g., translucent fabrics).

Scope/types of BRDFs. Generally, we find that BRDFs showing
multiple separate lobes and highly-specular BRDFs are more diffi-
cult to predict. Currently, we do not train our model on anisotropic
or normal mapped BRDFs (from individual layers). Including these
types of BRDFs will further improve the practicality of our method,
but is also more challenging, since the dimension of input data will
further increase. While we believe our general framework could
handle these effects, we leave the exploration of anisotropic and
normal mapped BRDFs for future work.

Accumulated error.We have shown that when recursively applied,
our layering network can be used to predict BRDFs consisting of
multiple layers. However, error may accumulate as many BRDFs are
layered together. This could be addressed by networks trained on a
larger fixed number of BRDF layers, or exploiting neural network
architectures that allow a dynamic number of inputs.

Bias and energy conservation. In practice, any neural network
may produce error, which cannot be treated as unbiased in the
Monte Carlo sense. The error could make the results consistently
darker/brighter or introduce violation of energy conservation in
rendering. This issue affects all neural rendering solutions; we have
not observed artifacts caused by this, but the problem may require
future research.

6 CONCLUSION AND FUTUREWORK
In this paper, we have presented a framework for neural layered
BRDFs. We use a general neural network to compress BRDFs into
short latent vectors, and we train a second network for the layering
operation in latent space. Our representation network is able to
accurately and compactly compress a wide range of BRDFs, includ-
ing typical microfacet BRDFs, layered BRDFs or measured BRDFs.
Our layering network avoids the expensive Monte Carlo random
walk, resulting in a noise-free and computationally efficient layered
material evaluation approach.

We believe that the proposed representation and layering model
is novel and practical, and is a first step towards a “Neural BRDF
algebra”. However, this BRDF algebra is still not complete enough to
encompass all common BRDFs and operations on them. Our model
is currently trained on isotropic materials and media, but could
be extended to anisotropic materials and media, as well as explicit
handling of transmissive BTDFs. It would also be interesting to



SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada Fan et al.

0.06

0.00MSE: 9.3e-4MSE: 9.3e-4MSE: 2.3e-3MSE: 2.3e-3      = 0.05

     = 2.0

     = 0.01, IOR = 1.5

Rough Conductor

Rough Dielectric

Isotropic Medium

CPU: 2.42 mCPU: 2.42 m CPU: 2.14 m + GPU: 0.02 m

24 spp24 spp OursOurs 256 sppGuo et al. [2018]Guo et al. [2018] 256 spp

CPU: 2.14 m + GPU: 0.02 m

ReferenceReference 2048 spp2048 spp

CPU: 3.42 hCPU: 3.42 h

CPU: 0.85 m + GPU: 0.02 m CPU: 2.8 hCPU: 0.97 m

0.06

0.00MSE: 5.4e-3MSE: 5.4e-3      = 0.05
Rough Conductor

Rough Dielectric

Isotropic Medium
     = 5.0

     = 0.02, IOR = 1.72

MSE: 6.0e-4MSE: 6.0e-4

Guo et al. [2018] 12 spp Ours 256 spp Reference 2048 spp

CPU: 0.85 m + GPU: 0.02 m CPU: 2.8 hCPU: 0.97 m

Guo et al. [2018] 12 spp Ours 256 spp Reference 2048 spp

(a
) 

G
lo

be
 s

ce
ne

(b
) 

Te
ap

ot
 s

ce
ne

Figure 11: Comparison between Guo et al. [2018] and our method on the Globe and Teapot scene with spatially-varying albedos
of the medium between two layers. The difference images show that our method has much less error than Guo et al. [2018].

introduce normal mapping, color and roughness adjustment and
other operations in the latent space.
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