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Efficient Specular Glints Rendering
with Differentiable Regularization

Jiahui Fan†, Beibei Wang†‡, Wenshi Wu, Miloš Hašan, Jian Yang‡ and Ling-Qi Yan

Abstract—Rendering glinty details from specular microstructure enhances the level of realism in computer graphics. However, naive sampling
fails to render such effects, due to insufficient sampling of the contributing normals on the surface patch visible through a pixel. Other
approaches resort to searching for the relevant normals in more explicit ways, but they rely on special acceleration structures, leading to
increased storage costs and complexity. In this paper, we propose to render specular glints through a different method: differentiable
regularization. Our method includes two steps: first, we use differentiable path tracing to render a scene with a larger light size and/or rougher
surfaces and record the gradients with respect to light size and roughness. Next, we use the result for the larger light size and rougher
surfaces, together with their gradients, to predict the target value for the required light size and roughness by extrapolation. In the end, we get
significantly reduced noise compared to rendering the scene directly. Our results are close to the reference, which uses many more samples
per pixel, although our method cannot guarantee unbiased convergence to the reference. The overhead for differentiable rendering and
prediction is small, so our improvement is almost free. We demonstrate our differentiable regularization on several normal maps, all of which
benefit from the method.

Index Terms—Microstructure, Glints Rendering, Differentiable Rendering
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1 Introduction

Many real materials show complex specular reflections caused by
intricate microstructures. Examples include car paints, scratched
and brushed metals, plastics, and many more. The effect is most
pronounced under sharp illumination, but also becomes most
challenging to render under these conditions (Figure 1).

The naive rendering method (sampling pixels uniformly) suf-
fers from obvious noise under sharp light sources. The reason
for this inefficient sampling is that the pixel footprint covers an
area of the normal map which has a complex normal distribution;
if the surface material is highly specular and the light source is
small, this makes the light paths difficult to sample (see Figure 1).
Hence, a large number of samples is required to get a converged
result with a naive approach.

The work of Yan et al. [1] was the first non-trivial solution
to this problem, and has resulted in a new level of realism for
rendering specular highlights. This method and subsequent work
[2] use high-resolution normal maps to explicitly define every
microfacet normal. However, these methods rely on acceleration
hierarchies for efficient queries, leading to increased complexity
and storage.

In this paper, we propose a completely different solution:
differentiable regularization. Our observation is that increasing
either the surface roughness or the light source size makes the
rendering problem easier: it is much less difficult to find paths
with significant contributions. Our key idea is to sample these
“easy” paths first and then use them to predict the “difficult” result
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Fig. 1. The key challenge in glints rendering. Each pixel projects onto
an area of the high-resolution normal map or height field, which yields a
complex normal distribution. If the material of the surface is close to specular
and the light is small, it becomes non-trivial to find the normals that give rise
to valid light paths. The key idea of this paper is to solve the difficult case
by first solving an easier case, where the light source size is larger, and the
surface is rougher; then extrapolating to the difficult case using gradients.

by extrapolation. We first use differentiable path tracing to render
the scene with a slightly larger light size and slightly rougher
material, while recording the gradient with respect to light size
and roughness. Then we predict the result of the target light size
and roughness by extrapolation from the rendered result and the
two gradients. We also propose a Gaussian light source which is
convenient for differentiable rendering.

Our method is able to extrapolate a result close to the ground
truth, with much less noise than rendering naively, but is algorith-
mically much simpler and cleaner that previous solutions based
on acceleration structures. The method works well for a variety of
normal maps and also naturally preserves temporal coherence.

Path regularization has been successfully used for caustics and
other effects. However, we are not aware of previous work using
differentiable regularization, and believe this concept is novel in
the rendering space. The main contributions of our method can
thus be summarized as:

• The concept of differentiable regularization: an approach
where some scene parameters are first adjusted to make
rendering easier, then extrapolation is used towards the
target values of the parameters, based on their gradients.
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• An application of differentiable regularization to specular
glint rendering, using light size and roughness as the
regularized parameters.

Our solution is a bias/variance trade-off: it is no longer an
unbiased Monte Carlo estimator of the reference, and even with
many samples, there will be some remaining bias. However, we
will see that this bias does not take the form of simple blurring, as
is common with previous bias/variance trade-offs. This is impor-
tant: for complex specular reflection, a user typically cares more
about appropriate perceptual sharpness and overall distribution of
glints, rather than unbiased accuracy. The simplicity, performance
and temporal stability of our method could make it an attractive
alternative for practical applications.

In the next section, we review some of the previous work on
glints rendering. In section 3, we present our method. We present
our results, compare with previous work and analyze performance
in section 4, and conclude in section 5.

2 Related work
We first briefly review previous work on microstructure rendering,
and then introduce related work on regularization and differen-
tiable rendering.

2.1 Microstructure rendering

Surface reflectance in computer graphics is typically described
using microfacet theory [3], which uses smooth analytic functions
such as Beckmann [4] and GGX [5] to model the distribution of
surface normals. More recently, Yan et al. [1] introduced the idea
of using patch-local normal distribution functions (P-NDFs) to
accurately compute the local normal distributions from explicit
specular microstructure such as bumps, brushes, scratches and
metallic flakes, whose microgeometry is defined using very high-
resolution normal maps. Yan et al. [2] proposed a method to
accelerate this computation, and later extended the techniques to
handle wave optics effects [6]. All these methods share a common
problem with storage cost: the microstructures have to be defined
at high resolutions (e.g., 1 − 10 microns per texel), which either
requires very large textures (and associated acceleration structures)
or leads to tiling artifacts. Recently, Wang et al. [7] proposed
a procedural normal map blending approach allowing dynamic
point query and range query, which leads to constant storage
cost, but still has significant algorithmic complexity. Kuznetsov
et al. [8] presented a Generative Adversarial Network to generate
NDFs resembling training data. Zhu et al. [9] also proposed a
normal map synthesis approach for glints rendering to solve the
storage issue, and improved the performance by clustering the
Gaussian elements. Compared to these works, our method does
not use any hierarchies nor neural networks, thus avoiding both
expensive storage and implementation complexity, and yielding a
much simpler solution.

Since explicit microstructure is costly to store, a series of
methods were designed to model specific effects without the
storage requirement. Jakob et al. [10] introduce a procedural
BRDF that produces glitter effects from implicit mirror-like flake
distributions without explicitly storing the flakes. Wang et al. [11]
proposed a separable model, decoupling the spatial and angu-
lar domain, which leads to faster glints evaluation. They also
proposed a bi-scale filterable model which avoids the expensive
search for very large footprints. Later, Wang et al. [12] proposed a

three-scale model for real-time glints rendering with environment
maps. However, none of these works are extensible to other kinds
of microgeometry, such as brushes and scratches. Chermain et
al. [13] also proposed a real-time glints rendering approach, by
using dictionary of 1D marginal distributions. Recently, Chermain
et al. [14] proposed a real-time geometric glint anti-aliasing ap-
proach. These works achieve great improvements in performance
and storage for computing the glint effect, but tackle the hard case
of small lights and high roughness through improved algorithms
and data structures. On the other hand, we explore a very different
direction, reformulating the problem as extrapolation from an
easier case. The lack of algorithmic complexity in our solution
could be an important benefit when considering its addition to
already complex rendering systems.

Raymond et al. [15] model surfaces as the mixture of a
base surface and a collection of 1D scratches, later extended
by Werner et al. [16] for wave optics effects and by Velinov
et al. [17] for real-time performance; these methods work well
for scratches but do not support other appearances. The method
of Zirr and Kaplanyan [18] dynamically adds micro-level details
to a predefined macro-scale BRDF, but is focused on real-time
performance, not on accurate simulation of the appearance of a
specific microgeometry.

Zeltner et al. [19] presented a specular manifold sampling
technique, which is able to handle glints, reflective/refractive caus-
tics, and specular-diffuse-specular light transport in a Monte Carlo
framework. Chermain et al. [20] introduced an importance sam-
pling scheme to optimally sample the multi-lobe visible normal
distribution functions for procedural glittering BSDFs. Wang et
al. [21] proposed a method for pure specular light transport, which
can also be used for glints rendering. Both of these approaches are
significantly more technically involved than ours.

2.2 Path space regularization

Path space regularization renders scenes with difficult light paths
by modifying the material parameters. Kaplanyan and Dachs-
bacher [22] introduced path space regularization for pure specular
interactions. Bouchard et al. [23] also used regularization and
introduced a custom MIS weight to select between unbiased and
biased samplers. Jendersie and Grosch [24] extended the idea to
microfacet models by manipulating the roughness parameter prior
to the evaluation.

These methods cannot, in general, correct for the error intro-
duced by regularization, other than by reducing the amount of
regularization progressively during rendering. Compared to their
work, our method can extrapolate from the regularized result
to predict the result of original configurations, using gradient
information.

2.3 Differentiable rendering methods

Differentiable rendering algorithms compute the derivative of a
rendered image with respect to arbitrary scene parameters such as
camera position, geometry, light sources, or material properties.
This can be used for inverse rendering problems to optimize user-
specified objective functions. Li et al. [25] proposed the first
general-purpose differentiable path tracer, addressing visibility
discontinuities with edge sampling. Loubet et al. [26] avoid edge
sampling and improve performance with a reparameterization
technique. Zhang et al. [27] introduced differentiable rendering
for volume rendering, and Zhang et al. [28] proposed a path space
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Yan et al.[2], spp: 380, 1.62 min

Ours, spp: 512, 1.20 min

Ours, spp: 512, 1.68 min

MSE: 6.0e-4

Naive path tracing, spp: 700, 1.23 min

Naive path tracing, spp: 620, 1.63 min

Yan et al.[2], spp: 400 , 1.23 min Reference, spp: 65536, 1.96 h

Reference, spp: 65536, 2.69 h

MSE: 2.0e-4 MSE: 2.0e-4

MSE: 1.1e-3MSE: 1.4e-3MSE: 3.6e-3

Fig. 2. Comparison between our method (log-linear prediction model), naive path tracing and Yan et al. [2] with equal time and the reference. Our results
are closer to the reference than both naive path tracing and Yan et al. [2] with equal time. Normal map: leather.

formulation of differentiable rendering. Nimier-David et al. [29]
proposed a GPU-based differentiable rendering framework, and
recently Nimier-David et al. [30] improved the scalability and
efficiency of back-propagation within this framework. Please refer
to Zhao et al. [31] for a summary and more details.

In our method, we use differentiable rendering for the rendered
image with respect to BSDF roughness and light size. We use
automatic differentiation tools from the Eigen library to compute
the derivatives. The overhead is negligible, and other frameworks
(like Mitsuba 2) could also be used. We do not need to consider the
discontinuities caused by visibility, as geometry differentiability is
not required in our method.

3 Our method
The key insight of our paper is to generate some paths which are
easier to be sampled, by modifying the scene configuration, and
then use the path contributions and gradients to predict the result
for the actual scene configuration, as shown in Figure 1.

Our method has two steps. First, we perform a differentiable
path tracing to render a scene with a larger light size and rougher
surfaces (see Section 3.1), recording both the path contribution
and the gradient with respect to light size and surface roughness
(see Section 3.2); then we predict the actual contribution from the
rendered result and the gradients (see Section 3.3).

Note that we focus on the direct illumination of the glints,
same as previous works ( [1] and [2]).

3.1 Differentiable BRDF and light source

As we discussed in Section 1, the difficulties of sampling in
the glints rendering come from both the low-roughness specular
surface and the sharp light source. To construct an easier sampling
problem, a straightforward approach is making the surface rougher
and the light source larger. Thus, we have the two factors for
regularization: surface roughness α and light source size β. Both
of these parameters (α and β) should be differentiable.

The surface roughness α is an input parameter for the BRDF
using the microfacet model. A microfacet BRDF model is repre-
sented as:

ρ(ωi, ωo) =
Dα(h)F(ωo, h)Gα(ωi, ωo)

4(ωi · ng)(ωo · ng)
(1)

where Dα represents the normal distribution function, h = ωi+ωo
|ωi+ωo |

,
Gα is the shadowing/masking term, F is the Fresnel term and
ng is the macro normal of the surface. Commonly used normal
distribution functions include GGX and Beckmann distributions;
the roughness α is differentiable in both of these functions. The
Gα term is also affected by the roughness, and also differentiable.
The Fresnel term is independent of roughness.

For the light source, we propose a Gaussian area light with
a standard deviation parameter β to control the sharpness of the
light. With smaller β, a sharp light effect can be achieved, while
with a larger β, a smoother lighting (and easier sampling) is
obtained. The Gaussian light is constructed on top of a rectangle,
which is parameterized by (lx, ly) in local coordinates. The emitted
radiance of position (lx, ly) is thus

E(lx, ly) =
1

2πβ2 e−(l2x+l2y )/(2β2). (2)

Other area light types (disk, sphere) could also be used, since
gradients with respect to their radii can also be analytically
derived. However, these derivations are more complex and out
of our current scope.

3.2 Differentiable rendering

To get the gradient with respect to roughness and light size, we
use automatic differentiation, using the autodiff component of the
Eigen C++ library, though other similar tools could also be used.

Now that both the roughness and the light size are differen-
tiable, we increase the roughness from αt to αs and the light
size from βt to βs. Next, we perform path tracing with this
modified configuration. We call the path sampled after modifying
the scene configuration source path. After path tracing, we get the
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Ours (log-linear), spp: 2048,
Time: 1.06 min

Ours (linear), spp: 2048,
Time: 1.06 min

Source, spp: 2048,
Time: 1.06 min

Ours (log-linear), spp: 2048,
Time: 1.05 min

Ours (linear), spp: 2048,
Time: 1.05 min

Source, spp: 2048,
Time: 1.05 min

Reference, spp: 16384,
Time: 7.41 min

Naive path tracing, spp: 2048,
Time: 0.91 min
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Fig. 3. Comparison between our method (linear prediction model), our method (log-linear prediction model), naive path tracing with equal spp and the
reference. Compared with naive path tracing, both of our models can produce better results at an acceptable time cost. Normal map: isotropic noise.

Source, spp: 512, 

Time: 1.38 min 

Reference, spp: 4096,

Time: 10.24 min 

Naive path tracing, spp: 512, 

Time: 1.21 min 

Ours (log-linear), spp: 512, 

Time: 1.38 min 

MSE: 3.6e-3 MSE: 6.8e-3

Fig. 4. Comparison between rendered result with source configuration, our method (log-linear prediction model), naive path tracing with equal samples per
pixel and the reference. Compared with naive path tracing, our method performs much better at an acceptable time cost. Normal map: wave.

contribution of each source path, accompanied with the gradient
w.r.t. α and β, represented as Jα and Jβ respectively.

BRDF importance sampling is an important component of effi-
cient rendering. In our approach, we do not consider the derivative
of pdf computation. Thus, we only compute the derivative of the
BRDF value after sampling the outgoing direction, and divide it
by the sampling pdf. As long as we divide the BRDF value by the
correct pdf used for sampling, the value and gradient estimators
remain unbiased. Note that multiple importance sampling is still
performed, no different from standard path tracing. We do not
need to consider discontinuities caused by object silhouettes,
as differentiability with respect to geometry is not used in our
method.

We accumulate the radiance and gradients from all source
paths within a pixel and average them, obtaining an estimator of
the pixel integral and its gradients. Note that the extrapolation is
done per pixel (after accumulating value and gradients from all

paths), not per path. Next, we use this pixel value and gradients to
approximately reconstruct the pixel value under the original scene
configuration in the next section.

Radiance of source Roughness derivative Light size derivative

Fig. 5. The rendered image, derivative images w.r.t. the roughness and light
size for a single glint. This scene includes a plane and a Gaussian light on
the top. The positive and negative values are represented in green and blue
color respectively.
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Fig. 6. Radiance curves as a function of a slice of pixel on the rendered image (left) between our method (linear prediction model), our method (log-linear
prediction model), and the ground truth. For clarity, we use a scene with fewer bumps. The prediction is performed for light size, from 0.01 to 0.005.

In Figure 5, we show the rendered image, derivative image
with respect to the roughness and derivative image w.r.t. the light
size. We use large glints for clarity.

3.3 Glints regularization

Starting from the source pixel value Rs, and the gradients Jα and
Jβ with respect to surface roughness and light size, all computed
at parameters (αs, βs), we predict the target pixel value Rt at
parameters (αt, βt). The simplest approach is to assume that the
pixel value function is locally linear, which yields the linear
prediction:

R′t = Rs + Jβ(βt − βs),Rt = R′t + Jα(αt − αs) (3)

where βt and βs represents the light size of the target light and
source light respectively. This is essentially using a first-order
Taylor expansion to extrapolate. Note that the prediction can
become negative, in which case it can simply be clamped to zero.

However, we found the linear prediction is not usually the best
solution. We propose another prediction, log-linear, which is just
applying a linear prediction (first-order Taylor expansion) to the
logarithm of the pixel value. We do this in two steps, first applying
a light size update, followed by a material roughness update:

R′t = Rs ∗ eJβ(βt−βs)/Rs ,Rt = R′t ∗ eJα(αt−αs)/Rs (4)

The order of light size and material roughness updates in
Equations 3 and 4 does not affect the result, thus we arbitrarily
choose the light size first.

Both predictions can be used in practice, though in our
experiments, we find the log-linear extrapolation usually produces
a better fit to the ground truth. See Figure 6.

4 Results
We have implemented our algorithm inside the Mitsuba renderer
[32]. All materials in our test scenes are using microfacet models
[5] (using the Beckmann NDF): rough dielectric for the ocean
scene, and rough conductor for others (coated with a smooth
dielectric in the metallic paint example). We compare against Yan
et al. [2] and naive path tracing with a large number of samples
for accuracy validation. All timings in this section are measured
on an Intel Xeon E5-2630@2.20GHz (20 cores) with 32 GB of
main memory.

In this section, we first compare our method with a previ-
ous method and a path-traced reference for validation, and then

analyze the effect of the main parameters in our model. Finally,
we report the performance and error achieved by our method,
compared to previous work.

In the following, by source we mean the regularized rendering
with the increased light size and/or roughness, without extrapola-
tion, while by target we mean the final extrapolated result with
the desired light size and roughness. If the source roughness /

light size is the same as the target, this means we do not perform
extrapolation on this factor.

4.1 Quality validation

In this section, we compare our method against Yan et al. [2] and
naive path tracing on several scenes. The reference is rendered
by path tracing with a large number of samples per pixel. We
use Mean Square Error (MSE) to measure the difference with the
reference.

Bumps on flat plane. We first study the simple case of a plane
with an isotropic noise normal map, rendered using environment
lighting and a Gaussian light. In Figure 3, we compare our method
with a directly rendered image with the same sampling rate and the
ground truth rendered with more samples. By comparison, we find
our method produces a less noisy result than the directly rendered
image and our result is closer to the ground truth both visually
and quantitatively. We also provide a video to show the temporal
behavior and quality.

Leather on chair. The scene in Figure 2 shows a chair with
two leather pillows, rendered using environment lighting and a
Gaussian light. The leather pillows have a macro-level normal
map and detailed microstructure bumps. The macro map covers
75cm × 75cm. The micro example normal map with resolution
512×512 covers 37.5mm×37.5mm. We compare our method (log-
linear prediction) with naive path tracing and Yan et al. [2] with an
equal sampling rate. Both our method and Yan et al. [2] produce
results similar to the reference, while the naive path tracing misses
a lot of glints.

Bent quad. Figure 7 shows a simple scene with a 5cm × 5cm
bent quad with an isotropic noise normal map and a dielectric
coating illuminated by a Gaussian light and an environment map.
The resolution of the input isotropic noise normal map is 512×512,
and covers about 0.71cm × 0.71cm. In this figure, we compare
our result with naive path tracing with equal samples per pixel
(spp), the reference and Yan et al. [2]. Our method produces result
closer to the reference than both naive path tracing and Yan et
al. [2], while the latter’s memory cost is more than 1 GB larger
than ours. Figure 8 shows the same scene configuration but with
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Ours, spp: 512
Time: 1.01 min, MSE: 1.0e-4

Reference, spp: 16384
Time: 52.98 min

Yan et al. [2], spp: 512
Time: 1.06 min, MSE: 1.2e-4
Memory: +1120.00 MB

Naive path tracing, spp: 600
Time: 1.08 min, MSE: 3.8e-4

Fig. 7. Comparison between our method (log-linear prediction model), naive
path tracing with equal time, the reference and Yan et al. [2]. Our method
produces results with higher quality than both naive path tracing and Yan
et al. [2], and with lower memory cost. Normal map: isotropic noise with a
coated layer.

Ours, spp: 1024
Time: 0.73 min

Reference, spp: 65536
Time: 25.5 min

Naive PT, spp: 1600
Time: 0.69 min

MSE: 9.3e-5 MSE: 2.8e-4

Fig. 8. Comparison between our method (log-linear prediction model), naive
path tracing with equal time and the reference. Our method produces much
better result than naive path tracing in equal time. Normal map: scratches
with a coated layer.

a scratched normal map, showing that our method can handle not
only bumpy surfaces, but also scratch effects, producing better
results than naive path tracing with an equal spp.

Ocean waves. The scene in Figure 4 shows an ocean under a
point light and environment lighting. We use a wave normal map
with size 2K × 2K, with 10 tiles. We compare our method against
naive path tracing with equal sampling rate. The result from naive
path tracing does not find all the glints. We also show the result
with the increased light size and roughness, which is too blurry
compared to the reference.

Noise and bias. Our method introduces bias to the rendered
results, at the expense of noise reduction. To better understand
this trade-off, we compare the error between our method as a
function of spp and the naive path tracing (equal spp), with respect
to the reference (rendered with 65,536 spp) on the Chair scene
in Figure 12. As shown in this figure, the error of our method
decreases until about 8,192 spp and then keeps almost constant.

The error comes from both variance and bias. When the spp
reaches 8,192, the results are mostly converged, thus the error after
8,192 spp comes mostly from bias. In summary, with a low spp
budget (for this scene, below 8,192 spp), our method is superior
to the naive unbiased method both numerically and visually.

4.2 Parameter analysis

Prediction Model. In our method, we support two prediction
models: linear and log-linear. We compare the results of these
two models in Figure 3. It is not obvious which one works better,
so we provide the radiance curve on a single scan-line of the
image, as shown in Figure 6. Overall, the difference between the
two methods is not very large, and both could be used in practice.
We prefer the log-linear solution in our results, as its glint shapes
appear more natural, and it never produces negative values that
would need to be clamped.

Choice of source parameters. Glints rendering is challenging
when the light source is sharp and the roughness is small. We use
a larger light source and a rougher surface to predict the actual
result. How should we choose the light size and the roughness?
In Figure 9 and Figure 10, we analyze how to choose the source
parameters.

• Light size. In Figure 9 we show the results with varying
source light size. For the condition that target light size
is 0.001, we find a source light size in nearby range is
not helpful, while a slightly larger light size helps a little,
like 0.005. When the light size reaches 0.01, the predicted
results are the best. After further increasing the light size,
the results are too blurry compared to the reference. For
target light size 0.003, we may get a similar conclusion
that source light size 0.006 helps a little, 0.015 and 0.03
looks the best and the larger ones become blurry.

• Material roughness. In Figure 10 we show the results of
varying source material roughnesses. We find that it has the
same law with light size prediction, but it’s more sensitive
to its parameter. When the target material roughness is
0.001, we find source value 0.005 works well. Then for
target value 0.003, source value 0.006 looks the best.

In Figure 11, we show the MSE between our method and
reference (rendered with 65,536 spp) as a function of light size and
roughness on the Chair scene. The MSE is measured on cropped
images (with resolution 64 × 64) from the Chair results. We find
that the lowest error is achieved when source light size is set as
0.01 or source roughness set as 0.05. We find that increasing only
light size or only roughness can be unpredictable; increasing both
appears more robust.

Based on the results of all our experiments, we find that a
source parameter of 5–10 times larger than the target for predicting
light size, and 2–5 times larger for predicting roughness are the
best choices. In our implementation, we set source light size with
0.01 for target light size 0.001, and source material roughness
0.005 for target material roughness 0.001.

4.3 Performance

In Table 1, we report all the scene settings, computation time and
their error (MSE) with the reference for our test scenes. The cost
of prediction is negligible compared to the rendering time (0.05 s
for an image of 1K resolution), thus we ignored it in our report.
We use log-linear model for all scenes in the table. Our method
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Source βs = 0.005

Light size prediction (target βt = 0.001)

Source βs = 0.01 Source βs = 0.02

Source βs = 0.03Source βs = 0.015Source βs = 0.006

Source βs = 0.002

Source βs = 0.06

Naive PT βt = 0.001Reference βt = 0.001

Light size prediction (target βt = 0.003) Naive PT βt = 0.003Reference βt = 0.003

Fig. 9. Comparison between results predicted with different light size, naive path tracing with equal spp and the reference. Source means the result with
increased light size, before extrapolation. The target light sizes are 0.001 (top) and 0.003 (bottom), and the target material roughness is 0.001. We conclude
that increasing light size about 10 times is a good heuristic.

Source αs = 0.005 Source αs = 0.01Source αs = 0.002

Material roughness prediction (target αt = 0.001) Naive PT αt = 0.001Reference αt = 0.001

Source αs = 0.015 Source αs = 0.03Source αs = 0.006

Material roughness prediction (target αt = 0.003) Naive PT αt = 0.003Reference αt = 0.003

Source αs = 0.0045

Source αs = 0.0015

Fig. 10. Comparison among results predicted with different material roughness, naive path tracing with equal spp and the reference. Source means the
result with increased roughness, before extrapolation. The target light size is 0.001 and the target material roughnesses are 0.001 (top) and 0.003 (bottom).
We conclude that increasing roughness about 5 times is a good heuristic.

produces results with higher quality than naive path tracing with
equal sampling rate (Bumpy Surface and Ocean scene) and equal
time (Chair and Bent Quad) in most cases, which is confirmed
by the MSE. Regarding the computational cost, our method takes
a slightly longer time (about 13%) than naive path tracing with
an equal sampling rate, due to the gradient tracking during path
tracing. However, the result quality is improved significantly.

In Table 2, we provide the memory cost and MSE of our
method and Yan et al. [2] with equal time. As shown in the
table, Yan et al. [2] has higher computational memory cost than
our method, due to its position-normal distribution and hierarchy,
while our method does not rely on any of these extra structures.
Regarding the error, our method produces same or higher quality

in equal time in all cases. Furthermore, our method does not rely
on ray differentials, making it straightforward to be extended to
indirect glints, while Yan et al. [2] would require extra effort to
accomplish multiple bounces.

4.4 Temporal coherence

Our method preserves temporal coherence. In the supplementary
video, we compare our results with the extrapolation source
(i.e., the rendering with larger roughness and light size that we
extrapolate from) and the reference. Our method produces results
with an equal amount of noise compared to the source. Therefore,
if the source is already temporally coherent, our prediction will
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Fig. 11. MSE between our method and the reference as a function of light size and roughness, where the spp is set to 512 to compute the source rendered
image. The errors are measured on cropped images (64×64) from the Chair scene (left) and the BentQuad scene (right). While it would have been ideal to
increase only roughness in the left example, and increase only light size on the right, we have no way of knowing that up front, and these choices would not
work well when reversed. This validates our heuristic of choosing 5× larger roughness and 10× larger light size, which appears to perform well in general.

TABLE 1
Scene settings, computation time and mean squared error (MSE) for our test scenes. Both βt and αt are set as 0.001 in all the test scenes. #Tri. is the
count of triangles in the scene. Spp. represents sample per pixel for path tracing. All times are in minutes, and all results are predicted by the log-linear

model. When βt and βs are the same, we do not perform the roughness predicting.

Scene Fig. Resolution #Tri. Normal map Ours Pt. Reference
Size Tile αs βs Spp. Time MSE Spp. Time MSE Spp. Time

Chair (far) Fig. 2 1280 × 720 30.3K 512 20 0.001 0.01 512 1.20 2.0e-4 700 0.98 6.0e-4 4K 8.61
Chair (close) Fig. 2 1280 × 720 30.3K 512 20 0.001 0.01 512 1.68 1.1e-3 620 1.47 3.6e-3 4K 12.71

Bumpy Surf. (top) Fig. 3 512 × 512 3 512 13 0.001 0.01 2048 1.06 1.3e-2 512 0.91 2.7e-2 16K 7.41
Bumpy Surf. (bottom) Fig. 3 512 × 512 3 512 13 0.01 0.001 2048 1.06 1.3e-2 512 0.91 2.4e-2 16K 7.41

Ocean Fig. 4 1024 × 900 1 2048 10 0.001 0.01 512 1.38 3.6e-3 512 1.21 6.8e-3 4K 10.24
Bent Quad (iso. noise) Fig. 7 1024 × 1024 19.6K 512 7 0.001 0.01 512 1.01 1.0e-4 600 0.88 3.8e-4 16K 52.98
Bent Quad (scratches) Fig. 8 512 × 512 19.6K 512 7 0.001 0.01 512 0.25 1.2e-4 600 0.28 2.3e-4 32K 25.5
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103 104

Fig. 12. MSE between our method or path tracing with the reference (ren-
dered with 65,536 spp) over varying sampling rate on the Chair scene.
The error of our method decreases until 8,192 spp and then almost keep
constant after 8,192 spp. The error before 8,192 spp comes from both
variance and bias. When the spp reaches 8,192, the results are converged,
thus the error after 8,192 spp comes from bias.

keep this property. However, if the source is still noisy and/or
shimmering at a given sampling rate, our method cannot produce a
better result by extrapolating from it. Still, our method can always
produce more temporally coherent results than naive path tracing
with the same spp.

4.5 Limitations and discussion

Our method produces convincing results for small glints, as shown
in Figure 3. However, it produces more error for larger glints. In
Figure 13, we show the predicted curve and the ground truth of
one row in the image for large glints. We find that for small glints,
our method is able to reconstruct the shape of ground truth very

TABLE 2
Memory cost and error comparison between our method and Yan et al. [2]

with equal time. In this table, we show the memory overhead of Yan et
al. [2] over our method. Note that the memory cost of Yan et al. [2] mainly
depends on the resolution of the normal maps, the sampling rate in their

Gaussian mixture construction and the storage cost of additional
acceleration hierarchies.

Scene Figure Time Ours Yan et al. [2]
Spp. MSE Spp. MSE Memory cost

Chair (far) Fig. 2 1.20 512 2.0e-4 400 2.0e-4 +1120.00 MB
Chair (close) Fig. 2 1.68 512 1.1e-3 380 1.4e-3 +1120.00 MB

Bent Quad (iso.) Fig. 7 1.01 512 1.0e-4 512 1.2e-4 +1120.00 MB

well (see Figure 6). However, large glints are more challenging.
With the linear prediction model, the fall-off of the glints is not
soft enough, while the log-linear model makes this fall-off too
smooth, which yields overestimation for the off-peak area of the
glints.

The main target configuration of our method is normal mapped
materials with low roughness under sharp lighting, since naive
sampling is difficult under this kind of configuration. When the
roughness or light source increases, path tracing is able to produce
noise-free results with reasonable sampling rate, and as expected,
our method loses its benefits, as shown in Figure 14.

5 Conclusion
We have presented a method using differentiable rendering, and
applied it to glints rendering. As far as we know, this is the
first method to use differentiable rendering for regularization. Our
method is simple to implement, and does not require any invasive
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Fig. 13. (a) Comparison of our linear and log-linear model. The predicted pixel values of the glint are shown with color map for better visualization. (b) The
radiance curves for a slice of pixels through the green triangle, which is the center a glint. The log-linear curve appears closer to the ground truth curve. (c)
On a different scanline not passing through the glint center, the log-linear solution overestimates the ground truth. Overall, the difference between the two
methods is not large, and both can be used in practice. We prefer the log-linear solution, as its glint shapes appear more natural, and it never produces
negative values that would need to be clamped.
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Fig. 14. MSE between our method or path tracing with the reference (ren-
dered with 4,096 spp) over varying sampling rate on the Chair scene, where
both αt and βt are set as 0.01. When the roughness or light source are large,
path tracing is able to produce noise-free results with reasonable sampling
rate, and our method loses its benefit.

changes to the rendering method, except to compute the deriva-
tives of BRDF roughness and light size. Our method shows less
noise than the naive path tracing on several microstructures, and is
able to preserve the temporal coherence, though it does introduce
bias. Our method is an easy fit into the multiple importance
sampling framework and can be potentially used in any Monte
Carlo path sampling algorithms, although we only demonstrate on
standard path tracing. We show our method with Gaussian light,
however, it could support any differentiable light sources.

In the future, we are interested in improving it further, by using
a better prediction model to have a better fit to the ground truth,
potentially utilizing deep learning or other higher-order models,
like a log-quadratic model. Using differentiable regularization for
other applications, such as caustics, is also an interesting research
direction. Extending direction illumination to indirect illumination
will also be an interesting extension, which could be done by
tracing the gradients for each material roughness along the path.
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