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Fig. 1. We propose a novel by-example BTF synthesis scheme that can dynamically synthesize a non-repetitive, infinitely large BTF from a small example BTF

(400 × 400). To demonstrate our method’s effectiveness in both synthesis and rendering, we select four representative example BTFs (shown at the top-right

corners) with unique visual effects from UBO2014 [Weinmann et al. 2014]. Each of them uses our Triple Plane with histogram-preserving blending [Heitz and

Neyret 2018] and is rendered under two different lighting conditions. Our method managed to synthesize a non-repetitive BTF while faithfully capturing the

complex visual effects of each BTF.

Measured Bidirectional Texture Function (BTF) can faithfully reproduce a
realistic appearance but is costly to acquire and store due to its 6D nature
(2D spatial and 4D angular). Therefore, it is practical and necessary for
rendering to synthesize BTFs from a small example patch. While previous
methods managed to produce plausible results, we find that they seldomly
take into consideration the property of being dynamic, so a BTF must be
synthesized before the rendering process, resulting in limited size, costly
pre-generation and storage issues. In this paper, we propose a dynamic BTF
synthesis scheme, where a BTF at any position only needs to be synthe-
sized when being queried. Our insight is that, with the recent advances
in neural dimension reduction methods, a BTF can be decomposed into
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disjoint low-dimensional components. We can perform dynamic synthesis
only on the positional dimensions, and during rendering, recover the BTF by
querying and combining these low-dimensional functions with the help of a
lightweight Multilayer Perceptron (MLP). Consequently, we obtain a fully
dynamic 6D BTF synthesis scheme that does not require any pre-generation,
which enables efficient rendering of our infinitely large and non-repetitive
BTFs on the fly. We demonstrate the effectiveness of our method through
various types of BTFs taken from UBO2014 [Weinmann et al. 2014].
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Fig. 2. The direct visualization of our feature planes. The positional feature

plane shows highly semantic characteristics with detailed structures and

variation information close to the BTF. The resolution of each feature plane

follows Biplane [Fan et al. 2023]’s setting.

1 INTRODUCTION

Photorealistic rendering places great emphasis on accurately re-
producing the appearance of real-world objects. In general, the
appearance of a virtual object’s surface is established by a Bidirec-
tional Reflectance Distribution Function (BRDF). The BRDFs can be
empirical, analytical, data-driven, or hybrid. While the empirical
and analytical BRDF models can produce a plausible appearance,
they are essentially simulations of real-world appearance and may
disregard certain intricate visual effects. The data-driven appear-
ance models are usually derived from direct measurements of a
piece of a real-world object, resulting in measured Spatially Vary-
ing Bidirectional Reflectance Distribution Functions (SVBRDFs) or
Bidirectional Texture Functions (BTFs) — the faithful replications
of the real-world appearance. However, the data-driven materials
demand a substantial amount of measured data since the SVBRDFs
or BTFs are typically 6D functions with 2D spatial and 4D angular,
creating difficulties in both data acquisition and utilization during
rendering. Therefore, leveraging dimension reduction or decompo-
sition is essential. Nevertheless, due to the high-dimensional nature
of materials and the common assumption of far-field illumination
during the measurement process, the feasible measurement area is
restricted to a small patch (e.g., 400 × 400 texels) of the example
object, as the exhaustive measurement on an entire object (e.g., a
garment) is hard to accomplish. Applying a material with only such
a small example patch in rendering will produce undesirable spatial
repetitive patterns despite its high fidelity. Therefore, a faithful BTF
synthesis scheme is important to practically bring the real-world
appearance into rendering.

Previous work on material synthesis often involves creating node
graphs of procedural materials, or generating G-buffers/2D paramet-
ric maps of the BRDF models (usually based on microfacet models),
creating an analytical BTF representation (e.g., MATch [Shi et al.
2020]). These methods can be efficient, but still synthetic, thus in-
herently inaccurate compared to the measured BTFs because the
real-world appearance has a geometric and reflectance complexity
that is difficult to describe using analytic BRDFs, let alone that some
of those BRDFs are further simplified (uniform, isotropic, etc.) such
as PhotoMat [Zhou et al. 2023]. Moreover, those synthesis methods
are usually coupled with reconstruction — they first estimate the
appearance from some inputs, commonly one or a few photographs
taken by a cellphone with a flashlight. Consequently, their quality
is further compromised, often losing positional details and angular
resolution. Therefore, they are unsuitable for achieving accurate
appearances compared to properly using the measured BTFs.

Fig. 3. Our method’s pipeline. We first decompose 6D BTF into three 2D

planes (𝑓 (U) , 𝑓 (H)
and 𝑓 (D)

), then perform dynamic synthesis on the posi-

tional plane as if it is a 2D texture. The synthesized reflectance is recovered

via a lightweight MLP with the input of positional and directional features.

Many BTF synthesis methods have been proposed in the past
decades to generate a large BTF from a small measured BTF patch.
These methods (e.g., Tong et al. [2002] and Koudelka et al. [2003])
may produce a plausible synthesis result with a better-preserved
structure due to the quilting-based (i.e., similar to texture quilt-
ing [Efros and Freeman 2001]) synthesis. However, they rely on
highly compressed BTF representation such as principal component
analysis (PCA) and Spherical Harmonics (SH), which introduces
significant quality loss. Moreover, to the best of our knowledge, all
of these methods are non-dynamic and cannot be tiled infinitely.
The large BTF must be first generated to a proper size (e.g., 4𝐾 × 4𝐾 )
and then be used in rendering process. Even with their dimension
reduction methods (e.g., PCA) applying to the BTF, pre-generating a
very large BTF on the compressed low-dimension domain and then
storing it is still not practical. That is why a dynamic property is in
high demand, yet it has been ignored in past decades.

In this paper, we challenge the problem of dynamically synthesiz-
ing an infinitely large BTF without spatial repetition from a given
example of measured BTF. Our insight is that with the advance of
previous dimension reduction methods, it is possible to decompose
a 6D BTF into the outer product (◦) of 2D neural feature planes (one
positional and two directional planes, possibly multi-channel). We
call this decomposition approach Triple Plane1. After the decomposi-
tion, we find the decomposed 2D positional neural feature plane still
exhibiting semantic information that has a similar visual appearance
to the BTF, as shown in Fig. 2, which inspires us to perform texture
synthesis in the position domain as if they are textures. In this way,
the synthesized BTF can be recovered from the synthesized posi-
tional feature and the direction features via a lightweight Multilayer
Perceptron (MLP). With the analysis, we reduce the BTF synthesis
task into two key sub-tasks: a faithful decomposition capturing the
full 6D BTF without losing details, and a synthesis method that
is able to preserve content and allow dynamic queries, i.e., query
without pre-generating a large texture, to steer away from heavy
storage and runtime rendering cost.

Consequently, we are able to essentially generate infinitely large,
non-repetitive BTF that can be directly queried during rendering
without any storage overhead — all we need as input is just a mea-
sured BTF example patch. Our scheme is general and compatible

1We name it Triple Plane to distinguish from the Triplane method [Chan et al. 2022]
that uses three intersecting planes to represent a 3D function instead of our three
disjoint 2D planes that decompose a 6D BTF.
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with both different neural-based BTF representation methods and
texture synthesis (we specifically focus on dynamic by-example syn-
thesis). Fig. 3 shows the overall pipeline of our scheme, and in Sec. 4,
we demonstrate the high-quality BTFs we synthesized on a variety
of objects with a fast, lightweight MLP. It demonstrates not only the
novelty of our idea to be the first of its kind to dynamically generate
BTFs on a decomposed low-dimension but also the practicality of
our scheme. In summary, our main contributions are as follows:

• a novel, simple but effective approach that enables dynamic,
infinitely large, and non-repetitive BTF synthesis,

• a general BTF synthesis scheme that is compatible with dif-
ferent neural dimensional decomposition techniques and dif-
ferent texture synthesis methods, and,

• a Triple Plane approach for BTF representation that decom-
poses the 6D BTF into neural outer products of three 2D
functions and achieves high fidelity in real-time performance.

2 RELATED WORK

2.1 BTF Acquisition

BTF can be accurately measured through specialized equipment that
traverses andmeasures each pair of the incident and outgoing angles
individually (very precise, but producing a large amount of data), or
it can be roughly estimated from one or a few photographs using
neural networks. Neural-based BTF acquisition methods have be-
come popular in recent years because of their convenience. However,
the quality of these methods is far from comparable to measured
BTFs since they are either capturing 4D isotropic BTF [Zhou et al.
2023] or estimating 2D parametric maps (e.g., normal, albedo, etc.)
for the analytical appearance model [Deschaintre et al. 2018; Gao
et al. 2019; Guo et al. 2021, 2020; Henzler et al. 2021; Zhou et al.
2022]. To achieve a highly realistic appearance, utilizing the mea-
sured BTFs is essential. The first measured BTF dataset (CUReT)
was built by Dana et al. [1999]. There are several open-source mea-
sured BTF datasets and UBO2014 [Weinmann et al. 2014] is the most
commonly used one with 400 × 400 spatial and 151 × 151 angular
resolution. Unfortunately, due to the high-dimensional nature of
BTF and the physical limitations of the measurement technique,
the measured BTF is restricted in small size, making it unsuitable
for many scenarios, as it would produce unsatisfactory repetitive
tiling patterns on objects. To overcome this limitation, we propose
a novel BTF synthesis approach, which generates an infinitely large
without repetition from only a small example patch.

2.2 BTF Compression & Dimension Decomposition

Due to the high dimensionality of BTF, dimension decomposition
methods like Principal Component Analysis (PCA) and Tensor De-
composition (TD) are essential in compressing BTF. There is a sub-
stantial amount of work attempting to apply PCA [Guthe et al. 2009;
Koudelka et al. 2003; Ruiters et al. 2009] and tensor decomposi-
tion [Ruiters and Klein 2009; Vasilescu and Terzopoulos 2004] for
BTF compression.With the rapid development of deep learning, neu-
ral compression became popular for material representation [Fan
et al. 2022; Hu et al. 2020; Sztrajman et al. 2021; Zheng et al. 2021]
because they frequently outperformed classic methods. Rainer et
al. [2019] proposed the first neural BTF compression method with

an auto-encoder architecture. Later, Rainer et al. [2020] introduce
a unified network that projects different BTF onto a shared latent
space. [Sztrajman et al. 2021]
The aforementioned works are only designed to compress the

BTF. From another perspective, neural dimension decomposition
methods that expose the 2D positional neural texture are more ef-
fective for BTF representation recently. NeuMIP [Kuznetsov et al.
2021] and its later extended works [Kuznetsov et al. 2022; Xue et al.
2024] can also be used for BTF compression. They have single or
multiple neural textures progressively learned during training. The
closest work to us is Biplane [Fan et al. 2023], which decomposes
BTF into a 2D positional plane and a 2D half-vector plane. With a
conditional input of a 2D difference vector, it can recover the re-
flectance of different BTF from a universal but large MLP. However,
none of these methods completely decomposed the directional and
position dimensions, i.e., the direction as a condition input to the
positional feature instead of an independent feature. That means the
directional information is implicitly mixed and stored with the posi-
tional features (or latent vectors). In this paper, we focus on neural
dimension decomposition instead of the BTF compression methods
since it can expose the 2D positional semantic information, which
can be subsequently used for BTF synthesis. To achieve effective
and efficient BTF decomposition, we made a modification (we call
it a Triple Plane) on the top of Biplane [Fan et al. 2023] that fully
separates the positional and directional dimensions and leverages a
lightweight MLP to recover the reflectance for one particular BTF.

2.3 Texture Synthesis

In many applications, there is a need to bind textures to large-scale
surfaces, e.g., the entire surface of a mountain. However, textures
have a limited size of representational scale that is not typically large,
even for 4𝐾 textures. Directly tiling them will cause an undesirable
repetitive pattern. Therefore, the texture synthesis methods are
proposed to solve this problem.

Quilting and optimization based texture synthesismethods [Barnes
et al. 2009; Efros and Freeman 2001; Efros and Leung 1999; Kaspar
et al. 2015; Kwatra et al. 2005] commonly produce a plausible result
but involve an offline process that finds the best-matched candidate
patches (or texels) from the original texture by neighborhood search-
ing or iterative optimization. It is like "growing" the texture from
the synthesized area to the unsynthesized area region by region.
Thus, they usually have difficulty supporting dynamic queries, and
the new texture must be synthesized before use. As mentioned in
Sec. 1, the dynamic property is more desirable and practical for BTF.
Therefore, we don’t overly focus on such methods. In this paper, we
refer to any synthesis method, including Wang tiling [Wang 1961],
that needs neighboring information for synthesis as a quilting-based
method for simplicity.
In another aspect, dynamic by-example texture synthesis meth-

ods [Heitz and Neyret 2018; Mikkelsen 2022] are designed to gener-
ate a (commonly infinitely large) new texture from a small texture
patch called “example” or “exemplar” on the fly. New texture at
any place can be instantly queried without pre-generation. It typ-
ically involves a random selection step that selects some texture
patches from the example texture and a blending step that blends
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those example patches together. However, due to their fully dy-
namic design, they have difficulty achieving the same high quality
as quilting-based methods.

Thanks to our dimensional decomposition design for the BTFs, in
an orthogonal approach, we leverage the previous texture synthesis
method to synthesize BTFs on the position domain. To achieve dy-
namic property, by-example texture synthesis methods are our pre-
ferred approach, although quilting-based methods may produce bet-
ter synthesized BTFs. Note that both quilting-based and by-example
synthesis have their own advantages and disadvantages. We do not
aim to improve the previous texture synthesis work, but we expect
to find some synthesis methods that have spatial variations and do
not strictly repeat, from which our method can be further improved.

2.4 BTF synthesis

Many BTF synthesis methods have been developed in the past
decades. Since BTF is a 6D function, people usually first compress
its angular dimension and then perform synthesis. Previous BTF
synthesis methods can mainly divided into two categories. The first
is the quilting-based methods [Kawasaki et al. 2005; Koudelka et al.
2003; Lefebvre and Hoppe 2006; Liu et al. 2001; Ruiters et al. 2013;
Steinhausen et al. 2015; Tong et al. 2002; Zhou et al. 2005], which
rely on the texture quilting which we introduced in the Sec. 2.3. The
second is tiling-based methods [Leung et al. 2007; Zhang et al. 2008]
that leverage the idea of Wang Tiling [Wang 1961].
Apart from them, NeuBTF [Rodriguez-Pardo et al. 2023] is a

neural method that emphasizes synthesizing BTF from a given guide
map. Although it briefly mentions that it supports infinitely large
BTF generation by tiling a seamlessly tileable BTF (pre-generated
from a seamlessly tileable guidemap), it still lags behind the dynamic
synthesis scheme we proposed. Because the tiling-based approach
brings repetitive patterns (even for seamlessly tileable BTF), and it’s
impossible for their method to generate a non-repetitive, infinitely
large BTF due to their pre-generation design.
Those methods may produce spatially good results, but in order

to support BTF synthesis, they rely on highly compressed BTF
representation, e.g., PCA [Koudelka et al. 2003; Ruiters et al. 2013;
Steinhausen et al. 2015; Zhang et al. 2008; Zhou et al. 2005] or
Spherical Harmonics (SH) [Kawasaki et al. 2005; Lefebvre andHoppe
2006; Leung et al. 2007] which are well-known to lose the high-
frequency in angular domain. Moreover, none of these methods is
dynamic, and it is impossible for them to generate an infinitely large
texture on the fly.

3 METHOD

3.1 Problem Analysis

Our objective is to propose an effective scheme for dynamic, infin-
itely large BTF synthesis, where the BTF is generated only upon
query. The immediate challenge is clear: BTFs are inherently 6D
functions, thus occupying a large amount of storage. Together with
the complexity of measuring accurate BTFs, it is usually difficult
to acquire BTFs with high spatial resolutions. Nevertheless, high-
resolution BTFs are required to realistically depict not only large-
scale objects, such as an entire terrain, but also small objects with

abundant detail, such as leather, cloth and wood. Therefore, synthe-
sizing high-resolution BTFs is necessary.

The key to synthesizing BTFs, as we emphasize throughout this
paper, is the property of being dynamic. Consider a toy example:
given a small texture of resolution 5122 to start with, how to find
a texel’s value at a very large coordinate, such as (100000, 100000),
on the synthesized texture. Those methods in Sec. 2.4, either by
quilting patches or growing pixels, must compute from around the
small example to that large coordinate, then answer this question. In
rendering, such a query can happen per shader thread. Therefore, the
entire BTF must be synthesized and stored prior to rendering, unless
one can afford to repeat the same query-after-synthesis process for
each thread, which is impossible in practice, no matter how fast
previous methods perform. Therefore, it further distinguishes the
concepts between dynamic and fast/real-time. Synthesis and query
are already an issue for large textures. For BTFs, this issue is further
magnified, since even with heavy compression (thus significant
quality loss), large BTFs still suffer more than large textures. As a
result, what we need is the ability to query an arbitrary location on
a synthesized BTF but without actually synthesizing it beforehand,
a.k.a., the property of being dynamic.
However, dynamic synthesis only existed in 2D textures so far.

Therefore, our insight is to reduce the BTF synthesis process into
texture synthesis tasks, so it can benefit from the advancement of
dynamic synthesis. Following this idea, we propose our full scheme
that decomposes a BTF into three disjoint 2D functions, synthesizes
in the 2D position domain dynamically, and reconstructs the 6D
BTF. Therefore, our method supports plugging in different methods
for BTF compression (as long as 2D positional semantic information
is exposed, see Sec. 4.3) and texture synthesis (even including those
non-dynamic, e.g., [Efros and Freeman 2001]). We clarify that we
do not intend to resolve these methods’ own disadvantages, but we
do evaluate combinations of representative methods comparatively
to determine how they fit/benefit our general scheme, as shown in
Fig. 9.

3.2 Theoretical Formulation

To achieve the aforementioned goal, we have set out to accom-
plish three tasks: constructing a faithful dimension decomposition
method for BTF which decomposes the 6D BTF into a 2D positional
function and two 2D angular functions; performing texture synthe-
sis on the position domain based on an input spatial query; finally
recovering the new 6D BTF from the synthesized function and the
angular functions. Fig. 3 shows our scheme’s overall pipeline.

BTF & Parameterization. A BTF(·) is a 6D function representing
the reflectance (usually a RGB value) of the surface with an input
of 2D spatial coordinates u ∈ R2 and a pair of 2D incident (viewing)
and outgoing (lighting) directions (𝝎i ∈ R2, 𝝎o ∈ R2):

BTF(u,𝝎i,𝝎o) . (1)

It can be considered as a texture at which each texel is storing
a 4D BRDF. Comparing to incident and outgoing directions, it is
better to reparameterized the BTFs with Rusinkiewicz parameteri-
zation [Rusinkiewicz 1998] which describes the angular dimension
using the half vector h ∈ R2 of (𝝎i, 𝝎o) and a difference vector
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d ∈ R2 between the outgoing direction 𝝎o and half vector h:

BTF(u, h, d). (2)

Dimension Decomposition. Due to the 6D nature of BTFs, storing
even a small patch of BTF requires substantial memory space. Utiliz-
ing compression methods, e.g., PCA is essential in reducing runtime
memory usage. Our target is to find a way to decompose the 6D
BTF into a conceptual “outer product” (◦) of three independent 2D
functions {𝑓 (𝑖 ) |𝑖 ∈ (U,H,D)} without losing details:

BTF(u, h, d) = 𝑓 (U) (u) ◦ 𝑓 (H) (h) ◦ 𝑓 (D) (d) . (3)

However, finding such a purely mathematical solution is difficult.
Inspired by the recent advances in dimension reduction methods,
we turn to seek out a data-driven approach to achieve our goal.
The “outer product” of those 2D functions is achieved by a neural
operator N(·):

BTF(u, h, d) = N(𝑓 (U) (u), 𝑓 (H) (h), 𝑓 (D) (d)) . (4)

Generally, dimensional decomposition methods like Tensor Decom-
position (TD) aim to decompose the high-dimensional functions
into 1Ds. But we are decomposing the 6D BTF into a series of 2D
functions. It brings convenience in performing synthesis on the
position domain, which will be introduced next.

By-example Synthesis. We noticed that the decomposed positional
feature plane exhibits a highly semantic characteristic with detailed
structures and variation information close to the BTF, as shown
in Fig. 2. It gives us the idea to perform BTF synthesis directly on
the positional domain via texture synthesis methods. There are
numerous available texture synthesis methods, among them, the by-
example texture synthesis methods fit our goal best, which allows
dynamic query and synthesis without pre-generation. Specifically,
with a target query position (u∗ ∈ R2, typically from an infinitely
large planar domain), the by-example texture synthesis process
mainly involves two steps: finding multiple example patches from
the example texture 𝑓 corresponding to the target query; blending
those example patches while keeping some statistic properties (e.g.,
histogram [Heitz and Neyret 2018]) of the example texture to obtain
the synthesized texture 𝑓 ∗. Generally, the texture synthesis method
can be formulated as follows:

𝑓 ∗ (u∗) = Syn(𝑓 , u∗) . (5)

The synthesis function Syn(·) only corresponds to the example
texture 𝑓 and the target query u∗. Notably, it does not rely on the
local neighborhood of the target query, eliminating the need for
’voting’ from previously synthesized areas. This approach differs
from quilting-based methods, which are not dynamic; however, it
does not prevent the use of such methods in our framework. We
assume the positional feature plane can be treated as a 2D texture:

𝑓 ∗(U) (u∗) = Syn(𝑓 (U) , u∗). (6)

BTF Recovery. After first decomposing 6D BTF into a series of
2D functions and performing synthesis in the position domain, the
next thing is to recover the 6D function from the 2D functions.
As illustrated in Eqn. 4. We train a lightweight MLP as the neural

operator to obtain the reflectance of the synthesized BTF:

BTF∗ (u∗, h, d) = N(𝑓 ∗(U) (u∗), 𝑓 (H) (h), 𝑓 (D) (d)). (7)
Moreover, a general model is unnecessary in our case, so one MLP
and the corresponding feature planes are only responsible for one
specific BTF.

3.3 Implementation

BTF Decomposition. As described in Sec. 3, one of our goals is
to decompose 6D BTF function into an outer product of three 2D
functions. As our method is designed to be general to neural di-
mensional decomposition methods, we modified Biplane [Fan et al.
2023] with a 4-layer lightweight MLP and fully decomposed 2D
functions {𝑓 (𝑖 ) |𝑖 ∈ (U,H,D)}. Those 2D functions are obtained by
initializing three 2D discrete feature planes with learnable param-
eters. The specific values in the planes are progressively learned
during training. This idea is inspired by Biplane [Fan et al. 2023],
but we decompose 6D BTF completely into three 2D functions, and
we call it a Triple Plane.

In practice, given a 6D query of (u,𝝎i,𝝎o), we first convert it
onto Rusinkiewicz coordinates system [Rusinkiewicz 1998]: (u, h, d).
Then, we use them as texture coordinates to bilinearly fetch features
from each corresponding plane.

By-example BTF Synthesis. As visualized in Fig. 2, the decom-
posed positional plane shows a highly semantic characteristic with
detailed structures and variation information close to the original
BTF. We found that directly extending the texture-based by-example
synthesis methods to our positional feature "texture", i.e., feature
plane 𝑓 (U) produces a plausible result. Our by-example BTF syn-
thesis scheme shows strong compatibility with different texture
synthesis methods, which we will demonstrate in Sec. 4. The spe-
cific synthesis method used can be very flexible. We emphasize the
histogram-preserving blending [Heitz and Neyret 2018] since we
found our method can also benefit from preserving the histogram
of the feature plane, though the feature plane is in a latent space.

BTF Recovery. Finally, to obtain the BTF reflectance from the
decomposed feature planes, we employ a lightweight MLP N with
4 layers of 32 hidden nodes (except the last outputting layer):

BTF(u, h, d) = N(𝑓 (U) (u), 𝑓 (H) (h), 𝑓 (D) (d)), (8)

where 𝑓 (U) can be the synthesized 𝑓 ∗(U) . For simplicity, we do not
strictly distinguish between these two terms. The feature planes
and the lightweight MLP are jointly trained with a simple ℓ1 loss:

L =ℓ1 (N (𝑓 (U) (u), 𝑓 (H) (h), 𝑓 (D) (d)),BTF(u, h, d)) . (9)

The feature planes and theMLP are jointly optimized during training.
The BTF synthesis is not performed during training. We expect our
method to support synthesis automatically, even without training
constraints to ensure the orthogonality of feature planes.
For more detailed implementation information, please refer to

supplementary material.

4 RESULTS

Our proposed method introduces a general BTF synthesis scheme
that allows flexibility in selecting each component, including neural
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Fig. 4. Validation of our method’s representation capability for different

BTFs. We visualize our results along with ground truth (GT) BTFs with two

different pairs of directions for each different material. We show the PSNR↑
and DSSIM↓ at the bottom-left corner.

BTF representation and texture synthesis. To illustrate this versatil-
ity, we first validate each component independently by comparing
various methods. Subsequently, we integrate these components to
assess the overall effectiveness of our dynamic BTF synthesis ap-
proach. For the neural BTF representation, we implement a modified
NeuMIP [Kuznetsov et al. 2021] without the offset module and only
use the finest layer of the feature pyramid to demonstrate the ad-
vance of our Triple Plane. Note that the NeuMIP’s complexity is
not reduced, and keeping the finest feature layer also won’t have
a negative impact on its results since there is no LoD involved. As
for the texture synthesis, we compare histogram-preserving blend-
ing [Heitz and Neyret 2018], another dynamic by-example synthesis
method Hex-Tiling [Mikkelsen 2022] and a non-dynamic texture
quilting [Efros and Freeman 2001]. Unless specifically stated, the
term "ours" refers to the Triple Plane with histogram-preserving
blending (if performing synthesis).

4.1 Validation and Comparison of BTF Representation

In Fig. 4, we visualize our BTF recovery results along with ground
truth BTFs with two different pairs of directions for each material.
As shown in the figure, our method faithfully captures the complex
patterns and the highly specular reflection.
In Fig. 5, we compare our Triple Plane with a modified Neu-

MIP [Kuznetsov et al. 2021] using repetitive tiling, i.e., no synthesis
is performed. The reference image is generated by interpolating the
original BTF data. Our Triple Plane shows more accurate highlights
in Wood06 and clearer stretch patterns in Leather08 compared to
NeuMIP. We believe the quality improvement is because of the novel
dimension decomposition scheme which has a clear separation of
the position and direction dimensions.

4.2 Validation and Comparison of Texture Synthesis

Our approach treats the 2D positional feature plane similarly to
standard 2D textures, enabling dynamic synthesis. We employ his-
togram preserving blending [Heitz and Neyret 2018] as our primary
solution. In Fig. 6, we first demonstrate our method’s capability of
dynamically synthesizing a non-repetitive BTF on an arbitrary scale.

W
oo

d0
6

PSNR: 36.884 FLIP: 0.059 PSNR: 39.883 FLIP: 0.043

Le
at

he
r0
8

PSNR: 32.359 FLIP: 0.102 PSNR: 33.839 FLIP: 0.078

NeuMIP Triple Plane Reference

Fig. 5. Comparison with NeuMIP [Kuznetsov et al. 2021] and reference

without applying synthesis, i.e., use repetitive tiling. The reference image

is generated by interpolating the original BTF data. We show the PSNR↑,
FLIP error↓ and the error image at the bottom. Triple Plane is closer to the

reference with more accurate highlights and patterns, but NeuMIP is also

good. Therefore, both can be used in our scheme.

Stone10 8× 25× 45×

Fig. 6. We validate our by-example BTF synthesis in different scales by

scaling the UV coordinate, the scaling factor is marked on the bottom-right

corner. Even on a very large scale (45×), our method faithfully maintains

the accurate appearance of the BTF, which demonstrates our capability of

generating an infinitely large, non-repetitive BTF.

Even on a very large scale (45× UV scaling), our method faithfully
maintains the accurate appearance of the BTFs.

Ourmethod can also benefit from other texture synthesis methods.
To demonstrate that, we employ two additional texture synthesis
methods. The first one is Hex-Tiling [Mikkelsen 2022], another
dynamic by-example texture synthesis approach, and the second
one is a non-dynamic texture quilting technique [Efros and Freeman
2001], a classic method in patch-based quilting. As shown in Fig. 7,
our synthesis scheme supports all these synthesis methods, and
quilting produces the most visually pleasing result because it finds
the best match patches by an offline search. However, it requires a
pre-generation of the synthesized BTF. The synthesized BTF is with
15× UV scaling (equivalent to 6K resolution). Even if the quilting
BTF has already been decomposed into 2D functions, storing the
neural textures still takes about 2GB. The histogram-preserving
blending and Hex-Tiling provide a balance between dynamic query
and structured quality (further discussion in Sec. 5).
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Fig. 7. Our BTF synthesis scheme is a general idea that is compatible

with different texture synthesis methods. To demonstrate that, we im-

plement another dynamic by-example texture synthesis approach Hex-

Tiling [Mikkelsen 2022] (left), and a non-dynamic texture quilting [Efros

and Freeman 2001] (right). With 15× UV scaling, the synthesized BTF is

equivalent to having a 6K resolution. Quilting produces the most visually

pleasing result because it finds the best match patches by offline searching.

However, once generated, the texture can not be changed, and even after our

dimensional decomposition, the synthesized texture still takes GBs storage.

4.3 Comparison of BTF Synthesis

The existing non-neural-based BTF synthesis methods described
in Sec. 2.4 are all quilting-based. Comparing with them is unfair
to ours since we prioritize the dynamic property, whereas these
established methods are non-dynamic. Non-dynamic methods may
excel in structure preservation, but generating very large BTFs is
impractical, as demonstrated in Fig.7.

Most existing BTF synthesis methods are derived from the quilt-
ing method, which we use for comparison in Fig. 7. These quilting
methods essentially rearrange the texels without changing the orig-
inal content of the BTF (i.e., no blending is performed). As our
method employs a general scheme, it can utilize the same quilting
approach for benchmarking, with differences only in representa-
tion capabilities—for instance, our Triple Plane versus PCA/TD/SH.
Thus, in combination with Fig. 7, the comparisons of our Triple
Plane with PCA, TD, and SH in Fig. 8 effectively reflect comparisons
with earlier BTF synthesis techniques.

Moreover, as analyzed in Sec. 1, many of the neural-based ap-
pearance synthesis works aim at estimating 2D parametric maps,
primarily reconstructing or estimating BTFs from a few images,
which diverges from our objectives. Additionally, some methods
(e.g., [Zhou et al. 2023]), generate partial, 4D isotropic BTFs. These
are inherently different from our approach and are not suitable for
direct comparison with our full 6D BTF synthesis scheme.

Based on the aforementioned considerations, we believe that the
most appropriate solution is to compare with NeuMIP [Kuznetsov
et al. 2021], with and without using synthesis (repetitive tiling). As
shown in Fig. 9. Our Triple Plane (second and fourth columns) shows

SH

PSNR: 31.12

PCA

PSNR: 34.61

Ref.

Leather11

TD

PSNR: 33.37 PSNR: 34.80

Ours

FLIP: 0.103

FLIP: 0.258

FLIP: 0.085

FLIP: 0.075

SH

TD

PCA

Ours

Fig. 8. Comparison with classical BTF compression methods: SH [Kawasaki

et al. 2005], PCA [Koudelka et al. 2003] and Tensor Decomposition

(TD) [Ruiters and Klein 2009]. To have a relatively fair comparison, we

employ a similar number of coefficients for each method. For SH, we com-

pute a discrete table of different view directions for each BTF textel. Each

item in the table stores 27 SH coefficients (3 levels SH for each RGB channel)

that fit the corresponding fixed view 2D BRDF. For PCA, we keep 15 eigen-

values (5 eigenvalues for each RGB channel). For TD, we basically follow

the original paper’s [Ruiters and Klein 2009] setting, i.e., 𝑘1 = 𝑘2 = 13 and
𝐷1 = 𝐷2 = 256, but we separately perform the decomposition on each RGB

channel. The FLIP error image is shown at the bottom-right corner. Our

Triple Plane faithfully captures the appearance and the structure of the BTF,

while SH, even only representing 2D angular distributions, loses most of

the high-frequency signals. PCA fails to preserve sharp highlights. TD has

visually better highlights than PCA, but the overall error is larger.

great effectiveness in both representation and synthesis. NeuMIP
(first and third columns), however, notably lacks high-frequency
details, resulting in unsharp highlights (Stone04) and blurred re-
flections (Leather03). This is possible because our dimensional
decomposition method completely separates the positional dimen-
sions from the directional dimensions, whereas NeuMIP requires
angular information as a condition for input, which might result in
the directional information being implicitly mixed and stored with
the positional features.

It is very important to emphasize that our BTF synthesis method
is the first one enabling dynamic by-example synthesis on BTFs.
Therefore, there is no ground truth, or rather, the ground truth
should be by-example synthesizing directly on 6D BTFs and without
compression. However, this is impossible since the high-dimensional
extension of the by-example texture synthesis method does not exist,
and it needs exponentially increasing numbers of example patches.
Even if we only perform blending in the 2D positional domain, the
remaining 4D angular dimensions may contain sharp lobes that
blend to ghosting artifacts unless leveraging costly methods such
as optimal transport [Bonneel et al. 2011].

4.4 Performance

The evaluation time of our method via naive in-shader matrix mul-
tiplication takes 2.0 ms for 2,073,600 times queries (1920 × 1080
resolution) on an RTX 4090 GPU. It includes both neural texture
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fetching cost and MLP inference cost with the overall cost scaling
linearly with the number of evaluations. While the texture synthesis
takes less than 0.2 ms under the same condition. Currently, our MLP
inference utilizes straightforward matrix multiplication in fp32 pre-
cision without specialized optimizations. Despite this, our method
achieves the reported interactive performance.

5 DISCUSSION & LIMITATIONS

There are certain limitations to our scheme. As analyzed in Sec. 3, our
BTF synthesis scheme allows plug-and-play components for both
representation and synthesis while we inherit the same limitations.
We expect our method can directly benefit from a better choice of
each component.

Representation Capability. As shown in Fig. 4 and Fig. 5, our Triple
Plane produces slightly blurry results. It demonstrates that the BTF
with a complex appearance will be a challenge to our method. Fur-
thermore, without constraints on each plane to enforce their orthog-
onality during training, the resulting decomposition might not be
very clean. A better-designed decomposition approach may help
solve this problem.

Structure-persevering Synthesis. As shown in the second row of
Fig. 7, with dynamic by-example texture synthesis (histogram-preserving
blending [Heitz and Neyret 2018] and Hex-Tiling [Mikkelsen 2022]),
one can not handle a highly structured BTF since the used texture
synthesis methods can not. We hope to find a dynamic synthesis
method that has spatial variations and does not strictly repeat, e.g.,
dynamic Wang Tiling [Wang et al. 2020] or another by-example
synthesis method that better preserves the structure.

6 CONCLUSION & FUTURE WORK

In this paper, we have presented a by-example BTF synthesis scheme,
allowing the dynamic synthesis of an infinitely large non-repetitive
BTF from a small example BTF. We first introduce a novel dimension
decomposition method (Triple Plane) that decomposes the high-
dimensional 6D BTF into a series of 2D functions (including a 2D
positional function and two 2D angular functions). Then, we design
a simple but effective scheme that performs by-example texture
synthesis on the decomposed 2D positional function as if it is a
2D texture. Finally, a lightweight MLP is employed to recover the
synthesized BTF reflectance. Our results faithfully preserved the
accurate appearance of the synthesized BTFs, and our method is
robust in various types of BTFs.
A specifically designed importance sampling strategy is also in

high demand, and one potential extension could be integrating
normalizing flow [Xu et al. 2023] or histograms [Xu et al. 2023;
Zhu et al. 2021]. Furthermore, in the future, it might be possible
to explore a novel synthesis strategy that supports blending on
structured patterns, which could further enhance our method. In
addition, we anticipate that runtime performance could be greatly
enhanced through targeted optimizations such as batching inference,
quantization, or utilizing hardware acceleration (e.g., tensor cores).
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