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Fig. 1. We propose the ensemble denoising algorithm to combine multiple existing denoisers. Inheriting the excellence of the base denoisers and compensating

for their artifacts, our method achieves lower error almost consistently, and robustly improves the perceptual quality across a great diversity of scenes and

noise patterns. Left: noisy MC renderings and the denoised images generated by our method combining KPCN, NFOR, MCGAN and RDFC. Middle: close-up

views with error numbers (scaled by 1000 for both metrics). Right: relMSE plots for base denoisers and the corresponding ensemble at varying sample rates.

Various denoising methods have been proposed to clean up the noise in

Monte Carlo (MC) renderings, each having different advantages, disadvan-

tages, and applicable scenarios. In this paper, we present Ensemble Denoising,
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an optimization-based technique that combines multiple individual MC de-

noisers. The combined image is modeled as a per-pixel weighted sum of

output images from the individual denoisers. Computation of the optimal

weights is formulated as a constrained quadratic programming problem,

where we apply a dual-buffer strategy to estimate the overall MSE. We fur-

ther propose an iterative solver to overcome practical issues involved in the

optimization. Besides nice theoretical properties, our ensemble denoiser is

demonstrated to be effective and robust, and outperforms any individual

denoiser across dozens of scenes and different levels of sample rates. We also

perform a comprehensive analysis on the selection of individual denoisers

to be combined, providing important and practical guides for users.

CCS Concepts: • Computing methodologies → Rendering; Ray trac-
ing.

Additional Key Words and Phrases: Monte Carlo, denoising, optimization

ACM Reference Format:
Shaokun Zheng, Fengshi Zheng, Kun Xu, and Ling-Qi Yan. 2021. Ensemble

Denoising for Monte Carlo Renderings. ACM Trans. Graph. 40, 6, Article 1
(December 2021), 17 pages. https://doi.org/10.1145/3478513.3480510

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.

https://doi.org/10.1145/3478513.3480510
https://doi.org/10.1145/3478513.3480510


1:2 • Shaokun Zheng, Fengshi Zheng, Kun Xu, and Ling-Qi Yan

1 INTRODUCTION

Monte Carlo (MC) rendering has always been a gold standard in

generating photorealistic images. Due to its stochastic nature, it is

more and more popular nowadays to perform a denoising pass on

an MC rendered image in the post-processing stage, to remove the

noise and quickly get a clean result without using a lot of samples

and waiting a long time for convergence.

Various MC denoising methods have been developed in recent

years. Each of them may have different advantages, disadvantages,

and applicable scenarios. For example, traditional filtering- and

regression-based denoisers yield high-fidelity results when the in-

put image is rendered at high sample rates, and some are even

guaranteed to generate consistent (i.e. asymptotically unbiased) re-

sults [Bitterli et al. 2016; Moon et al. 2013; Rousselle et al. 2013;

Zwicker et al. 2015]. However, they typically suffer from residual

noise at lower sample rates. The emerging learning-based denoisers,

on the other hand, greatly outperform at low sample rates by em-

bedding much stronger a priori knowledge, yet the black-box nature

of neural networks adds to the uncertainty of their performance

across distinct data distributions and breaks the guarantee of con-

sistency. Such observations inspire and motivate us to explore the

possibility of combining different denoising techniques, inheriting

their advantages while alleviating their disadvantages.

In this paper, we propose ensemble denoising, a method to combine

the denoised results from two or more individual denoisers, which

we refer to as base denoisers. The key idea of our method is to

compute a set of optimal blending weights for the base denoisers in

a per-pixel manner that minimizes the overall mean squared error

(MSE), which is formulated as a constrained quadratic programming

problem. Since the MSE matrix involved in the optimization cannot

be accurately obtained, we apply a dual-buffer strategy to estimate

it. To keep our algorithm efficient and robust, we further propose

an iterative solver to compute the blending weights. Meanwhile, in

practice, we improve the visual smoothness of the combined images

with a cross bilateral filtering pass on the weight maps.

From the theoretical aspect, our ensemble denoiser has several

nice properties. For example, it is never worse than any of the

base denoisers if the accurate MSE matrix is known, and it inherits

consistency from base denoisers, i.e., it is guaranteed to be consistent

(asymptotically unbiased) if at least one base denoiser is consistent.

From the practical aspect, our method is demonstrated to be effective

and robust, and in most cases outperforms any of the individual

base denoisers, through comprehensive evaluations over dozens of

scenes and different levels of sample rates.

Naturally, other practical questions may come to users with our

ensemble denoising algorithm on hand. For example, which is the

overall optimal combination of the base denoisers and which is

the best at a certain sample rate? How to choose the appropriate

number of base denoisers? ...and so on. To find the answers, we

have a thorough analysis of the selection of base denoisers, provid-

ing important and practical guides for users. The byproduct that

comes along the analysis is also useful, which provides quantitative

benchmarks and comparisons between individual denoisers over a

large diversity of different scenes and at varying sample rates.

2 RELATED WORK

Monte Carlo denoising, also referred to as Monte Carlo image recon-

struction, has been an important topic in computer graphics. The

reconstruction is traditionally handled in the same way as image

denoising, using classic filters such as Gaussian filters and bilateral

filters to remove the noise. Later, more and more approaches use

auxiliary features such as per-pixel normals, albedos and depths

that are readily available during the rendering process. Such repre-

sentative work includes Anisotropic Diffusion for Monte Carlo Noise
Reduction [McCool 1999], Joint Bilateral Filtering (JBF) [Kopf et al.

2007] and Robust Denoising using Feature and Color Information
(RDFC) [Rousselle et al. 2013]. Improvements are made in various

ways. For example, non-local methods [Buades et al. 2005; Gastal

and Oliveira 2012] extend the filtering kernel (window) to the entire

image plane, and higher-order methods [Bitterli et al. 2016; Moon

et al. 2016] use complex polynomial models to utilize the sample

values in a filtering kernel. Specific-purpose filtering methods are

also developed that exploit more information in rendering, such

as the sheared filtering and axis-aligned filtering methods [Egan

et al. 2011; Mehta et al. 2013; Yan et al. 2015] that remove noise from

distribution effects (depth of field, soft shadows, global illumination,

etc.) at low sample rates. And real-time filtering methods [Chaitanya

et al. 2017; Schied et al. 2017] exploit spatio-temporal coherence to

perform fast approximate reconstruction.

In recent years, deep learning has become successful in Monte

Carlo denoising [Huo and Yoon 2021]. For example,Kernel-Predicting
Convolutional Networks (KPCN) [Bako et al. 2017] proposes the in-

fluential kernel-prediction architecture, which is widely adopted

and further enhanced by many following-up works [Lin et al. 2020a;

Vogels et al. 2018; Zeng et al. 2020]. Adversarial Monte Carlo Denois-
ing (MCGAN) [Xu et al. 2019] introduces adversarial learning in the

training process to improve perceptual quality. Deep residual learn-
ing for denoising Monte Carlo renderings [Wong and Wong 2019]

leverages residual blocks to denoise the renderings in an end-to-

end fashion, eliminating the need of predicting intermediate filter

kernels. Reliable MC denoising approaches are also provided by the

industry nowadays, such as NVIDIA’s OptiX AI Denoiser [Chaitanya
et al. 2017] and Intel’s Open Image Denoise (OIDN) [Intel 2019].
Efforts are also made to explore other formulations of the de-

noising task. Path-space and sample-based techniques [Gharbi et al.

2019; Lin et al. 2020b] perform the reconstruction using individ-

ual path samples other than in the image plane. Gradient-domain

path tracing [Guo et al. 2019; Kettunen et al. 2015] is essentially a

gradient-guided denoising process, where an optimization process

involving the Poisson equation is applied.

Our ensemble denoising is different from those individual denois-

ing methods. It takes any number of denoised results produced by

these methods as base denoisers, and does not make requirements

or constraints on any specific types of them. However, since it is

not possible to implement all existing base denoisers, in this pa-

per, we select some representative denoisers as the base denoisers

with a wide coverage of different categories, e.g., based on differ-

ent underlying principles (learning-based or non-learning-based),

with different artifact patterns (color bias, over-blurring, or residual

noise), and with different theoretical properties (consistent or not).
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Combined estimators are effective ways to achieve better results

than individual ones. A well-known example in light transport is

multiple importance sampling (MIS) [Veach 1997; Veach and Guibas

1995], which combines contributions from different sampling tech-

niques. Originally the combining weights are from simple heuristics

and recently various methods are proposed in search of a practically

better scheme [Grittmann et al. 2019] or the theoretically optimal

one [Kondapaneni et al. 2019]. Also, methods to combine multiple

light transport algorithms [Bitterli and Jarosz 2019; Georgiev et al.

2012; Otsu et al. 2018] have gradually aroused researchers’ interests.

In statistics and machine learning, model averaging and ensemble

learning [Polikar 2006] use multiple models strategically generated

and combined to improve classification, prediction, function ap-

proximation, etc. Methods to find effective combinations are widely

researched. Keller and Olkin [2004] combine correlated unbiased

estimators with a maximum-likelihood estimate of the unknown

covariance matrix and thoroughly studied its efficiency. Lavanciera

and Rochet [2016] propose a general method to combine several (pos-

sibly) biased independent estimators of the same quantity, whose

approach includes cases of estimating multiple parameters and ex-

ploits available information in estimators for different parameters.

We transfer the idea of ensemble learning into the field of MC

denoising, combining individual denoisers into a more powerful

one. Unlike the general constructs in ensemble learning or model

averaging, however, the “estimators” we deal with are sophisti-

catedly designed modern MC denoisers whose structures are too

complicated for an analytical derivation on the statistical properties.

Therefore, instead of restricting to a specific denoiser category and

simply specialize some general combining technique, we treat base

denoisers as black boxes without any assumption imposed on their

independence or unbiasedness and make use of the domain-specific

knowledge and techniques in MC denoising such as the dual-buffer

strategy in the formulation and algorithm.

A close recent work to ours in terms of the idea to combine

estimators is Deep Combiner [Back et al. 2020], which enhances

the results of an existing denoiser (typically, KPCN and NFOR)

by combining them with the noisy renders, and the combination

kernel is predicted through a neural network. Our method differs

from Deep Combiner in several ways. First, we are able to combine

multiple denoisers while Deep Combiner only targets a specific

one. Second, our ensemble denoiser has a theoretical guarantee

on optimality, while they do not have such guarantees since their

combination kernel is computed through neural networks. Third,

we combine results in a per-pixel way, while they combine the two

images with kernels filtering neighboring pixel residuals, which has

a close relation to image boosting. Nevertheless, Deep Combiner

variants of KPCN and NFOR could still be used as base denoisers

for our method, as included in the experiments.

Bandwidth selection is a popular technique in MC denoiser design

among previous work [Bauszat et al. 2015; Bitterli et al. 2016; Kalan-

tari and Sen 2013; Li et al. 2012; Rousselle et al. 2013], where a bank

of candidate filters with different hyperparameters are applied and

the best is selected based on the estimated error for each candidate.

Error estimation is typically aided by the dual-buffer strategy [Rous-

selle et al. 2012], where Monte Carlo samples are split into two

equal-sized half-buffers and the MSE is estimated from them. In

addition to the usage in MC denoising, local bandwidth selection

is also found helpful for deciding kernel supports in photon map-

ping [Kaplanyan and Dachsbacher 2013].

While our idea shares a similarity with this technique in terms of

utilizing multiple filters or denoisers at hand and computing esti-

mates from dual- or multiple buffers, the underlyingmotivations and

high-level ideas substantially distinct. Bandwidth selection serves

the primal purpose of “selecting” the best filter parameters for each

pixel, thus the candidate filters are usually homogeneous and the

selection is done in a one-hot manner, which could lead to poor

performance when applied to denoisers of different characteristics

and error patterns. Our method, on the other hand, models the com-

bination of heterogeneous denoisers as per-pixel weighted sums,

which offers better expressiveness and more room for optimiza-

tion, making it possible to compensate for artifacts of individual

denoisers while inheriting their good properties.

Furthermore, the way we exploit the error estimation techniques

is unique: the dual-buffer strategy is extended and formalized in the

matrix form for multiple denoisers, capturing and modeling not only

the error for individual ones but also their correlation. It is a build-

ing block deeply integrated into our theoretical formulation and

optimization process, rather than simply used as a post-denoising

criterion or heuristic for selecting results as is done in previous

work, e.g., RDFC and NFOR. This kind of usage in denoising, to our

knowledge, has never been explored before.

3 THEORETICAL FORMULATION

An image-space MC denoiser can be formalized as a function 𝑓

parameterized by handcrafted or learned parameters Θ, which takes

the Monte Carlo rendered noisy image 𝑥 as input, together with a

set of auxiliary feature buffers G (i.e., normal, albedo, depth, etc.),

and generates the denoised image 𝑦 as output:

𝑦 = 𝑓 (𝑥,G;Θ). (1)

The target is to produce a denoised image 𝑦 as close as possible to

the ground truth 𝜇 = E[𝑥], where E[·] is the expectation operator.

The common approach taken by existing methods is to design

a suitable function 𝑓 , and search for the best parameters Θ for a

certain image 𝑥 or a series of training images. We, however, take

another path by optimally combining the output images of exist-

ing individual denoisers in a per-pixel manner. This allows us to

leverage the advantages of different denoising techniques while

compensating for their unsatisfactory results.

3.1 Ensemble Denoiser

3.1.1 Definition. We consider a set of 𝑁 base denoisers 𝑓𝑖 , where
𝑖 ∈ {1, 2, . . . , 𝑁 }. Each base denoiser has a different set of its own

parameters Θ𝑖 , but takes the same noisy image 𝑥 and the same

auxiliary feature set G as input. We use 𝑦𝑖 to denote the output of

the 𝑖th denoiser, which, according to Eq. (1), is computed as

𝑦𝑖 = 𝑓𝑖 (𝑥,G;Θ𝑖 ) . (2)

From a statistical point of view, 𝑥 and 𝑦𝑖 are both estimates of the

ground truth image 𝜇.
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For each pixel 𝑝 , the ensemble 𝑧 (𝑝), a.k.a. the combined estimator,

is defined as a weighted sum of the output of base denoisers:

𝑧 (𝑝) =
𝑁∑
𝑖=1

𝑤𝑖 (𝑝)𝑦𝑖 (𝑝), subject to

𝑁∑
𝑖=1

𝑤𝑖 (𝑝) = 1. (3)

The ensemble definition can be rewritten into the vector form (for

brevity we drop the pixel coordinates here):

𝑧 = 𝒘⊤𝒚, subject to

𝑁∑
𝑖=1

𝑤𝑖 = 1, (4)

where 𝒚 = (𝑦1, 𝑦2, . . . , 𝑦𝑁 )⊤, and 𝒘 = (𝑤1,𝑤2, . . . ,𝑤𝑁 )⊤. We refer

to𝒘 as the ensemble weights or ensemble weight vector.

3.1.2 Optimization formulation for ensemble weights. Our goal is
to find the optimal ensemble, i.e., to compute the optimal ensemble

weights𝒘 . This is done by minimizing the difference between the

ensemble 𝑧 and the ground truth 𝜇 with the MSE metric, which

yields the following optimization problem:

minimize

𝒘
E
[ (
𝒘⊤𝒚 − 𝜇

)
2

]
, subject to

𝑁∑
𝑖=1

𝑤𝑖 = 1. (5)

Using the constraint

∑𝑁
𝑖=1𝑤𝑖 = 1, we rewrite our objective func-

tion in Eq. (5) into the quadratic form:

E
[ (
𝒘⊤𝒚 − 𝜇

)
2

]
= 𝒘⊤𝑴𝒘, (6)

where the 𝑴 is a Gramian matrix and is defined as

𝑴 = E
[
𝜸𝜸⊤]

, (7)

with 𝜸 = (𝑦1 − 𝜇, 𝑦2 − 𝜇, . . . , 𝑦𝑁 − 𝜇)⊤.
We refer to 𝑴 as the MSE matrix. The MSE matrix is positive

semidefinite, and the feasible solution space of 𝒘 is a convex set.

Therefore, the optimization problem in Eq. (5) is linearly-constrained

quadratic programming and can be solved once 𝑴 is known. How-

ever, it is impossible to obtain the accurate𝑴 due to its dependency

on the unknown ground truth 𝜇 and the existence of the expectation

operator. Instead, we apply a dual-buffer strategy to estimate 𝑴 .

3.1.3 Dual-buffer strategy to estimate 𝑴 . Expanding Eq. (7), we

obtain the element in the 𝑖th row and 𝑗 th column of 𝑴 :

𝑀𝑖 𝑗 = E
[ (
𝑦𝑖 − E[𝑥]

) (
𝑦 𝑗 − E[𝑥]

) ]
= E2 [𝑥] − E[𝑥]

(
E[𝑦𝑖 ] + E[𝑦 𝑗 ]

)
+ E[𝑦𝑖𝑦 𝑗 ] .

(8)

To keep our ensemble model robust and generalizable, we do not

have particular restrictions or assumptions on the base denoisers.

Therefore, the base denoisers are black boxes to us, and the only

observed information is their output.

However, 𝑦𝑖 and 𝑦 𝑗 being the output of two different base denois-

ers (i.e., 𝑓𝑖 and 𝑓𝑗 ) given the same inputs 𝑥 , they are highly correlated.

Therefore, it will be difficult to directly estimate the correlated terms

involved in Eq. (8), e.g., E[𝑥]E[𝑦𝑖 ] ≠ E[𝑥𝑦𝑖 ]. Inspired by previous

work [Bitterli et al. 2016; Li et al. 2012; Rousselle et al. 2012, 2013],

we instead use a dual-buffer strategy to decorrelate 𝑦𝑖 , 𝑦 𝑗 and 𝑥 to

bypass this obstacle.

Dividing samples equally in half, we obtain two independent and

identically distributed (i.i.d.) set of samples of the MC estimator,

denoted as A and B. Then, we obtain the two half-buffer noisy

images 𝑥𝐴 and 𝑥𝐵 using the two set of samples respectively. For

example, if the noisy image 𝑥 is rendered with 64 samples per pixel,

𝑥𝐴 and 𝑥𝐵 will either contain 32 disjoint samples and be an unbiased

estimate of E[𝑥]. We further feed 𝑥𝐴 and 𝑥𝐵 to each base denoiser

𝑓𝑖 , obtaining the denoised half-buffer images 𝑦𝐴
𝑖
and 𝑦𝐵

𝑖
.

Besides the fact that 𝑥𝐴 and 𝑥𝐵 are uncorrelated, i.e.,

Cov

[
𝑥𝐴, 𝑥𝐵

]
= 0, (9)

we further assume that the denoised half-buffers generated from

them are also uncorrelated, i.e.,

Cov

[
𝑦𝐴𝑖 , 𝑦

𝐵
𝑗

]
= Cov

[
𝑥𝐴, 𝑦𝐵𝑖

]
= Cov

[
𝑥𝐵, 𝑦𝐴𝑖

]
= 0. (10)

This immediately enables the estimation of𝑀𝑖 𝑗 in Eq. (8) w.r.t. half

buffers as

⟨𝑀⟩𝐴𝑖 𝑗 = 𝑥𝐴𝑥𝐵 − 𝑥𝐵
(
𝑦𝐴𝑖 + 𝑦𝐴𝑗

)
+ 𝑦𝐴𝑖 𝑦

𝐴
𝑗 and

⟨𝑀⟩𝐵𝑖 𝑗 = 𝑥𝐴𝑥𝐵 − 𝑥𝐴
(
𝑦𝐵𝑖 + 𝑦𝐵𝑗

)
+ 𝑦𝐵𝑖 𝑦

𝐵
𝑗 .

(11)

Then, we use the average as the estimation of 𝑴 :

⟨𝑴⟩ = 1

2

(
⟨𝑴⟩𝐴 + ⟨𝑴⟩𝐵

)
, (12)

where the elements of ⟨𝑴⟩𝐴 and ⟨𝑴⟩𝐵 are computed from Eq. (11).

3.1.4 Modified objective function. After substituting 𝑴 with the

estimated MSE matrix ⟨𝑴⟩ obtained using the dual-buffer strategy

in Eq. (6) and (7), our optimization problem can be rewritten as

minimize

𝒘
L(𝒘) = 𝒘⊤⟨𝑴⟩𝒘,

subject to

𝑁∑
𝑖=1

𝑤𝑖 = 1 and 𝑤𝑖 ≥ 0.(𝑖 = 1, 2, . . . , 𝑁 )
(13)

Note here we impose an extra non-negativity constraint on𝒘 , which
is practically necessary for a stable solution and will be evaluated

later in Sec. 5.2.1.

It is also worth noting that the convexity of the problem remains

unaffected , since the objective function can be rewritten as

L(𝒘) = 1

2

𝒘⊤
(
𝒚𝐴𝒚𝐴⊤ +𝒚𝐵𝒚𝐵⊤

)
𝒘 −

(
𝑥𝐴𝒚𝐵 + 𝑥𝐵𝒚𝐴

)⊤
𝒘 + 2𝑥𝐴𝑥𝐵,

(14)

where the matrix

(
𝒚𝐴𝒚𝐴⊤ +𝒚𝐵𝒚𝐵⊤

)
is symmetric and positive semi-

definite.

3.2 Theoretical Properties

In this subsection, we give several nice theoretical properties of our

ensemble denoiser together with their proof.

3.2.1 ⟨𝑴⟩ is an unbiased estimator of 𝑴half . We use 𝑴half
to de-

note the MSE matrix estimated w.r.t. half buffers:

𝑀half

𝑖 𝑗 = E2
[
𝑥𝐴

]
− E

[
𝑥𝐴

] (
E
[
𝑦𝐴𝑖

]
+ E

[
𝑦𝐴𝑗

] )
+ E

[
𝑦𝐴𝑖 𝑦

𝐴
𝑗

]
. (15)
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With the uncorrelation assumptions in Eq. (10) and the fact that

𝑥𝐴 and 𝑥𝐵 are uncorrelated, we can derive that

E
[
⟨𝑀⟩𝐴𝑖 𝑗

]
= E

[
𝑥𝐴𝑥𝐵

]
− E

[
𝑥𝐵

(
𝑦𝐴𝑖 + 𝑦𝐴𝑗

)]
+ E

[
𝑦𝐴𝑖 𝑦

𝐴
𝑗

]
= E

[
𝑥𝐴

]
E
[
𝑥𝐵

]
− E

[
𝑥𝐵

]
E
[
𝑦𝐴𝑖 + 𝑦𝐴𝑗

]
+ E

[
𝑦𝐴𝑖 𝑦

𝐴
𝑗

]
= E2

[
𝑥𝐴

]
− E

[
𝑥𝐴

]
E
[
𝑦𝐴𝑖 + 𝑦𝐴𝑗

]
+ E

[
𝑦𝐴𝑖 𝑦

𝐴
𝑗

]
= 𝑀half

𝑖 𝑗 .

(16)

Therefore, ⟨𝑀⟩𝐴
𝑖 𝑗
is an unbiased estimator for𝑀half

𝑖 𝑗
. The same holds

for ⟨𝑀⟩𝐵
𝑖 𝑗
. Furthermore, since ⟨𝑴⟩ is the average of ⟨𝑴⟩𝐴 and ⟨𝑴⟩𝐵

as is defined in Eq. (12), it is easy to know that ⟨𝑴⟩ is an unbiased

estimator for 𝑴half
.

Admittedly, there is an inevitable discrepancy between the two

MSE matrices 𝑴half
and 𝑴 computed using half and full buffers,

especially at low sampling rates. However, we find through experi-

ments that this estimator is practically adequate for capturing the

characteristics of the base denoisers and supporting robust and

effective computation of weights.

3.2.2 The theoretically optimal ensemble. Hypothetically, if the true
MSE matrix as defined in Eq. (7) is known, a closed-form solution

to the optimal ensemble weights is possible. Lifting the constraint∑𝑁
𝑖=1𝑤𝑖 = 1 off Eq. (5) with the help of the Lagrange multiplier

converts the optimization problem into an unconstrained version:

minimize

𝒘,𝜆
𝒘⊤𝑴𝒘 − 𝜆

(
1⊤𝒘 − 1

)
, (17)

where 1 (in boldface) denotes the all-one vector with length 𝑁 .

Leaving out the unconventional possibility of having a zero-MSE

combined estimator, the (always existent) solutions to Eq. (17) satisfy

𝑴𝒘 = 𝜆1 and 𝜆 ≠ 0. (18)

Therefore, one theoretically optimal ensemble (with its weights

denoted as𝒘∗) could be computed through

𝜆∗ =
1

1⊤𝑴†1
and 𝒘∗ = 𝜆𝑴†1 =

𝑴†1
1⊤𝑴†1

, (19)

where 𝑴†
denotes the Moore–Penrose inverse of 𝑴 . The resulting

minimized MSE is

𝒘⊤
∗ 𝑴𝒘∗ = 𝒘⊤

∗ 𝜆∗1 =
1

1⊤𝑴†1
. (20)

With a noise-free MSE matrix 𝑴 and with negative weights al-

lowed, since the optimization process literally finds the optimal

solution in the whole feasible region, the resulting minimal MSE

in Eq. (20) is guaranteed to be less than or equal to the MSE of any

individual base denoiser, i.e.,

1

1⊤𝑴†1
≤ 𝒆⊤𝑖 𝑴𝒆𝑖 = E

[
(𝑦𝑖 − 𝜇)2

]
, (𝑖 = 1, 2, . . . , 𝑁 ) (21)

where selecting an individual base denoiser 𝑓𝑖 is equivalent to setting

the ensemble weights to the one-hot vector 𝒆𝑖 with only the 𝑖th

element being 1 and others being 0.

Note that we need the accurate 𝑴 to compute the above optimal

ensemble. In practice, however, with the absence of the true 𝑴 , it

is intrinsically impossible to find the optimal weights as derived in

Eq.(19). That said, Eq. (20) serves as a loose lower bound of MSE for

our algorithm which might be practically unreachable. Nevertheless,

it theoretically reflects the potential ability of our model, and clearly

delivers our conclusion: in theory, our ensemble denoiser will be

no worse than any of the base denoisers.

3.2.3 Inherited consistency from base denoisers. One of the impor-

tant properties of our ensemble denoiser is the ability to inherit

consistency: if any one of the base denoisers is consistent, we ensure
that the ensemble denoiser is also consistent. This property stands

even when the accurate 𝑴 is unknown and the non-negativity con-

straint on weights is imposed, i.e., when solving for the modified

optimization problem Eq. (13) that is practically available.

Without loss of generality, let us suppose the 𝑗 th base denoiser

is consistent. That is, when the spp grows towards infinity, the

denoised image converges in probability to the ground truth:

𝑦 𝑗
𝑝
→ 𝜇, (22)

which as well implies the convergence of the denoised half buffers:

𝑦𝐴𝑗
𝑝
→ 𝜇 and 𝑦𝐵𝑗

𝑝
→ 𝜇. (23)

For the modified optimization problem defined in Eq. (13), if we

select the consistent base denoiser 𝑓𝑗 solely, or equivalently, set the

weights𝒘 to the one-hot vector 𝒆 𝑗 , the objective is reduced to

L
(
𝒆 𝑗

)
=

1

2

[(
𝑦𝐴𝑗 − 𝑥𝐵

)
2

+
(
𝑦𝐵𝑗 − 𝑥𝐴

)
2

− 2

(
𝑥𝐴 − 𝑥𝐵

)
2

]
𝑝
→ 0.

(24)

Therefore, our ensemble, with the optimal solution 𝒘̂ minimizing

the objective in Eq. (13), satisfies L (𝒘̂) ≤ L
(
𝒆 𝑗

)
. Hence, we have

2L (𝒘̂) =
(
𝒘̂⊤𝒚𝐴 − 𝑥𝐵

)
2

+
(
𝒘̂⊤𝒚𝐵 − 𝑥𝐴

)
2

− 2

(
𝑥𝐴 − 𝑥𝐵

)
2

≤ 2L
(
𝒆 𝑗

) 𝑝
→ 0,

(25)

which indicates the convergence towards 𝜇 and thus the consistency:(
𝒘̂⊤𝒚𝐴 − 𝑥𝐵

) 𝑝
→ 0 ⇒

(
𝒘̂⊤𝒚𝐴 − 𝜇

) 𝑝
→ 0

⇒
(
𝒘̂⊤𝒚 − 𝜇

) 𝑝
→ 0 ⇒ 𝒘̂⊤𝒚

𝑝
→ 𝜇.

(26)

4 THE PRACTICAL ALGORITHM

In this section, we introduce the details of our ensemble denois-

ing algorithm based on the theoretical formulation in Sec. 3. The

algorithm consists of the following stages:

(1) Initialization. We use path tracing to generate the noisy

image 𝑥 and half-buffer images 𝑥𝐴 and 𝑥𝐵 . These images are

fed into each base denoiser to obtain the denoised images 𝑦𝑖

as well as the denoised half-buffer images 𝑦𝐴
𝑖
and 𝑦𝐵

𝑖
.

(2) Solving for per-pixel ensemble weights. For each pixel,

we estimate the MSE matrix using the dual-buffer strategy,

based upon which we solve for the ensemble weights by

optimizing the objective function in Eq. (13). The optimization

problem can be solved with a general-purpose optimizer, or

preferably, a much faster specialized iterative solver, as will

be introduced in Sec. 4.1.

(3) Filtering ensemble weights. The ensemble weight maps

solved in the previous stage is further filtered with a cross
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Base 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Input (Half-Buffer) Images
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Base Denoised 
(Half-Buffer) Images

Noisy Weight Maps Filtered Weight Maps

Raw Combined 
(Half-Buffer) Images

Final Combined Image

Fig. 2. Pipeline. First, the noisy full and half radiance buffers are fed into base denoisers and denoised in collaboration with auxiliary feature buffers, such as

sample variance, albedo, normal, depth, etc. Then, we use the denoised half buffers to empirically estimate combination weight maps using the proposed

iterative solver. Later, the noisy weight maps are filtered with a cross bilateral filter guided with the raw combined images and the auxiliary buffers jointly.

Finally, the filtered weight maps are applied in a per-pixel manner to the base denoised images to obtain the final combined image.

bilateral filter. After filtering, the combined denoised im-

age could be simply computed in a per-pixel manner as the

weighted sums of the base denoised images as is formalized

in Eq. (3). See Sec. 4.2.

4.1 Iterative Solver

The ensemble weights𝒘 are the solution to the optimization problem

in Eq. (13). Since the optimization problem is convex, we can possibly

solve it using general-purpose solvers such as OSQP [Stellato et al.

2020], FBstab [Liao-McPherson and Kolmanovsky 2020], etc. While

such solvers usually possess heavy optimization for large-scale

sparse problems, we found them not well-suited for our application

where the number of base denoisers 𝑁 is relatively small (typically

no greater than 10).

Therefore, instead of integrating into our pipeline an existing

general-purpose solver, we opt to develop a specialized iterative

solver based on the closed-form solution for combining two base

denoisers. Below we will first introduce the closed-form solution

for combining two denoisers and then describe our iterative solver

for combining multiple denoisers.

4.1.1 Closed-form solution for two-denoiser ensembles. An impor-

tant observation is that, when combining two denoisers, we are able

to analytically derive the ensemble weights.

In this case, a rewrite of Eq. (14) with explicitly 𝒚 = (𝑦1, 𝑦2)⊤ and

𝒘 = (𝑤1,𝑤2)⊤ gives the scalar form of the objective function:

L (𝑤1,𝑤2) =
[
𝑤1

(
𝑥𝐵 − 𝑦𝐴

1

)
+𝑤2

(
𝑥𝐵 − 𝑦𝐴

2

)]
2

+
[
𝑤1

(
𝑥𝐴 − 𝑦𝐵

1

)
+𝑤2

(
𝑥𝐴 − 𝑦𝐵

2

)]
2

−
[(
𝑤1 +𝑤2

) (
𝑥𝐴 − 𝑥𝐵

)]
2

,

(27)

which, considering the constraint that𝑤1 +𝑤2 = 1, can be further

simplified with the substitution𝑤1 = 1 − 𝛼 and𝑤2 = 𝛼 :

minimize

𝛼
𝑐1𝛼

2 − 2𝑐2𝛼

subject to 0 ≤ 𝛼 ≤ 1,
(28)

where

𝑐1 =

(
𝑦𝐴
1
− 𝑦𝐴

2

)
2

+
(
𝑦𝐵
1
− 𝑦𝐵

2

)
2

and

𝑐2 =

(
𝑦𝐴
1
− 𝑥𝐵

) (
𝑦𝐴
1
− 𝑦𝐴

2

)
+

(
𝑦𝐵
1
− 𝑥𝐴

) (
𝑦𝐵
1
− 𝑦𝐵

2

)
.

Therefore, the blending factor 𝛼 for combining two denoisers is

𝛼 = clip

©­­«
(
𝑦𝐴
1
− 𝑥𝐵

) (
𝑦𝐴
1
− 𝑦𝐴

2

)
+

(
𝑦𝐵
1
− 𝑥𝐴

) (
𝑦𝐵
1
− 𝑦𝐵

2

)
(
𝑦𝐴
1
− 𝑦𝐴

2

)
2

+
(
𝑦𝐵
1
− 𝑦𝐵

2

)
2

ª®®¬ , (29)

where the clip(·) function clamps the value into [0, 1].

4.1.2 Iterative solver for multiple denoisers. We design our iterative

solver inspired by the stochastic gradient descent [Saad 1998] and

coordinate descent [Wright 2015] techniques in machine learning

and non-linear programming. For each pixel in each iteration, we

apply the two-denoiser solution to combine the denoised result of

our current ensemble and that of a randomly selected base denoiser,

leading to a progressive convergence towards the optimum.

First, we initialize𝒘 (0) ∈ [0, 1]𝑁 randomly, and normalize it so

that all of its elements sum up to 1.

In the 𝑘th iteration, we treat the current ensemble with weights

𝒘 (𝑘) as a virtual base denoiser, and combine it with a randomly

selected base denoiser using the two-denoiser solution in Eq. (29).

The denoised half-buffer results of the current ensemble are

𝑧𝐴(𝑘) = 𝒘⊤
(𝑘)𝒚

𝐴
and 𝑧𝐵(𝑘) = 𝒘⊤

(𝑘)𝒚
𝐵 . (30)

Assuming the 𝑖th base denoiser being selected, we can analytically

compute the optimal blending factor 𝛼 (𝑘) using Eq. (29) based on

𝑧𝐴(𝑘) , 𝑧
𝐵
(𝑘) , 𝑦

𝐴
𝑖
and 𝑦𝐵

𝑖
. Then, 𝛼 (𝑘) is used to update𝒘 . Specifically,

𝒘 (𝑘+1) =
(
1 − 𝛼 (𝑘)

)
𝒘 (𝑘) + 𝛼 (𝑘) 𝒆𝑖 . (31)

In each iteration, the base denoiser is selected in a way that cycles

through all base denoisers, and inside each cycle, the selection is

performed in a randomly shuffled order.

The stopping criteria are 1) 𝒘 (𝑘) not changing for several iter-

ations; or 2) the number of iterations exceeding the user-defined
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limit. In our implementation, we set the limit to 1024 and find it

more than sufficient for almost all the pixels to converge. Note that

since the initial𝒘 (0) is normalized and that we always clamp 𝛼 to

[0, 1], the final 𝒘 naturally satisfies the constraints that all of its

elements are in range [0, 1] and sum up to 1.

Theoretically, the convergence and optimality of the iterative

solving process is ensured considering the facts: 1) the solution

for two base denoisers in Eq. (29) is optimal since the objective is

reduced to a simple quadratic function; 2) when following Eq. (31)

over iterations, the sequence of the objective function is monotoni-

cally bounded and thus convergent to the local minimum; and 3) the

convexity of the optimization problem ensures the local minimum

being globally optimal. Empirically, we will also demonstrate the

effectiveness of our iterative solver in Sec. 5.2.2 by comparison with

solvers based on general-purpose quadratic programming.

4.2 Cross Bilateral Filtering on Weight Maps

Till now, the ensemble weights are solved in a per-pixel manner.

Since the optimization depends on 𝑥𝐴 and 𝑥𝐵 that have probably

considerable variance especially at low sample rates, the solved

weights are usually very noisy, contaminating the final combined

image. Nevertheless, errors in effectively denoised images usually

exhibit a low-frequency pattern [Bauszat et al. 2015], which also

indicates that a filtering pass on the weight maps will potentially

lead to a higher fidelity. For clarity, we refer to the weight maps

before and after filtering as the raw weight maps and the filtered

weight maps, respectively.

Fortunately, we have two sets of images that are relatively clean

and are able to guide the filtering of our weight maps. One is the

set of raw combined images, i.e. the denoised full and half-buffer

images combined by our ensemble denoiser using the raw weight

maps, and the other set contains the noise-free auxiliary feature

buffers. We use these two sets to cross-guide a bilateral filter [Kopf

et al. 2007] on the raw weight maps.

Specifically, for a pixel 𝑝 in the image plane, the contribution

from pixel 𝑞 in its neighborhood N(𝑝) is computed as

𝜅 (𝑝, 𝑞) = exp

(
− ∥𝑝 − 𝑞∥2

2𝜎2𝑠

)
exp

(
−𝐷2 (𝑧 (𝑝), 𝑧 (𝑞))

2𝜎2𝑧

)
∏
𝑔∈G

exp

(
− ∥𝑔(𝑝) − 𝑔(𝑞)∥2

2𝜎2𝑔

)
,

(32)

where 𝑧 is the raw combined image and 𝑔 refers to a feature buffer.

𝜎𝑠 , 𝜎𝑧 and 𝜎𝑔 are user-defined parameters to control the strengths

of the filter w.r.t. spatial, color and feature distances. We adopt the

idea in [Li et al. 2012] to compute the normalized color distance:

𝐷2 (𝑧 (𝑝), 𝑧 (𝑞)) = ∥𝑧 (𝑝) − 𝑧 (𝑞)∥2

Var[𝑧 (𝑝)] + Var[𝑧 (𝑞)] . (33)

There remains the problem of estimating Var[𝑧], i.e., the per-pixel
variance of the raw combined image. We address this by leveraging

the dual-buffer strategy again: the raw weights are applied to the

denoised half-buffer images 𝒚𝐴 and 𝒚𝐵 , obtaining 𝑧𝐴 = 𝒘⊤𝒚𝐴 and

𝑧𝐵 = 𝒘⊤𝒚𝐵 , and Var[𝑧] is then approximated as

1

2

(
𝑧𝐴 − 𝑧𝐵

)
2

.

Fig. 3. Test scenes.

The filtered weight vector at 𝑝 is simply the weighted average of

neighboring pixels:

𝒘filter (𝑝) =
∑
𝑞∈N(𝑝) 𝜅 (𝑝, 𝑞)𝒘 (𝑞)∑

𝑞∈N(𝑝) 𝜅 (𝑝, 𝑞)
, (34)

which will be used for generating the final combined image using

our ensemble denoiser in Eq. (3):

𝑧final (𝑝) =
𝑁∑
𝑖=1

𝑤filter

𝑖 (𝑝)𝑦𝑖 (𝑝) . (35)

Interestingly, the bilateral filtering stage will not affect the in-

heritance of consistency from base denoisers, which might seem

counter-intuitive. This is because when any consistent base denoiser

is present, the raw (unfiltered) ensembles 𝑧𝐴 and 𝑧𝐵 are consistent,

thus leading to the extinction of Var[𝑧] inside the normalized dis-

tance metric in Eq. (33). That said, the bilateral filter itself is consis-

tent, so that filtering weight maps should not affect the consistency

of the final ensemble in Eq. (35).

In practice, we set the filter radius to 7 pixels and the auxiliary

feature set G = {albedo, normal}. Other parameters are 𝜎𝑠 = 3.0,

𝜎𝑧 = 2.0, 𝜎
albedo

= 0.25 and 𝜎
normal

= 0.15. With an optimized

implementation on GPU, we typically spend 10 to 30 milliseconds

per million pixels, which is negligible as compared to the iterative

weight solver, let alone the complete rendering pipeline.

5 EXPERIMENTS

We perform comprehensive experiments on various base denoisers

and test scenes to evaluate the performance of our ensemble denois-

ing algorithm. The experiments are performed on a PC equipped

with an Intel i9-9900K CPU and an NVIDIA RTX2080-TI GPU.

5.1 Setup

Test scenes. We use the Tungsten Renderer [Bitterli 2014] to render a
bunch of scenes found on the Rendering Resources website [Bitterli
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2016]. Totally 30 scenes are selected. The scenes cover a wide range

of surface appearances including diffuse, specular, and transparent

materials, with coarse and complex geometries including hairs and

furs. Fig. 3 shows an overview of them.

For each scene, radiance buffers, feature buffers (e.g. albedo, nor-

mal, depth, etc.) and empirical variance buffers (required by some

base denoisers), as well as their half-buffer counterparts, are saved.

Reference images are rendered with at least 32768 spp.

Base denoisers. We select several state-of-the-art MC denoisers,

including #1 KPCN [Bako et al. 2017], #3 MCGAN [Xu et al. 2019],

#4 NFOR [Bitterli et al. 2016], #6 OIDN [Intel 2019], #7 the OptiX AI-

Accelerated Denoiser [Chaitanya et al. 2017] (referred to as OptiX)

and #8 RDFC [Rousselle et al. 2013]. Besides, we also include the

Deep Combiner variants [Back et al. 2020] of NFOR and KPCN,

which are referred to as #2 NFOR-DC and #5 KPCN-DC, respectively.

In total, 8 base denoisers are used in our experiments.

To obtain the denoised half-buffer images𝑦𝐴
𝑖
and𝑦𝐵

𝑖
for each base

denoiser, a general solution is to run the denoisers multiple times.

Nonetheless, for denoisers like RDFC and NFOR that denoise and

exploit half buffers internally for error estimation and bandwidth

selection, we make minor modifications to their implementations,

saving these intermediate buffers to eliminate the redundancy of

denoising them again.

Implementation details. We implement our iterative solver in C++

on CPU aided by the Eigen library [Guennebaud et al. 2010] for

vector and matrix data structures and linear algebra operations.

Cross bilateral filtering is implemented using CUDA on GPU, where

all loops are unrolled and all weight maps are filtered together in a

single kernel launch.

Running performance. Our iterative solver takes about 1 second or

less, depending on the number of base denoisers. The cross bilateral

filtering step takes only negligible times, i.e., tens of milliseconds.

The major time overhead lies in running the base denoisers. Gener-

ally, each denoiser needs to be run 3 times: once for denoising the

full-buffer input image and twice for the half buffers.

Concerns might arise whether running multiple denoisers multi-

ple times is worth the effort. However, any practical denoiser itself is

fast enough (typically taking several seconds for a frame) and should

not dominate the running time of the hours-long overall rendering

pipeline. Besides, as will be demonstrated in the experiments, our

algorithm effectively alleviates the artifacts of individual denois-

ers, delivering higher-quality results, which we believe worthwhile

despite the extra overhead.

5.2 Evaluations

To evaluate our design choices, we perform experiments to demon-

strate the necessity of imposing the non-negativity constraints,

using channel-wise weight maps, and employing a bilateral filtering

stage. We also measure the average time for solving weight maps

to show the performance gain using our specialized iterative solver

over a general-purpose solver.

5.2.1 With vs without restricting to non-negative weights. While

looser constraints provide broader solution spaces for potentially

Veach MIS (64spp)
relMSE / DSSIM

(a) w/o Constraints
0.28283 / 0.01958

(b) w/ Constraints
0.00022 / 0.00113

Reference

Teapot (64spp)
relMSE / DSSIM

(c) w/o Constraints
2.07301 / 0.02986

(d) w/ Constraints
0.00051 / 0.00419

Reference

Fig. 4. The combined images generated with and without the non-negativity

constraints on weights, respectively. Solving the weights without constraints

leads to fireflies in the combined images (a) and (c), and a dramatically

increased error, while the images (b) and (d) using constrained weights are

of high fidelity in the same regions. Both scenes are rendered with 64 spp,

combining 4 base denoisers of RDFC, NFOR, KPCN and OIDN.

better combined estimators [Kondapaneni et al. 2019], they can

also lead to overfitting and instability. To decide whether or not we

should impose the non-negativity constraints, in Fig. 4 we compare

the combined images with and without the constraint𝑤𝑖 ≥ 0 (𝑖 =
0, 1, . . . , 𝑁 ). As the figure shows, the instability of the unconstrained
weights leads to numerous fireflies in the combined images, while

the constrained weights produce high-fidelity results.

5.2.2 Iterative solver vs general-purpose solver. We compare our

iterative solver with FBstab [Liao-McPherson and Kolmanovsky

2020] which we consider as the most robust general-purpose solver

for our problem compared to e.g. Ceres-Solver [Agarwal and Mierle

2010], OSQP [Stellato et al. 2020], etc. In Fig. 5, we show the weight

maps and combined images generated by our iterative solver and

the general-purpose solver for the Classroom scene. The scene is

rendered with 128 spp and 4 base denoisers (KPCN, NFOR, RDFC

and OIDN) are combined. The weight maps and combined images

generated from both solvers are visually indistinguishable. Fig. 6

shows the running time required by both solvers for different en-

semble sizes. Our iterative solver is about 10 times faster than the

general-purpose solver.

5.2.3 Single-channel vs channel-wise weights. We design the ensem-

ble denoising algorithm in a per-pixel combining fashion, but there

still remains the open option whether to solve the channel-wise

weights or to share weights across channels. Sharing weights across

channels reduces computation since we only need to solve them

once for a pixel, but allowing channel-wise weights provides more

room for optimization, e.g. when there are color bias artifacts in

the base denoised images. Fig. 7 compares combined images gen-

erated with single-channel and channel-wise weights. We found

using channel-wise weights leads to a slightly lower error in both

metrics. Considering the efficiency advantage of our iterative solver,

we decide to use channel-wise weights for a better denoising quality

at the cost of minor computational overhead.
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Fig. 5. Weight maps computed using our proposed iterative solver and the

general-purpose solver. Left column: noisy weight maps from the general-

purpose solver and the raw combined image (without cross bilateral filtering).

Middle column: counterparts of our iterative solver. Right column: visual-

izations of absolute difference between the weight maps. Bottom row: the

combined images from the general-purpose solver and from our iterative

solver, and the reference render. Weight maps from our iterative solver are

very close to that from the general-purpose solver, and the combined images

have almost identical relMSE and DSSIM (ours are even lower).
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Fig. 6. Average running time of our iterative solver and the general-purpose

solver. We test the iterative solver and the general-purpose solver on the

Classroom scene rendered with 128 spp, enumerating all combinations.

The iterative solver is about 10x faster across all sizes of ensembles.

5.2.4 With vs without cross bilateral filtering. Fig. 8 compares the

combined images generated with the raw noisy weights and the

filtered weights, respectively. Noisy weight maps can lead to noise

in continuous regions and visual artifacts along sharp edges. Never-

theless, such defects disappear after applying cross bilateral filtering

to the weight maps.

Bedroom (64spp)
relMSE / DSSIM

(a) Single-Channel
0.00207 / 0.01197

(b) Channel-Wise
0.00202 / 0.01178

Reference

Living Room (64spp)
relMSE / DSSIM

(c) Single-Channel
0.00421 / 0.02498

(d) Channel-Wise
0.00410 / 0.02479

Reference

Fig. 7. Combined images generated with single-channel weights and

channel-wise weights, respectively. Using the channel-wise weights offers

slightly improved quality and reduced error. Both scenes are rendered with

64 spp, where 3 base denoisers (RDFC, NFOR and KPCN) are used.

Living Room 3 (64spp)
relMSE / DSSIM

(a) w/o Filtering
0.00123 / 0.01069

(b) w/ Filtering
0.00083 /0.00706

Reference

Spaceship (64spp)
relMSE / DSSIM

(c) w/o Filtering
0.00185 / 0.01035

(d) w/ Filtering
0.00158 /0.00659

Reference

Fig. 8. Combined images generated with andwithout cross bilateral filtering

on weight maps, respectively. Noisy weight maps lead to a less smooth

combined image, with noise in the continuous regions (a) or artifacts along

sharp edges (c). The images (b) and (d) combined with filtered weights

eliminate such defects and achieve significantly improved perceptual quality

and reduced error. Both scenes are rendered with 64 spp, where 4 base

denoisers (RDFC, NFOR, KPCN and OIDN) are used.

5.2.5 Comparison with naive averaging. In Fig. 9, we compare our

algorithm to the naive method which simply averages the output

from base denoisers. By solving weights through optimization, our

ensemble conducts a more optimized and effective combination of

the base denoisers than the naive method, leading to better percep-

tual quality and significantly reduced quantitative error.

5.2.6 Comparison with one-hot selection. We compare our method

to the one-hot selection method originally used for the bandwidth

selection technique. Following the formulation in NFOR, MSEs of

denoised half buffers from the 𝑖th candidate filter are estimated as

MSE [𝑦𝐴𝑖 ] ≈
(
𝑦𝐴𝑖 − 𝑥𝐵

)
2

− Var[𝑥𝐵] and

MSE [𝑦𝐵𝑖 ] ≈
(
𝑦𝐵𝑖 − 𝑥𝐴

)
2

− Var[𝑥𝐴],
(36)
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Bathroom (64spp)
relMSE / DSSIM

(a) Naive
0.01841 / 0.03197

(b) Ours
0.01102 / 0.03113

Reference

4 8 16 32 64 128 256 512       1024 spp

10 2

10 1

relMSE

NFOR

OIDN

OptiX

RDFC

Naive

Ours

Fig. 9. Comparison with naive averaging, combining the output of NFOR,

OIDN, OptiX and RDFC. Left: visual comparison. The naively averaged

image (a) has a slightly blurred and faded geometry in the inset region,

while our method (b) well matches the reference. Right: error curves. Our

method consistently outperforms the base denoisers and the naive averaging

method, achieving the lowest relMSE across all sample rates.

spp 4 8 16 32 64 128 256 Avg.

#
B
a
s
e

2 88.8% 84.2% 80.4% 72.9% 66.7% 62.9% 63.3% 74.2%

3 84.6% 81.2% 76.7% 74.6% 64.6% 63.3% 60.0% 72.1%

4 81.0% 79.5% 77.1% 78.6% 74.3% 68.6% 61.0% 74.3%

5 92.2% 84.4% 84.4% 83.3% 84.4% 81.1% 75.6% 83.7%

6 81.7% 73.3% 76.7% 79.2% 76.7% 76.7% 65.8% 75.7%

8 80.0% 76.7% 76.7% 83.3% 83.3% 80.0% 66.7% 78.1%

Avg. 85.1% 80.8% 78.5% 76.8% 71.4% 68.4% 63.5% 74.9%

Table 1. Percentages under the relMSE metric that our ensemble denoising

method outperforms both pre-filtering variants (using filters from SBF and

NFOR, respectively) of the one-hot selection method. Our method has the

lowest error in most cases across varying ensemble sizes and sample rates.

and the MSE for the full buffer is estimated as

MSE [𝑦𝑖 ] =
1

2

(
MSE [𝑦𝐴𝑖 ] +MSE [𝑦𝐵𝑖 ]

)
− Var[𝑦𝑖 ] . (37)

The selection map is then generated based on the estimated MSE

maps choosing per pixel the filter with the lowest error. We imple-

ment three variants of the one-hot method: the first one (labeled

“SBF”) pre-filters the estimated MSE maps with the cross bilateral

filter from SBF [Li et al. 2012]; the second one (labeled “NFOR”)

pre-filters the estimated MSE maps with the same non-local means

filter as in NFOR; and the last one (labeled “Post”) uses the noisy

MSE estimates but post-filters the selection maps instead, using the

same cross bilateral filter described in Sec. 4.2.

In Table 1 and Table 2, we list the percentages w.r.t. the relMSE

metric that our method outperforms the one-hot method across all

test scenes with varying sample rates and ensemble sizes. Also, we

include visual comparison and error curves for the Bathroom 2

scene in Fig. 10 as an example.

Our method outperforms the one-hot method in most test cases

with lower errors. Besides, binary weights make the one-hot method

prone to visual discontinuity, while ours always produces clean and

Fig. 10. Comparison with the one-hot selection method, combining the

output of MCGAN, OIDN, OptiX and RDFC. Left: visual comparison. The

one-hot selection variants that pre-filter the estimated MSE maps (a and b)

exhibits visual discontinuities in the inset region. Post-filtering the selection

maps (c) alleviates this issue, but artifacts are still noticeable, e.g., along

the edge and at the bottom of the washbasin. Our method (d) gives the

best visual quality and the lowest quantitative error. Right: error curves.

Our method outperforms all the base denoisers and the one-hot selection

methods at all sample rates, consistently achieving the lowest relMSE.

spp 4 8 16 32 64 128 256 Avg.

#
B
a
s
e

2 73.8% 70.4% 64.6% 67.1% 67.5% 66.7% 63.3% 67.6%

3 79.2% 75.8% 68.3% 63.7% 59.6% 57.1% 52.5% 65.2%

4 92.9% 91.0% 82.4% 77.6% 76.7% 71.4% 63.8% 79.4%

5 85.6% 84.4% 76.7% 71.1% 73.3% 77.8% 71.1% 77.1%

6 89.2% 90.0% 84.2% 77.5% 75.8% 77.5% 67.5% 80.2%

8 83.3% 80.0% 80.0% 66.7% 66.7% 70.0% 56.7% 71.9%

Avg. 82.9% 80.6% 73.8% 70.3% 69.1% 67.8% 61.7% 72.3%

Table 2. Percentages under the relMSE metric that our ensemble denoising

outperforms the post-filtering variant of one-hot selection.

smooth results. Exceptions could happen that the one-hot selection

appears more robust than our method, when the noise overwhelms

the meaningful information in our ensemble model.

Another interesting observation is that, the pre-filtering imple-

mentation variants of one-hot selection usually produce worse re-

sults than the post-filtering one, especially at lower sampling rates.

One possible explanation is that the MSE of effective base denois-

ers can be of small magnitudes and thus more sensitive to the bias

introduced by the pre-filtering process.

5.2.7 Comparison with weight maps from ground-truth statistics. To
validate the effectiveness of weights solved by our algorithm, we

compare the weight maps and combined images to those computed
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using ground-truthMSEmatrices𝑴 defined in Eq. (7) for full buffers

and 𝑴half
defined in Eq. (15) for half buffers.

To compute these statistics, a scene is rendered many times at

the same sample rate but with different seeds for random number

generation. The respective statistics are repeatedly evaluated in

each rendering and accumulated until convergence. For each ground-

truthMSEmatrix, we compute one-hot selectionmaps and ensemble

weight maps with or without the non-negativity constraints.

Fig. 11 gives an example on the Curly Hair scene rendered with

256spp, combining results from MCGAN, OptiX and RDFC. There

are several observations from the figure:

• Weight maps from our algorithm (i) closely match the ground-

truth ones solved with the non-negativity constraints (c and

f), and the quality of the combined image is on a par as well,

which demonstrates the effectiveness of our algorithm;

• Our ensemble model yields lower error than the one-hot

selection method with ground-truth matrices (a vs c and d

vs f), and with estimated statistics (g vs i), indicating that

the expressiveness of our model is superior to the one-hot

method, as is discussed in Sec. 3.2.2;

• Ground-truth weight maps w.r.t. half buffers (d, e and f) are

close to those of full buffers (a, b and c), and the combined

images exhibit similar quantitative error and visual quality,

which confirms the rationality of solving weights with the

dual-buffer strategy as introduced in Sec. 3.1.3; and

• With ground-truth statistics available, solving weights with-

out non-negativity constraints (b and e) gives more aggressive

weights, resulting in lower error than thosewith constraints (c

and f). However, in practice where true MSE matrices are un-

known, solving weights with the non-negativity constraints

(i) ensures the stability of optimization, otherwise broken

results could appear (h).

5.3 Choices of Base Denoisers

With many base denoisers at hand, here come some natural ques-

tions. For examples, which are the overall optimal combinations

of these base denoisers? Which are the optimal combinations in

different cases (e.g. for a specific sample rate)? To find the answers,

we enumerate a group of candidate combinations with varying sizes,

perform quantitative and perceptual analysis on them, and develop

a score-and-sort ranking framework as the selection criterion.

5.3.1 Candidate combinations. Since we have 8 base denoisers, to-
taling (28 − 8 − 1) = 247 different combinations, evaluating all

those combinations will be a heavy workload and is in fact un-

necessary. Instead, we carefully construct a moderate-size pool of

candidate combinations. The main considerations and criteria in the

pre-selection are twofold: diversity and representativeness. There-

fore, we assign more quota to small-sized combinations, since in

the primal experiments we found large ensembles are less sensitive

to changes of one or two members in them. The final pool consists

of 31 combinations. All the 39 candidates (31 ensembles plus 8 base

denoisers) are examined and evaluated across all 30 test scenes.

5.3.2 Error metrics. To measure the fidelity of the combined (de-

noised) images, we adopt relative MSE (relMSE) and structural dis-

similarity (DSSIM) as the error metrics. While the former is directly

tied to our optimization objective, the latter is more about percep-

tual quality, providing a supplementary dimension for performance

evaluation. For relMSE, we calculate it in the linear high-dynamic-

range (HDR) space without any tone mapping or gamma correction.

For DSSIM, we beforehand apply ACES tone mapping [Cooper et al.

2017] and sRGB colorspace encoding to the HDR images.

5.3.3 Scores and rankings. In Fig. 13, we plot the error curves w.r.t.

sample rates for some candidates in 6 scenes. We do not include all

candidates in this plot for a better visualization, since otherwise the

lines would overlap a lot, making it hard to distinguish and analyze.

While the error metrics are able to measure and reveal the effec-

tiveness of the candidates per test case (i.e., a scene rendered with

certain spp), we lack a high-level view for their overall performance.

However, simply averaging the errors across all scenes and sample

rates for each method is not a valid choice for scoring, since errors

in different test cases are usually of distinct scales. Therefore, we

propose a ranking framework for a more intuitive and summarized

depiction on the overall performance of each candidate.

For each scene rendered at a certain sample rate (i.e. a single test

case), we first sort all the 39 candidates together with the noisy MC

render according to their errors, and assign linearly spaced scores

from 1 to 40 to each of them. For example, the candidate ranked

1
st
with the lowest error receives a score of 40, while the candidate

ranked last receives a score of 1. The ranking scores of all candidate

denoisers for two example scenes Bathroom and Dining Room

are plotted in Fig. 14 (a, b) and (e, f). The scores are then averaged

across all scenes for these candidate denoisers as in Fig. 14 (c) and (g),

which are further reduced to the overall scores by averaging across

all sample rates, as is shown in Fig. 14 (d) and (h). Then, we compare

and analyze the scores and rankings of all candidate denoisers, and

some useful and interesting conclusions will be discussed later.

More plots of error curves and ranking curves can be found in

the supplemental materials.

5.3.4 Observations from the scores and rankings. First, we find that

combining multiple denoisers is effective. A combination of 2 base

denoisers almost always outperforms the corresponding individual

base denoisers, and combining 3 or 4 base denoisers shows further

improvement. Interestingly, however, the marginal benefits begin to

diminish when combining more than 5 base denoisers, sometimes

even slightly decreased quality compared to smaller ensembles. This

phenomenon is not unexpected, given the ensemble weights being

solved from imperfect estimated statistics. One such example is

Table 3, where the overall ranking scores progressively increase

as the ensemble size grows to 5 and start to drop from then on.

Nevertheless, this degeneration does not indicate the failure of our

algorithm— as is shown in the table, combination #35 (composed of 6

base denoisers) is still very competitive and the overall performance

clearly surpasses all the corresponding individual base denoisers.

We also find certain combinations not competitive. For example,

combination #28 (KPCN-DC, MCGAN, OIDN and OptiX) performs

worse than others of the same ensemble size. We notice that in most
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(b) GT (Full)
w/o Constraints
0.00148 / 0.02004

(c) GT (Full)
w/ Constraints

0.00175 / 0.02470

(d) GT (Half)
One-Hot

0.00207 / 0.03032

(e) GT (Half)
w/o Constraints
0.00156 / 0.02224

(f) GT (Half)
w/ Constraints

0.00182 / 0.02668

(g) Estimated
One-Hot (Post)

0.00287 / 0.03821

(h) Estimated
w/o Constraints
0.11013 / 0.13754

(i) Ours
w/ Constraints

0.00256 / 0.03590

Fig. 11. Comparison with weight maps and combined images from ground-truth statistics evaluated on the Curly Hair scene rendered 1024 times at 256spp

combining MCGAN, OptiX and RDFC. Images (a) to (f) are computed with ground-truth statistics, solving for one-hot selection maps, ensemble weight maps

without non-negativity constraints and weights with constraints. Images (g) to (i) are computed with estimated statistics using the dual-buffer strategy.

In the top three rows, we visualize the weight maps (with channels averaged and colormaps applied) for the base denoisers, and the bottom row contains

the combined results with relMSE/DSSIM listed below. Our method gives weight maps close to those from ground-truth MSE matrices with non-negativity

constraints (c and f) and outperforms the one-hot selection method (g), demonstrating the effectiveness of our model and solving algorithm. Solving weights

using estimated statistics without non-negativity constraints emits broken results (h) while ours with the constraints gives stable weight maps and the

high-quality combined image (i).

spp 4 8 16 32 64 128 256 512 1024 Avg.

#1 KPCN 16.5 15.0 15.0 16.0 15.7 16.8 16.7 15.4 12.8 15.5

#3 MCGAN 15.9 14.2 12.7 10.5 7.8 5.9 4.6 3.5 2.6 8.6

#4 NFOR 5.0 5.1 5.8 8.1 9.7 11.4 12.3 12.5 14.0 9.3

#6 OIDN 23.8 17.7 12.0 8.9 7.0 6.6 5.2 4.9 4.2 10.0

#7 OptiX 12.4 9.9 7.5 6.5 5.9 5.0 5.0 4.6 4.5 6.8

#8 RDFC 10.9 10.0 10.7 10.4 11.8 12.9 14.6 16.8 18.1 12.9

#16 (#7+#8) 21.7 18.6 17.3 16.2 17.5 18.5 19.3 21.4 22.0 19.2

#24 (#16+#6) 28.6 24.8 22.4 19.4 19.5 19.1 19.3 21.0 21.3 21.7

#30 (#24+#4) 20.7 22.0 23.2 24.0 25.1 26.7 27.4 27.7 27.9 25.0

#33 (#30+#1) 23.5 25.9 28.0 29.1 29.3 31.0 31.1 31.5 31.8 29.0
#35 (#33+#3) 21.1 23.4 27.0 28.5 29.4 29.4 28.4 27.6 26.3 26.8

Table 3. Performance of the candidates as the ensemble sizes increase (larger

scores are better). The top half of the table lists the individual base denoisers.

The bottom half contains the incrementally growing ensembles, composed

of 2, 3, 4, 5 and 6 base denoisers respectively. For each candidate individual

or ensemble denoiser, we show its relMSE ranking scores w.r.t. sample rates

and the overall scores from Fig. 14.

cases, such combinations only involve either learning-based denois-

ers such as KPCN, or only non-learning-based ones such as NFOR.

We also notice that at lower sample rates, learning-based denoisers

significantly outperform non-learning-based ones, while at higher

sample rates, non-learning-based denoisers perform better. As a

result, we do not recommend combining homogeneous denoisers

(e.g., #28). Instead, combining heterogeneous denoisers turns out

to be more beneficial, as there is greater chance to compensate for

one’s disadvantages with the distinct strengths of another.

In addition, combinations with DC (Deep Combiner) variants

often underperform combinations without DC variants. For instance,

#29 (KPCN-DC, NFOR, OIDN and RDFC) ranks lower than #27

(KPCN, NFOR, OIDN and RDFC). Hence, we do not recommend

choosing DC variants as base denoisers either.

5.3.5 Best combinations concerning different scenarios. For users’
convenience, we recommend combinations concerning different

scenarios. For different sizes, we recommend these ensembles:

• Two: #10 (KPCN and NFOR);

• Three: #20 (KPCN, OIDN and RDFC);

• Four: #27 (KPCN, NFOR, OIDN and RDFC).

As for different sample rates, we recommend the following ones:

• Low (4-32 spp): #20 (KPCN, OIDN and RDFC);

• Medium (32-256 spp): #27 (KPCN, NFOR, OIDN and RDFC);

• High (>256 spp): #18 (KPCN, NFOR and RDFC).

5.3.6 Overall best combinations. In general, we found that #27

(KPCN, NFOR, OIDN and RDFC) is the most robust combination
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and works reasonably well across all the scenes and sample rates

under both the relMSE and DSSIM metrics. We recommend it as the

overall best choice. If users would like to use fewer base denoisers,

combination #20 (RDFC, KPCN and OIDN) is also a good choice.

5.4 Visual Comparison

Besides the above comprehensive quantitative evaluation, we also

provide visual comparison in Fig. 15. A glance of the figure gives

the general impression that the majority of the best results fall into

our ensemble series across the scenes. Next, we provide detailed

analysis on individual scenes to reveal more about the capability

and versatility of our method.

For example, in Bathroom 2, NFOR produces lumpy bright noise

on the basin. OptiX leaves the wooden table with remaining noise

and produces chromatic noise at the edge of the basin, but both

defects are wiped out in our cases.

In Dining Room, NFOR, OptiX and RDFC fail to distinguish and

remove the outliers in the shadow of the lamp in the noisy input and

produce bright spots to different extents. However, our ensemble

denoisers significantly alleviate such artifacts by combining results

from other base denoisers such as OIDN and KPCN.

In Furball, KPCN and OIDN over-blur the furs, MCGAN suffers

from severe color bias, and OptiX leaves remaining noise. Never-

theless, our combined denoisers, #32 as a representative, preserve

the fine geometric details of the furs at the reference level, with all

patterns of noise and artifacts in base denoisers almost cleaned up.

In Veach Ajar where the white porcelain teapot is severely con-

taminated by noise, NFOR does well in reconstructing the geometry

along the edges of the teapot but the result exhibits obvious low-

frequency residual noise at the middle part. OIDN has the noise

aggressively reduced at the cost of over-blurring the silhouettes.

The result of KPCN is impressive, without obvious defects. Yet our

ensemble #27 robustly yields clean results with high fidelity, keep-

ing the excellence of KPCN while circumventing the drawbacks of

NFOR and OIDN, achieving a significant decline in both relMSE and

DSSIM compared to all the aforementioned base denoisers.

For more results on visual comparison, please refer to the inter-

active viewer (static web pages) in our supplemental materials.

6 CONCLUSION, LIMITATION AND FUTURE WORK

Conclusion. Wehave presented ensemble denoising, an optimization-

based technique that combines results from multiple base denoisers.

With the help of the dual-buffer strategy and our iterative solver, the

ensemble weights are efficiently computed in a pixel-wise manner,

which is further filtered with a cross bilateral filter to improve the

fidelity of the final combined image.

Our ensemble denoiser has nice theoretical properties, e.g., inher-

ited consistency from base denoisers. From a practical perspective,

it is demonstrated to be effective and robust, and outperforms any

individual denoisers. Furthermore, we have performed a comprehen-

sive analysis on the choices of base denoisers, providing practical

guides for users. Besides, our ensemble denoiser does not make

any assumption on specific types of base denoisers, but treats them

as black boxes. With this feature, other sophisticated individual

denoisers can be easily included into our framework.

Coffee (4spp)
relMSE / DSSIM

Input
0.26401 / 0.38808

OIDN
0.00646 / 0.02116

RDFC
0.01483 / 0.05460

Ours
0.01010 / 0.04005

Reference

Fig. 12. Less successful case at an extremely low sample rate (4 spp). Two

base denoisers (OIDN and RDFC) are used.

Limitation. Our method may perform less successfully when the

sample rate is extremely low (e.g. 4 spp). One such case is shown in

Fig. 12. This is because the optimization of the ensemble weights

relies on the estimation of the MSE matrix. At extremely low sample

rates, such estimation has a high variance and is less reliable. There-

fore, an immediate future work is investigating ways to further

improve the estimation of the MSE matrix.

Future work. Currently, as a general framework for combining mul-

tiple denoisers, we do not explicitly consider specialized use cases

(e.g., denoising consecutive frames with temporal stability). We look

forward to future work optimizing our method with domain-specific

knowledge. Besides, our ensemble denoiser combines outputs of

all base denoisers in a per-pixel manner. It would be interesting to

explore possible formulations considering the local or even non-

local neighborhoods, which might benefit from recent advances in

general image denoising and super-resolution techniques [Liu et al.

2019; Zin et al. 2021].
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Fig. 13. Example error curves. We compute the relMSE and DSSIM of each method for each scene and sample rate. In most cases, the ensembles outperform

the corresponding individual base denoisers.
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Fig. 14. Scores and rankings. We first compute scores based on the error metrics (relMSE and DSSIM) for each method in individual scenes w.r.t. spp. These

scores are then averaged across scenes (c and g), and finally, we further average them across spps to get the overall ranking scores, based upon which we sort

the methods and compute the rankings (d and h). The ensembles consistently outperform the individual base denoisers in different scenes and sample rates

under both error metrics.
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Fig. 15. Visual comparison with base denoisers. RelMSE and DSSIM (both scaled by 1000) for full images are listed below each tile. Our combined images

leverage the power of the base denoisers and compensate for most of their artifacts, achieving the lowest error and the best visual quality almost consistently.
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