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Fig. 1. The proposed ExtraNet is designed to extrapolate a novel frame from historical frames in an animated sequence. It significantly outperforms previous
frame interpolation (i.e., BSR [Yang et al. 2011] and DAIN [Bao et al. 2019]) or extrapolation (i.e., GC [Yu et al. 2019]) methods both qualitatively and
quantitatively. The predicting time is much faster than actual rendering, which allows low-latency temporal supersampling. Yellow lines in the closeups
highlight that our method succeeds in capturing the plausible shadow movement which is hard to be handled by existing methods.

Both the frame rate and the latency are crucial to the performance of real-
time rendering applications such as video games. Spatial supersampling
methods, such as the Deep Learning SuperSampling (DLSS), have been
proven successful at decreasing the rendering time of each frame by render-
ing at a lower resolution. But temporal supersampling methods that directly
aim at producing more frames on the fly are still not practically available.
This is mainly due to both its own computational cost and the latency in-
troduced by interpolating frames from the future. In this paper, we present
ExtraNet, an efficient neural network that predicts accurate shading results
on an extrapolated frame, to minimize both the performance overhead and
the latency. With the help of the rendered auxiliary geometry buffers of the
extrapolated frame, and the temporally reliable motion vectors, we train our
ExtraNet to perform two tasks simultaneously: irradiance in-painting for
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regions that cannot find historical correspondences, and accurate ghosting-
free shading prediction for regions where temporal information is available.
We present a robust hole-marking strategy to automate the classification
of these tasks, as well as the data generation from a series of high-quality
production-ready scenes. Finally, we use lightweight gated convolutions to
enable fast inference. As a result, our ExtraNet is able to produce plausibly
extrapolated frames without easily noticeable artifacts, delivering a 1.5× to
near 2× increase in frame rates with minimized latency in practice.

CCS Concepts: • Computing methodologies → Rendering; Image ma-
nipulation.
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1 INTRODUCTION
The compute workload for modern real-time rendering applications
have been steeply increasing over the last few years. Users of real-
time rendering application always have to make compromises and
make a balanced trade-off among image quality, frame rate and
resolution. Especially with the recent rapid adoption of real-time
ray tracing in the gaming industry, even high end consumer GPUs
fails to deliver a consistent 60 FPS experience at common resolutions
such as 1440P or 4K.
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Many techniques have been developed in order to increase the
rendering performance. Among these techniques, those leveraging
the temporal coherency between frames have been widely adopted
[Scherzer et al. 2012], including TAA (Temporal Anti-Aliasing) [Xiao
et al. 2018; Yang et al. 2020, 2009], TAAU (Temporal Anti-Aliasing
Upsample) [Epic Games 2018], TRM (Temporal ResolutionMultiplex-
ing) [Denes et al. 2019], DLSS (Deep Learning Super Sampling) [Liu
2020], and various denoising algorithms developed specifically for
ray tracing [Bako et al. 2017; Chaitanya et al. 2017; Guo et al. 2019;
Schied et al. 2017; Sen et al. 2015; Vogels et al. 2018]. These tech-
niques all reduce the sampling rate at each individual frame, and rely
on temporal reprojections to combine samples taken over multiple
frames to reconstruct a high quality image.
Although pervasively applying the temporal information, these

methods are essentially still performing spatial upsampling / re-
construction, with a virtually higher sampling rate acquired tem-
porally to speed up the generation of the current frame of interest.
In this paper, we present an orthogonal approach to the temporal
reconstruction family, aiming at directly increasing the frame rate /
temporal sampling rate of rendered sequences.
While prominent advances have been made to increase frame

rates directly, existing approaches are not suitable for our purpose.
The most critical factor is the latency, since most previous attempts
refer to frame interpolation [Mark et al. 1997; Yang et al. 2011].
That is, only when the next frame has been fully rendered, their
algorithms can start to work to interpolate one or more frames in
between.
Another important factor to consider is the performance. This

is intuitive: if generating a new frame is already more expensive
than a full rendering of it, it does not make sense to use temporal
supersampling with a higher cost but a potentially lower quality,
since after all, what it does is to hallucinate a frame. Unfortunately,
even the slowest real-time rendering application is able to generate
a frame in tens of milliseconds. This immediately rules out a lot of
work that produces excellent quality but runs very slow [Bao et al.
2019; Huang et al. 2020; Niklaus and Liu 2020; Xiang et al. 2020].
The third factor is the situation they apply. We focus on ren-

dered scenes, which means that there are more information to use,
especially the G-buffers that do not exist in video interpolation /
extrapolation, such as Oculus’ ASW (Asynchronous Space Warp)
technology [Oculus 2016]. In general, auxiliary geometry buffers
(or G-buffers, such as per pixel normals and depths) are relatively
cheap to acquire (usually within several milliseconds per frame)
as compared to heavy shading tasks and potential post processing.
This property brings us a unique advantage. That is, we are able to
generate the G-buffers for the extrapolated frame, then use them to
guide the extrapolation of shading on these G-buffers.
Based on the above analysis, we present ExtraNet, a neural net-

work that extrapolates the shading in image space based on pre-
viously rendered frames. To achieve optimal image quality in the
extrapolated frames, our method takes advantage of the G-buffers
from the extrapolated frame rendered by the Unreal Engine 4, in-
cluding depth, normals, albedos, material definitions.

The G-buffers also directly enables us to use the temporally reli-
able motion vectors [Yang et al. 2020; Zeng et al. 2021], which help us
to find accurate per-pixel temporal correspondences, and to classify

our tasks into two: irradiance in-painting for regions that cannot
find historical correspondences, and accurate ghosting-free shading
prediction for regions where temporal information is available. We
train our ExtraNet to perform two tasks simultaneously. Moreover,
we present a robust hole-marking strategy to automate the data
generation from a series of high-quality production-ready scenes.
Finally, we use light-weight gated convolutions to enable fast infer-
ence. Since additional computational costs for generating G-buffers
are required and complex neural networks are involved, our method
runs slightly slower than some traditional methods relying on fast
image warping and reprojection. Nevertheless, the image quality of
extrapolated frames has been significantly improved, as we show in
Sec. 6. We believe a specialized and efficient CUDA implementation
that fully utilizes tensor cores will further accelerate the pipeline.

With our technique, the rendering engine could interleave regular
rendering and shading extrapolation when rendering a sequence,
which would nearly double the frame rate, but without easily no-
ticeable artifacts. Moreover, our approach does not introduce any
additional latency as we don’t require the future frame to finish
rendering.

To summarize, our contributions in this work include:

(1) A new temporally interleaved real-time rendering and ex-
trapolation architecture that can nearly double the frame rate
without introducing additional latency.

(2) A novel neural network architecture that leverages G-buffers
and temporalmotion (computed both from consecutive frames
and temporally reliable motion vectors) to perform the ex-
trapolation as a shading prediction task.

(3) A lightweight design that incurs low performance overhead
(around 8 milliseconds per frame at 720P) but results in high
quality and smoothly extrapolated frames.

2 RELATED WORK AND BACKGROUND
There are several classes of previous work that are related to our
work. In particular, temporal reconstruction for real-time rendering
(including temporal antiliasing and temporal denoising), texture
in-painting, image warping, and interpolation based frame rate
upsampling for videos / rendering.

2.1 Temporal Reconstruction
To achieve high quality frame extrapolation, we heavily rely on
(backward) temporal motion vectors, which is also used by almost
all the common temporal reconstruction methods [Scherzer et al.
2012]. Temporal reconstruction methods reduce the samples taken
at each individual frame, and reproject samples over the course of
multiple frames using backward motion vectors to reconstruct a
high quality image. Schied et al. [2017] estimate the spatiotemporal
variance to guide the filtering parameters per pixel. Chaitanya et
al. [2017] propose a recurrent autoencoder to automatically accu-
mulate historical information. Zimmer et al. [2015] compute motion
vectors of specular paths with a general decomposition framework
and a temporal extension of manifold exploration. Mara et al. [2017]
improve the motion vectors for specular reflections, by tracking the
movement of the specular reflected virtual images instead of the
“mirrors”. Vogels et al. [2018] use consecutive frames to guide the
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denoising of the frame of interest to reduce flickering in production
scenes. Recent work by Zeng et al. [2021] introduces temporally re-
liable motion vectors that suppress ghosting artifacts from shadows,
glossy reflections and disocclusions. The success and popularity of
the motion vectors also indicate that the change of shading in a
fixed pixel should not be simply treated as linear over time [Mueller
et al. 2021] for high quality temporal reconstruction.

We also leverage temporal motion vectors to reproject shading of
the previous rendered frames to the extrapolated frames. However,
unlike temporal reconstruction, which still take a small amount of
shading samples at the frame being reconstructed, we do not have
any samples in the extrapolated frames. Therefore, we are essentially
reconstructing / “denoising” the full shading of an extrapolated
frame using 0 shading samples per pixel (except for the G-buffers).
This analogy connects our extrapolation with existing temporal
reconstruction work, and also demonstrates the significant difficulty
that our extrapolation task faces.

2.2 Texture In-painting
One caveat of using backward motion vectors to reproject shading
from previous frame is that disoccluded regions will not contain
any valid information in the previous frame, resulting in "holes"
in the reprojected image. Filling the holes in an plausible way is a
critical element of our technique. Previously, numerous research
has been done in the area of texture in-painting using deep learning.
Some methods use convolution variants, such as partial convolution
[Liu et al. 2018], gated convolution [Yi et al. 2020; Yu et al. 2019]
and masked convolution [Santos et al. 2020], to extract reliable fea-
tures from valid regions and restore the image with these features.
Currently, these methods have been favored by many applications
due to their simplicity and high efficiency. Other in-painting meth-
ods resort to a two-stage prediction strategy to separately predict
missing textures in a step-by-step manner [Liu et al. 2020; Ren et al.
2019; Xiong et al. 2019; Yu et al. 2018].

However, these techniques are not designed specifically for real-
time rendering. They perform the in-painting task completely on
single images without temporal information and G-buffers, which
can often lead to unbounded failures when they fail to generalize to
new content.

2.3 Image Warping
Image warping has a long history in both computer graphics and
vision. Here, we focus on efficient techniques for real-time rendering
which are closely related to our work. Typically, image warping is
realized by forward scattering or backward gathering, according
to their data access patterns. Mark et al. [1997] leverage a forward
mapped image warping algorithm to scatter pixels to polygonal
meshes, achieving post-rendering 3D warping. Didyk et al. [2010a]
use accurate motion vectors to compute a forward image warp
defined by a coarse grid representation. The quality of warped
images can be further improved by using adaptive grid refinement
[Didyk et al. 2010b; Schollmeyer et al. 2017] or geometry proxies
[Reinert et al. 2016]. Compared with forward mapping, backward
mapping is more appealing in real-time rendering due to its high
efficiency. Andreev [2010] proposes to use half motion vector of next

frame to warp previous frame. Yang et al. [2011] interpolate a pair of
consecutive rendered frames with bidirectional reprojection. Bowles
et al. [2012] establish a general framework for backward image
warping using fixed point iteration. Although visually plausible
contents can be recovered at hole regions after image warping,
shadow and highlight movements are almost untouched in these
traditional methods, especially those used in the context of frame
extrapolation.

2.4 Video and Rendering Interpolation
Interpolation based frame rate upsampling is widely used for tem-
porally upsampling videos [Baker et al. 2007; Shechtman et al. 2010].
These techniques are often based on computing the forward and
backward optical flow [Fortun et al. 2015] of the last couple of frames
in the video sequences. Then the optical flow can be used to repro-
ject the future and past frames to get an estimate of the intermediate
frames. However, optical flow is an image based algorithm that often
produces inaccurate motion, which will lead to artifacts in the inter-
polation results. Our method instead uses accurate motion vectors
available from the rendering engine, so the reprojection quality is
a lot better, which is verified in several existing work [Didyk et al.
2010a,b; Leimkühler et al. 2017; Mark et al. 1997; Yang et al. 2011].
These methods usually rely on image warping techniques to reuse
shading information across frames.

Although recent deep learning based video interpolation methods
such as [Bao et al. 2019, 2021; Huang et al. 2020; Jiang et al. 2018;
Niklaus and Liu 2020] have made a great progress on enhancing the
quality of flow prediction and warping occlusion, these methods are
still time-consuming, thus are not suitable for real-time rendering.

All these interpolation methods, however, have to require a future
frame to be rendered first, therefore delaying the display of every
rendered frame, introducing additional input latency. This can be
a very undesirable trait for video game players. Our technique, on
the other hand, incurs no additional latency.

3 MOTIVATION AND CHALLENGES
Before we describe our method, let us briefly analyze our temporal
supersampling problem. Specifically, we would like to understand
our advantages and challenges.

3.1 Latency
In almost all rendering engines, rendered frames are first saved in
render targets (frame buffers) before actual display (scheduled by
drivers). A synchronization mechanism (e.g., V-sync or G-Sync) is
usually adopted to ensure constant frame rates even if the frames
are generated with varying time. This is particularly important for
frame interpolation / extrapolation since interpolated / extrapolated
frames often consume much less time than conventional rendering,
as demonstrated in Fig. 2. The gap between frame generation and
display incurs latency in rendering engines.
There are various definitions and types of latency from the in-

dustry. Here we provide a definition of it – the delay between the
moment a frame has been generated and the moment it starts to be
presented to users by the GPU. This definition completely rules out
the latency from network conditions, refresh rates of monitors, etc.,
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Fig. 2. An illustration of different latency induced by extrapolation and
interpolation, respectively.

and is only related to rendering and the scheduling of display buffers.
We make it even simpler by assuming a perfect frame scheduler.
That is, the scheduler can always choose the right buffer to display
at the right / perfect time, to guarantee the smoothest streams of
frames.
Suppose the actual rendered frames are labeled in integers and

the interpolated / extrapolated frames are labeled as 0.5, 1.5, . . . ,
Fig. 2 immediately tells us that using interpolation produces sig-
nificant latency since the in-between frame can only be generated
and displayed after a future frame is processed. In contrast, our
extrapolation method can always begin generating the next frame
immediately after prior frames are complete, incurring little addi-
tional latency. Also note a typical misinterpretation that “since the
extrapolation takes time, it introduces latency”. The extrapolation
does take time but also increases the frame rate. It makes no sense
to compare two different sequences with different frame rates (and
probably different contents) to find one sequence’s latency.

However, we do not overclaim that our extrapolation has zero la-
tency. This is because we did not analyze the outcomes theoretically
with non-ideal configurations and potential tricks, such as disabling
V-sync, that trade quality for lower latency. Also, in the industry,
the rendering time is sometimes considered as part of the “input
latency”, though it is already considered / penalized when measur-
ing the frame rates. But one point is certain that interpolation is
indeed causing a much higher latency than extrapolation, thus is
not the desired solution. The importance of low latency has been
demonstrated everywhere, from commercial success of high refresh
rate monitors and low latency streamed video games, to academic
studies [Spjut et al. 2019].
All the above analysis leads to our motivation of using extrap-

olation to perform temporal supersampling. However, there are
significantly more challenges that we need to consider.

3.2 Challenges
To derive the shading in the extrapolated frame based on reprojected
shading from previous frames and the G-buffers from the current
frame without visible artifacts, there are several critical challenges
that we need to overcome:

Disocclusion. Backward motion vectors may not always exist. The
most often encountered case in the disocclusion, i.e., when a region

Fig. 3. An illustration of the occlusion motion vectors from Zeng et al. [Zeng
et al. 2021]. (Left) Traditional motion vectors propose to use the same pixel
values from previous frames, resulting in ghosting artifacts in the disoc-
cluded regions. (Right) occlusion motion vectors alleviates this problem by
looking for a nearby similar region in the current frame, then looking for the
corresponding region from previous frames. Dashed black vectors indicate
object motion, while yellow vectors indicate warping.

Disocclusion
Previous shadows
& glossy reflections

𝑓𝑖 𝑓𝑖+0.5

Fig. 4. An illustration of dynamic changes in shading. Shadows and glossy
reflections will change drastically when dynamic objects move, as indicated
in dashed red regions. Our method not only fills holes in disoccluded regions
but also corrects moving shadows and reflections.

is visible in the current frame but the content in the region was
occluded previously. In these regions, we are not able to leverage
the shadings computed in previous frames since they were occluded.
To address this, we leverage an in-painting network to reshade
the occluded regions. In order to further improve the reshading
quality of our network, we utilize the temporally reliable occlusion
motion vector (Fig. 3) proposed in [Zeng et al. 2021] to improve the
reprojection quality in disoccluded regions.

Dynamic changes in shading. Even in regions that have correspon-
dences from previous frames, it is still not applicable to directly use
the shading results from previous frames, because dynamic changes
in shading over frames, such as moving shadows, parallax motion
from reflections and the colors on rotating objects, may change
drastically and are thus unknown in the current frame. This is illus-
trated in Fig. 4. Simply reusing e.g. the previous one frame’s shading
will predict exactly the same content, as if the frame rates are not
increased at all. If only disoccluded regions are correctly handled,
there will be a high frame rate at these regions, while shadows and
glossy reflections still run at a relatively low frame rate, leading to
jerky effects in an animated sequence. This challenge distinguishes
our method from pure hole-filling approaches. To address the dy-
namic shading issue and make correct predictions, we always keep
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Network
Inference

Post
Processing

Modulation

WarpingDemodulation

Current Frame

Albedo

Extrapolated Frame

Fig. 5. High-level overview of our pipeline. The current frame is firstly
demodulated by its albedo and warped to the space of the next frame to be
predicted using motion vectors. After network inference, the generated new
frame is modulated by albedo and then apply tone mapping and temporal
antialising.

the most recently rendered 3 frames for our network to learn to
extrapolate the changes.

Other challenges. Since our method is for real-time rendering ap-
plications, one immediate challenge is the extremely low tolerance
towards errors and artifacts, because any glaring or flickering will
be immediately objectionable to users. Moreover, as pointed out
earlier, the inference of the neural network must be (ideally much)
faster than the actual rendering process.

4 EXTRANET FOR FRAME EXTRAPOLATION
To address the above challenges and enable reliable frame extrap-
olation for real-time rendering, we design and train a deep neural
network, namely ExtraNet, to predict a new frame from some his-
torical frames and the G-buffers of the extrapolated frame.
As analyzed in Sec. 3, our network is designed by taking the

following three aspects into consideration. First, considering that
disoccluded regions of the extrapolated frame lack shading infor-
mation but reliable and cheap G-buffers are available, we construct
an In-painting Network to reshade the disoccluded regions with the
help of occlusion motion vectors and those G-buffers. Second, in
contrast to the general image in-painting task, regions that are not
disoccluded may also contain invalid pixels attributing to dynamic
shading changes in the scene. To tackle this issue, we design a His-
tory Encoder, an additional convolutional neural network, to extract
necessary information from historical frames. These information,
including potential motions of shadows and reflections, will be con-
catenated to the In-painting Network, allowing the prediction of
proper changes in shadow and reflection areas. From this point, our
framework is far beyond hole filling. Finally, to meet the requirement
of high inference speed which is critical to real-time rendering, we
adopt lightweight gated convolutions in our In-painting Network.

4.1 Problem Formulation
Now, we formulate our problem in detail. Denoting the current
frame rendered by the graphics engine as frame 𝑖 , the goal of our
network is to predict the next frame, namely frame 𝑖 +0.5, according
to the current frame 𝑖 , as well as two historical frames including
frame 𝑖 − 1 and frame 𝑖 − 2, and the corresponding G-buffers.

GT Traditional MV Occlusion MV

Fig. 6. Illustration of warped images according to different types of motion
vectors. Occlusion motion vectors can be used to warp disoccluded pixels
which are not correctly handled by traditional motion vectors. Ghosting
artifacts are easily observed along the moving character when traditional
motion vectors are used.

Fig. 5 illustrates the high-level overview of our pipeline. We first
demodulate (dividing by the albedo to acquire texture-free irra-
diance) the current frame using the albedo information from the
G-buffers, and then warp the demodulated frame using both tradi-
tional backward motion vectors and occlusion motion vectors [Zeng
et al. 2021].
The warping operation probably incurs holes in the frame, and

they are expected to be filled by the In-painting Network. These
holes should be properly marked, and the generated masks are also
fed into the network. The details of hole marking will be provided
in the next section.
After network inference, the generated new frame (frame 𝑖 +

0.5) is modulated (multiplying by the albedo to re-acquire textured
shading) back by the albedo of frame 𝑖 + 0.5. We then apply regular
post-processing such as tone mapping and temporal antialiasing
to it. Note that the demodulation and modulation are not strictly
indispensable in our framework, but we found that using them helps
our In-painting Network produce better results in those disoccluded
regions.

4.2 Motion Vectors and Image Warping
One key step in our pipeline is to warp frames using motion vectors.
However, image warping based on traditional motion vectors will
easily introduce ghosting artifacts in the disoccluded regions, as
illustrated in the middle column of Fig. 6. Though such artifacts
can be cleaned up by temporal antialiasing with the help of current
frame, it would be impractical in our scenario. Providing incorrectly
warped frames to our network will confuse it to generate undesired
results. Therefore, besides the frames warped by traditional back-
ward motion vectors, we also leverage occlusion motion vectors
proposed by Zeng et al. [2021] to faithfully handle disoccluded re-
gions. Instead of computing a zero motion vector in disoccluded
regions as the traditional backward motion vector does, occlusion
motion vector computes the motion vector in disoccluded regions
as the motion vector of the foreground in the previous frame. Visual
comparisons in Fig 6 show that occlusion motion vectors provide
better results in the disoccluded regions. Currently, frames warped
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Fig. 7. Network architecture of the proposed ExtraNet. The input to our network comprises two different warped frames, a mask (representing the marked
holes) and the corresponding G-buffers. The output is an extrapolated frame with proper changes in occlusions, shadows and reflections. In the In-painting
Network, the encoder is stacked by 11 lightweight gated convolution (LWG Conv.) layers, while the decoder is stacked by 7 standard convolution (Conv.) layers.
BN represents batch normalization. Three historical frames and their masks pass through History Encoder and the generated feature maps are concatenated
to the bottleneck of In-paint Network. Note that all frames shown here are demodulated by albedo.

by traditional motion vectors and occlusion motion vectors are both
fed into our ExtraNet.

4.3 Network Architecture
The architecture of our proposed ExtraNet is shown in Fig. 7. Our
network shares a similar structure with U-NET [Ronneberger et al.
2015] which provides state-of-the-art results in some computer
vision tasks. Conventional U-NET, however, cannot be directly used
in the in-paining task since the standard convolution operation
treats all pixels, including those invalid pixels in the holes, equally.
To address this, we adopt gated convolutions [Yu et al. 2019] in
our network to provide a learnable feature selection mechanism.
Specifically, the output of gated convolutions is computed as

M = Conv(W𝑚,X), (1)

F = Conv(W𝑓 ,X), (2)
O = 𝜎 (M) ⊙ F, (3)

where X is an input feature map, andW𝑚 andW𝑓 are two trainable
filters. ⊙ denotes element-wise multiplication. With a sigmoid acti-
vation 𝜎 (·),M is expected to provide dynamical masks for masked
feature extraction. This helps to weaken the influence of holes.

Though gated convolutions generate satisfactory results in filling
irregular holes in our task, it increases the inference time since the
convolutions are doubled due to extra computation of the soft mask
M. This is not acceptable in real-time rendering scenarios. In light
of this, we resort to a lightweight variant of gated convolution by
making M a single-channel mask, as inspired by [Yi et al. 2020].
Compared to the original gated convolution, the lightweight gated
convolution significantly improves the inference performance, while
still preserving high image quality. To further increase the inference
speed, we opt to not use any gated convolution in the upsampling
stage, since we believe that all holes have already been filled in the
downsampling stage. Moreover, we use a residual learning strategy
in our pipeline by adding the predicted image of our network with

24

32 3232
32 3232

24 24

History Encoder

Fig. 8. The detailed architecture of History Encoder. Each layer contains a
standard convolution, BN and ReLU activation.

the input image warped by traditional backward motion vectors.
We observe by experiments that this stabilizes the training process.

4.4 History Encoder
With the above In-painting Network, warped frames with marked
holes can be recovered with plausible contents. However, some
pixels outside the holes can also be invalid due to the movement
of shadows and reflections. Note that these movements are not
easily identified by G-buffers. The way we solve this problem is to
introduce another network, i.e., History Encoder, to capture these
movements by tracking historical frames.
The input to our History Encoder comprises warped images of

the current frame 𝑖 and its two past frames including frame 𝑖 −1 and
frame 𝑖 −2. To warp frames 𝑖 −1 and 𝑖 −2, we simply accumulate the
motion vectors. Invalid pixels should be marked for these frames,
and the corresponding masks are also fed into the History Encoder.

Fig. 8 demonstrates the basic structure of our History Encoder. It
is composed of nine 3 × 3 convolution layers. The first, fourth and
seventh layers are convolution layers with a stride of two, which
downsample the input of the convolution layer. This indicates that
almost all convolution operations, except the first one, work in a
relatively lower resolution. This strategy significantly improves the
running performance of History Encoder. To further reduce the
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Warped by optical flow GT

Fig. 9. Image warping based on backward optical flow generates improper
shadows as highlighted by red lines.

number of parameters in the whole network, History Encoder is
shared by different historical frames.

The outputs of History Encoder, which implicitly encode the high-
level representations of shadows and shadings in previous frames,
are concatenated together and fed into our In-painting Network.
Note that concatenation is not the only choice that our In-painting
Network can utilize these representations. An alternative repre-
sentation is optical flow [Fortun et al. 2015] that can be explicitly
predicted from several historical frames. Although such representa-
tions of movements are popular in many computer vision tasks, such
as action recognition [Piergiovanni and Ryoo 2019; Simonyan and
Zisserman 2014] and video stabilization [Yu and Ramamoorthi 2020],
it is impractical in our application. One main reason is that correct
forward optical flow is difficult to acquire in our frame extrapolation
pipeline, since only historical frames are available. Consequently,
we can only use backward optical flow as an approximation. How-
ever, this approximation easily fails when the movement becomes
sophisticated, as we demonstrated in Fig. 9. Image warping based on
backward optical flow may generate improper shadows that deviate
greatly from ground truth.
Another reason for not using optical flow in our pipeline is the

lacking of sufficient training examples. Note that the dataset we
constructed for training our network has a much smaller size than
those used to train optical flow prediction networks in computer
vision. A relatively small dataset easily incurs overfitting for the
network. In contrast, feature map concatenation that we used in our
network can adapt to the dynamic changes in the scene. Moreover,
many networks that can predict optical flow run too slow to be used
in our real-time pipeline.

4.5 Loss Function
We train our whole network, including the In-painting Network and
History Encoder, with a joint loss function. The loss function has
three components. The first loss penalizes pixel-wise error between
the predicted frame P and ground-truth frame T, which is simply
the 𝐿1 distance between P and T:

L𝑙1 =
1
𝑛

∑︁
𝑖

|P𝑖 − T𝑖 | , (4)

where 𝑛 is the number of pixels in the frame.
Neighbouring frames in a sequence look visually similar. Nor-

mally, invalid regions only occupy a very small portion. In-painting
results of invalid regions are hardly to be cared for by the traditional

𝐿1 loss. To emphasize more on invalid regions, we specifically design
another two losses.
The hole-augmented loss Lhole is designed to penalize more in

the hole regions marked beforehand. Let m be the binary mask fed
into the network. The loss is expressed as,

Lhole =
1

𝑛 −∑
𝑖𝑚𝑖

∑︁
𝑖

|P𝑖 − T𝑖 | · (1 −𝑚𝑖 ) (5)

where𝑚𝑖 is the 𝑖-th element of m.
The shading-augmented loss Lshade focuses on handling poten-

tial shading changes in the predicted frames. These changes may
stem from moving shadows due to dynamic lights and specular
reflections. Unfortunately, it is not easy to identify these changes in
the preprocessing stage. Considering that shadows and reflections
tend to generate large pixel variation among neighboring frames,
we select 𝑘 pixels with top 𝑘 largest errors from the predicted frame
and mark these pixels as potential shading change regions. Then,
we augment the loss by

Lshade =
1
𝑘

∑︁
𝑖∈Φtop−k

|P𝑖 − T𝑖 | (6)

where the set Φtop−k includes the indices of 𝑘 pixels with top 𝑘

largest errors. Even though the top 𝑘 largest errors may occur in
hole regions initially during training, they will move to incorrect
shadows and reflections after several iterations when holes have
been filled. Currently, we set 𝑘 to be ten percentage of the total pixel
number. The effect of this loss term will be validated in Sec. 6.6.

Our final loss function L is the summation of these three losses:
L = L𝑙1 + 𝜆holeLhole + 𝜆shadeLshade (7)

where 𝜆hole and 𝜆shade are weights to balance the influence of the
losses. In our current implementation, both are set to 1.

4.6 Training details
Our ExtraNet is implemented and trained using the PyTorch frame-
work [Paszke et al. 2019].Mini-batch SGD andAdamoptimizer [Kingma
and Ba 2014] are used for optimization. Specifically, we set mini-
batch size as 8, 𝛽1 in Adam optimizer as 0.9 and 𝛽2 as 0.999. Cosine
learning rate decay [He et al. 2019] is used after 20 epochs. The
initialization of the network follows the default setting in PyTorch.
Before feeding images into our network, logarithm transformation
𝑦 = log(1 + 𝑥) is applied to HDR images to avoid large values.

5 DATASET

5.1 Scenes and Buffers
To train our network, we have constructed a large-scale dataset
using four scenes from Unreal Engine marketplace1. These scenes
cover a wide range of shading effects, including glossy reflections,
soft shadows, multiple lights, and complex occlusions. Each scene
contains at least one dynamic object with complex movements.
Among these scenes, one (Western Town) is only used for testing,
while the other three are chosen for both training and testing. Each
training sequence contains 900 continuous frames, and each testing
sequence contains 300 frames. The splitting of training and testing
1https://unrealengine.com/marketplace

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.



1:8 • J. Guo et al.

Table 1. Statistics of the training dataset and testing dataset used in our
pipeline. Here, we list the number of sequences and the number of total
frames of each scene.

Scenes Training Testing Training Testing
Sequences Sequences Frames Frames

Medieval Docks 7 5 6300 1500
Redwood Forest 7 5 6300 1500

Bunker 6 5 5400 1500
Western Town 0 5 0 1500

Medieval Docks Redwood Forest

Bunker Western Town

Fig. 10. Example views of four scenes.

sets as well as some statistics are listed in Table 1. Some represen-
tative frame examples selected from these scenes are shown in Fig.
10.

Sequential frames are generated on Unreal Engine 4 and dumped
into the .exr file format. To warp previous frames to the current
frame using motion vectors, we implement a Compute Shader and
integrate it into Unreal Engine 4’s render pass. Each dumped frame
comprises 10 buffers which can be divided into three categories:

(1) Actual shading frame before tone mapping (PreTonemapH-
DRColor) and albedo (Base color) for demodulation.

(2) G-buffers used in our network, including scene depth (𝑑 , 1
channel), world normal (n𝑤 , 3 channels), roughness (1 chan-
nel), and metallic (1 channel).

(3) Other auxiliary buffers which are necessary for marking holes
(invalid pixels) in the warped frame. They are motion vector,
world position (p𝑤 ), NoV (n𝑤 · v, the dot product of world
normal n𝑤 and view vector v), and customized stencil (𝑠).

Note that in Unreal Engine 4 metallic is used to indicate the metal-
licity of object. The customized stencil refers to a stencil buffer for
masking dynamic objects in the scene. One example of these 10
buffers is shown in Fig. 11.

Our network is currently designed to replace the actual shading
pass in the Unreal Engine 4. Therefore, the built-in post-processing
passes, such as AA and tone mapping, are still required to generate

Table 2. Runtime (milliseconds) for generating G-buffers for different scenes.
All data are measured on NVIDIA RTX 3090 and frames are rendered at
720P resolution (1280 × 720).

Scenes Average Maximum Minimum

Medieval Docks 0.30 0.31 0.29
Redwood Forest 2.83 4.04 2.13

Bunker 0.14 0.18 0.14
Western Town 2.05 4.07 1.08

final sequences. These post-processing passes have little perfor-
mance cost as compared with G-buffer generation and network
inference.
Note that generating G-buffers usually costs differently among

these scenes (see Table 2). The runtime is closely related to the
complexity of scene geometries. Nevertheless, rendering G-buffers
are much cheaper than actual shading.

5.2 Marking Holes
When reusing previous frames to generate a new frame, some pixels
in the warped frame will be invalid, due to camera sliding and object
moving. These pixels should be marked as holes before feeding into
the network. Note that marking pixels as holes does not mean we
drop these pixels. Both warped frames and masks will be sent to
ExtraNet. Therefore, the network can still extract useful features
from the “invalid” pixels.
We mark the pixel as invalid according to the following three

conditions. First, for occlusion caused by object moving, we used
custom stencil to indicate the sharp changes along the edge of the
dynamic object. When custom stencil value is different between the
current frame (𝑠) and the warped frame (𝑠𝑤 ), these pixels will be
marked as invalid, i.e.,

Φstencil = {𝑠𝑖 − 𝑠𝑤,𝑖 ≠ 0} (8)

where 𝑖 is the pixel index and Φstencil is the set including pixels that
are counted as invalid according to stencil value.
Second, there will be self occlusions for some dynamic objects

when they are moving or the camera is sliding. To mark out these
self occluded regions, we resort to world normal since world normal
will probably change in these regions. We calculate the cosine value
between current frame’s world normal (n𝑤 ) and warped frame’s
world normal (n𝑤𝑤 ), i.e., n𝑤 · n𝑤𝑤 . If this value is large than a
predetermined threshold 𝑇𝑛 , the corresponding pixel indexed by 𝑖
in the warped frame is counted as invalid. Specifically,

Φwn = {n𝑤,𝑖 · n𝑤𝑤,𝑖 > 𝑇𝑛} (9)

where Φwn contains invalid pixels marked by differences in world
normal.
Our third condition handles invalid pixels due to camera move-

ment. These pixels can be selected out byworld position, considering
that static objects’ world positions keep unchanged in a 3D scene.
For a given pixel, let p𝑤 and p𝑤𝑤 be the world position of current
frame and warped frame, respectively. We calculate their distance
by |p𝑤 − p𝑤𝑤 |. If this distance is larger than a threshold 𝑇𝑑 (which
is computed by NoV and depth values), we mark this pixel as invalid.
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PreTonemapHDRColor Base color Motion vector Scene depth World normal

Roughness Metallic World position NoV Custom stencil

Fig. 11. One example of dumped buffers from Unreal Engine 4. The details and usage of these buffers are explained in Sec. 5.1.

GT Warped Φstencil Φwn Φwp Φcomb

Fig. 12. Demonstration of different hole regions (highlighted in green)
marked according to our three conditions. From left to right, we show
the ground-truth frame, the warped frame, and hole regions marked out
according to Φstencil, Φwn, Φwp, and Φcomb, respectively.

Hence, the invalid pixels in this set Φwp are

Φwp = {|p𝑤,𝑖 − p𝑤𝑤,𝑖 | > 𝑇𝑑 }. (10)

Finally, all invalid pixels in the warped frame are the combination
of previous three sets:

Φcomb = Φstencil ∪ Φwn ∪ Φwp . (11)

In Fig. 12, we provide an example to show the invalid pixels marked
out by different conditions.

6 RESULTS AND COMPARISONS
To demonstrate the effectiveness of our ExtraNet, we compare it
against several previous methods. We classify these methods into
three groups: methods relying on frame interpolation, methods
supporting frame extrapolation and Oculus’ ASW technology. For
deep learning-based methods, we fine-tune their pre-trained models
on our training dataset for the same number of epochs, and use the
best performing models obtained during training. Ablation studies
are also conducted to assess the key components in our pipeline. All
tests are run on a PC equipped with an AMD Ryzen9 3900X CPU

Table 3. Training setups and time (hours) for different models. MD =
Medieval Docks. RF = Redwood Forest. BK = Bunker. WT=Western Town.
Every model is trained on an NVIDIA RTX 3090 GPU for 150 epochs.

Models model1 model2 model3 model4

Training Scene(s) MD RF BK MD+RF+BK
Testing Scene MD RF BK WT
Training Time 41 41 35 100

and an NVIDIA RTX 3090 GPU. For better comparison, TAA is not
enabled.

As aforementioned, we have four datasets in total. Among them
three are used for both training and testing, and the rest one is only
used for testing. We trained four models as listed in Table 3. The
first three models are trained on three scenes individually, while the
last model is trained on a combined dataset containing all training
examples. The last model is used to test the generalization ability of
our network.

6.1 Comparisons against Frame Interpolation Methods
Many previous methods leverage frame interpolation to achieve
temporal upsampling. In this section, we make comparisons with
three typical solutions in this field. Specifically, we respectively
compare our ExtraNet to

• 3DWarp [Mark et al. 1997]: a baseline of forward scattering-
based real-time frame interpolation,

• BSR (Bidirectional Scene Reprojection [Yang et al. 2011]): a
baseline of backward gathering-based real-time frame inter-
polation, and

• DAIN (Depth-Aware video frame INterpolation [Bao et al.
2019]): a state-of-the-art solution of deep learning-based video
interpolation.

Qualitative comparisons. In Fig. 13, we show the interpolated frames
of the above three previous methods, as well as our extrapolated
frames. Please note that all interpolation methods require future
frameswhich should be rendered beforehand, while ourmethod only
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ExtraNet (Ours) GT ExtraNet (Ours) 3DWarp BSR DAIN

Fig. 13. Visual comparisons against three frame interpolation methods: 3DWarp [Mark et al. 1997], BSR [Yang et al. 2011], and DAIN [Bao et al. 2019]. Besides
high latency, both 3DWarp and BSR may generate inconsistent moving objects and shadows, and will occasionally lose tiny structures. 3DWarp may also
cause “rubber sheet” artifacts. DAIN generally achieves higher image quality, but is plagued with blurriness caused by large movements and absence of
accurate motion vectors. Our deep learning-based frame extrapolation method avoids these problems and produces physically-plausible results that closely
match the ground truth. In the closeups, red arrows highlight some artifacts that are not easily identified and red lines indicate the movements of shadows.
See comparisons of animated sequences in the accompanying video.

needs historical frames that have already been rendered. Even so, our
deep learning-based method still outperforms these interpolation
methods both qualitatively and quantitatively. 3Dwarp [Mark et al.
1997] excels at handling scenes with linear movements, but will
fail for dynamic objects with complex movements such as the arm
of the running man in the second row of Fig. 13, even if per-pixel
motion vectors are used. It may also cause “rubber sheet” artifacts
(highlighted in the tenth row) andmissing of thin primitives (grasses
in the fourth row and twigs in the sixth row) when binary decision
in this method is unable to treat complex occlusions. Moreover,

3Dwarp cannot correctly handle view-dependent glossy reflections
and dynamic shadows. BSR [Yang et al. 2011] relies on fixed point
iteration (FPI) to find the correspondences between two reference
frames and uses image blending to fill holes. However, inaccuracy
FPI will wash out tiny structures as shown in the eight row of Fig.
13, while image blending will easily overblur high-frequency details
and generate ghosting shadows. For DAIN [Bao et al. 2019], a main
problem is blurriness caused by large movements and absence of
accurate motion vectors, since this method is designed for natural
videos. In comparison, our method not only preserves sharp features
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ExtraNet (Ours) GT ExtraNet (Ours) GC HIW

Fig. 14. Visual comparisons against two frame extrapolation methods: GC [Yu et al. 2019] and HIW [Schollmeyer et al. 2017]. GC tends to fill disoccluded
regions with average pixel values surrounding the holes, leading to strange silhouettes. HIW may generate distorted structures and confusing colors after
image warping. Furthermore, these two methods fail to correct moving shadows and highlights, while our method does particularly well in this aspect. In
the closeups, red arrows highlight some artifacts that are not easily identified and red lines indicate the movements of shadows or glossy reflections. See
comparisons of animated sequences in the accompanying video.

and tiny geometries, but also generate physically-plausible shadows
that closely match the ground-truth results.

Quantitative comparisons. To quantitatively analyze different meth-
ods, we adopt peak signal-to-noise ratio (PSNR), structural similarity
index (SSIM) [Wang et al. 2004] and video multi-method assessment
fusion (VMAF) [Netflix 2016] as the error metrics. We evaluate four
scenes independently and the results are reported in Table 4. In gen-
eral, our method outperforms other competitors in terms of every
error metric. While DAIN achieves slightly higher PSNR and VMAF
values than ours on Western Town, its performance degrades dra-
matically on other scenes, when complex geometries and materials
are involved.

6.2 Comparisons against Frame Extrapolation Methods
Compared with frame interpolation, frame extrapolation is less
studied in the academia. Here, we compare our ExtraNet to two
recent methods that can be adapted to support frame extrapolation.
GC (Gated Convolution [Yu et al. 2019]) is a popular deep learning-
based image in-paining method. To enable frame extrapolation, we
use our image warping strategy to generate warped images with
holes and fill the holes with a GC model fine-tuned on our training
dataset. HIW (Hybrid Image Warping [Schollmeyer et al. 2017])2
is tailored for efficient stereo view synthesis. With some trivial

2HIW shares the same image synthesize pipeline as that in [Didyk et al. 2010a] and can
be viewed as an improvement over it (with an adaptive grid and a better hole filling
strategy).
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Table 4. Errors in terms of PSNR (dB), SSIM and VMAF on different test
sets. Here, we compare our method with 3DWarp [Mark et al. 1997], BSR
[Yang et al. 2011], DAIN [Bao et al. 2019], GC [Yu et al. 2019], and HIW
[Schollmeyer et al. 2017].

ExtraNet Interpolation Extrapolation
3DWarp BSR DAIN GC HIW

PS
N
R
(d
B) MD 28.18 24.31 23.97 25.73 23.68 23.23

RF 23.50 19.22 18.70 19.95 17.71 18.45
BK 31.19 28.13 27.00 29.47 26.30 26.95
WT 28.97 27.83 27.22 29.41 25.22 26.84

SS
IM

MD 0.880 0.745 0.713 0.794 0.705 0.663
RF 0.829 0.618 0.559 0.621 0.480 0.533
BK 0.950 0.911 0.876 0.920 0.879 0.866
WT 0.912 0.876 0.837 0.910 0.842 0.824

VM
A
F

MD 84.41 76.30 72.88 81.74 70.75 71.59
RF 83.87 75.93 73.51 76.32 63.27 72.68
BK 91.51 87.01 82.53 88.93 81.36 83.83
WT 89.60 86.05 81.84 90.19 79.74 82.28

modifications, this method is also suitable for frame extrapolation,
since stereoscopic rendering shares many similarities with our task.

Qualitative comparisons. Fig. 14 provides the qualitative compar-
isons of different frame extrapolation methods on four scenes. HIW
method [Schollmeyer et al. 2017] generate new views using forward
warping. Potential hole regions are filled by a multi-scale filter-
ing strategy. Unfortunately, simple filtering may incur artifacts as
shown in the even rows of Fig. 14 if the holes are too large. GC
[Yu et al. 2019] is originally meant for natural image in-painting.
Even the model is fine-tuned on our training dataset, the result-
ing images are still of low quality. As seen, it tends to fill holes
with average pixel values around holes, leading to strange silhou-
ettes. More critically, unlike our method, these two extrapolation
methods currently only tackle hole regions, keeping shadings and
shadows unchanged. Therefore, they will cause temporal flickering
of shadings and shadows in animated sequences.

Quantitative comparisons. Quantitative evaluation in terms of PSNR,
SSIM and VMAF of different frame extrapolation methods are re-
ported in Table 4. From the comparisons we can see that existing
frame extrapolation methods (i.e., GC and HIW) usually produce
lower accuracy than interpolation methods, since less information
is used. In particular, future frames, which are necessary for frame
interpolation, are not involved while extrapolating a new frame.
However, our frame extrapolation method still achieves high ac-
curacy even without future frames. It outperforms previous frame
extrapolation methods by a large margin.

User study. To further compare the quality of different frame extrap-
olation methods, We conduct a user study on final video sequences.
Each time we side-by-side display two video sequences on a LCD
screen. One video is generated by our method while the other is
randomly chosen from GC, HIW and ground truth (GT). The left

Fig. 15. User study results of our method against GC, HIW and ground
truth (GT). 95% confidence intervals are used as error bars.

ASW Ours GT

Fig. 16. Visual comparisons against Oculus’ ASW technology [Oculus 2016].
Closeups in red boxes clearly show the artifacts generated by ASW due to
incorrect optical flow.

/ right positions are also randomly placed. The videos are allowed
to be played multiple times. 20 participants are asked to determine
whether the left-side or right-side videos are more visually pleasant.
The pair-wise comparisons of each scene are provided in Fig. 15.
As shown, our method is significantly preferred to either GC or
HIW among all scenes. For some scenes, participants lean toward
the ground truth since our method occasionally generates blurry
shadows as we explained in the failure cases. However, for the MD
scene participants choose the result of our method even more than
the ground truth. This suggests that our method can produce videos
that are of equal visual quality with the ground truth.

6.3 Comparisons against ASW Technology
Oculus’ ASW [Oculus 2016] is a mainstream technology in the indus-
try that reduces frame-drops through reprojecting and extrapolating
cached frames. Here, we compare our method with a new version
of ASW (ASW 2.0) which is integrated in the latest driver of Ocu-
lus Rift VR headset. Since little public information is available on
the details of the implementation, we can only dump extrapolated
frame sequences from the VR headset running ASW 2.0 for visual
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DAIN Ours GT

Fig. 17. Even on 1080P frames, our method still generates high-quality
results that closely match the ground truth, and significantly outperforms
previous methods, e.g., DAIN [Bao et al. 2019].

comparison. As shown in the left column of Fig. 16, ASW easily
incurs a wide range of incorrect pixels in the image space, since it
relies heavily on optical flow to infer motion within the scene. As
we known, optical flow estimation often fails at the regions con-
taining complex or repeated geometries. This leads to low-quality
image warping and hence noticeable artifacts. The visual results
and comparisons in Fig. 16 clearly indicate the superiority of our
method.

6.4 Test on High-resolution Frames
Since the proposed ExtraNet is fully convolutional, it can naturally
handle high-resolution frames. To demonstrate this, we provide
some high-resolution examples in Fig. 17. Here, we test our method
on 1080P frames. The results clearly show that the extrapolated
frames by our method still closely match the ground truth even at a
high resolution and are significantly better than those generated by
previous methods, e.g., DAIN [Bao et al. 2019].

6.5 Analysis of Runtime Performance and Latency
The total runtime of six different methods in comparison is pro-
vided in Table 5. The runtime is reported in unit of milliseconds (ms).
Since our neural network is specially designed with lightweight
gated convolutions and uses NVIDIA TensorRT at 16-bit precision
for acceleration, high runtime performance is guaranteed in most
scenes. Generally, using lightweight gated convolutions achieves
at least 8.50% speedup as compared with using standard gated con-
volutions. As seen, extrapolating a new frame at 720P resolution
with our method is less than 10 ms (including the time for generat-
ing G-buffers), which is significantly faster than the conventional
per-frame rendering and other deep learning-based methods (i.e.,
DAIN and GC). This increases the frame rate, especially for very
complex scenes. For instance, the MD scene runs at 34 FPS for 720P
with RT enabled. Using our method, the frame rate will increase to
54 FPS (1.58×). Although traditional image warping-based methods
consume less time in interpolating / extrapolating a new frame,
they tend to generate images of much lower quality since rough ap-
proximations are usually involved. Moreover, interpolation methods
will inevitably introduce additional input latency as future frames
should be rendered. This is not desirable in real-time rendering,
especially in games where immediate feedback is required.

Table 5. Runtime (milliseconds) comparisons at 720P resolution. Here, we
compare our method with 3DWarp [Mark et al. 1997], BSR [Yang et al.
2011], DAIN [Bao et al. 2019], GC [Yu et al. 2019], and HIW [Schollmeyer
et al. 2017]. The statistics are measured and averaged over the four test
scenes.

ExtraNet Interpolation Extrapolation
3DWarp BSR DAIN GC HIW

Time 8.06 7.35 1.92 167 91 5.83

Table 6. Runtime (milliseconds) breakdown of our method at different reso-
lutions. The statistics are measured and averaged over the four test scenes.

480P 720P 1080P

G-buffer generation 1.01 1.32 1.75
Warping & hole marking 0.68 1.35 2.80

Network inference 2.46 5.39 11.25

Total 4.15 8.06 15.80

Table 7. Quantitative evaluation in terms of PSNR (dB), SSIM and VMAF on
different variants of our methods. HE = History Encoder. OMV = occlusion
motion vector.

ExtraNet w/o Lshade w/o HE w/o OMV

PS
N
R
(d
B) MD 28.18 27.96 27.92 27.96

RF 23.50 22.51 22.17 22.51
BK 31.19 29.75 30.49 30.25
WT 28.97 28.70 28.80 28.28

SS
IM

MD 0.880 0.877 0.877 0.878
RF 0.829 0.798 0.791 0.799
BK 0.950 0.937 0.944 0.941
WT 0.912 0.910 0.908 0.900

VM
A
F

MD 84.41 84.29 84.02 84.15
RF 83.87 79.60 77.44 79.79
BK 91.51 89.49 90.14 90.06
WT 89.60 89.53 89.41 88.29

Table 6 further shows runtime breakdown of our method at three
different resolutions. Generally, the runtime performance scales
linearly with the number of pixels since our method runs in the
image space. It is worth noting that our network can run even faster
with delicate engineering, for example, using CUDA and cuDNN
optimization rather than TensorRT or writing computer shaders
with HLSL. We consider it beyond the scope of our paper and leave
it for future work.

6.6 Ablation Study
In this section, we conduct ablation studies to evaluate the impact
of several key building blocks of our pipeline. The quantitative
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w/o History Encoder w/ History Encoder GT

Fig. 18. Comparison between models trained without and with History
Encoder. Without History Encoder, glossy reflections (top row, marked by
a red arrow) and shadows (bottom row, highlighted by red lines) will not
change with respect to movements.

w/o occlusion MV w/ occlusion MV GT

Fig. 19. Comparison between models trained without and with occlusion
motion vectors. Ghosting artifacts (along the running man in the left-most
image) appear if the model is trained without occlusion motion vectors.

w/o Lshade w/ Lshade GT

Fig. 20. Comparison between models trained without and with the shading-
augmented loss Lshade. The differences of shadows are highlighted by red
lines.

evaluation on different variants of our methods is provided in Table
7.

Validation of History Encoder. Unlike most video interpolation meth-
ods, we leverage History Encoder instead of widely used optical
flow to track movements of shadows and reflections in a scene. This
means these movements are implicitly encoded in History Encoder,
rather than explicitly represented by optical flow. Without History
Encoder, our pipeline fails to capture correct movements of shad-
ows and reflections as shown in Fig. 18, leading to obvious shading
latency in these regions.

Ours

GT

Ours

GT

Ours

Ours

GT

GT

Fig. 21. Failure cases. Our model currently cannot well handle disocclusion
out of screen (top row) and may generate blurry shadows (middle row).
It also occasionally incurs ghosting artifacts when the lighting changes
suddenly (bottom row).

Validation of occlusion motion vectors. Another important design
in our ExtraNet is the usage of occlusion motion vectors to warp
frames. As aforementioned, occlusion motion vectors help to correct
wrong warping by traditional motion vectors in those disoccluded
regions. As shown in Fig. 19, improper warping leads to obvious
ghosting effects along dynamic objects, such as the running man in
the scene.

Validation of the shading-augmented loss. In most cases, shading
changes only occupy a small portion in a frame. To enlarge their
effects, we design the shading-augmented loss Lshade and use it in
our network training. As shown in Fig. 20, this loss is beneficial
for capturing plausible shading changes (e.g., moving shadows),
avoiding flickering artifacts in animations.

7 DISCUSSION AND LIMITATION
Failure cases. While our network produces plausible results, there
are a few cases where our method does not yet perform very well.
Fig. 21 provides a collection of such failure cases.

First, we use both the traditional and disocclusion motion vectors,
and train our network to determine which one to learn from in
various cases. However, it is possible that neither the traditional
motion vectors nor the disocclusion motion vectors work well. In
this case, our network would predict wrong information. A similar
failure case is usually observed around the border of an image
(shown in the top row of Fig. 21), where new contents get in but
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was out of the image plane, thus no motion vectors would help in
this case.

Second, since we use history frames and train the network to pre-
dict shadows, it is essentially performing extrapolations of shadows.
This is significantly more difficult than shadow interpolation [Sun
et al. 2020]. Our network has successfully learned to predict the
movement of shadows, but may sometimes result in overblurred
shadow boundaries (shown in the middle row of Fig. 21). Similar
artifacts may also happen for highlights and glossy reflections.
Third, our method may generate ghosting artifacts when the

lighting in the scene changes suddenly. This is demonstrated in the
bottom row of Fig. 21. The ghosting artifact stems from a rapidly
flickering light beam in the previous frame which is memorized by
our network and improperly retained in the current frame. For such
an extreme case, most temporal methods will fail.

Orthogonal techniques. There are a few work that are not designed
for the extrapolation purpose, but are likely to be directly combined
with our method and be potentially helpful.

The first kind of such techniques is the spatial upsampling line of
work. This includes TAAU, DLSS and Neural Supersampling [Xiao
et al. 2020]. Since our method works with non-antialiased G-buffers,
it would be perfect to combine our method with such spatial upsam-
pling work, so that our temporal supersampling will be performed
on a low resolution before spatial upsampling. This would result in
a much faster performance in both G-buffer generation and network
inference. The upsampling approaches do not have to be modified
much, except to potentially weigh more on the samples from ac-
tual frames rather than extrapolated frames, since the extrapolated
shading is after all hallucinated.

The second kind of orthogonal work is about commercial latency
reduction techniques, such as NVIDIA Reflex, as well as related
approaches such as NVIDIA G-Sync. Such methods are orthogonal
because they work either after a frame is rendered (reorganization),
or by discarding frames before rendering calls (early termination).
With these methods, users will feel even less input latency / lag,
especially combined with our extrapolation method.

Further accelerations on inference. It is worth noting that the infer-
ence time of our network is far from optimized. Currently, available
network inference tools, such as PyTorch, ONNX and TensorRT,
are mostly designed for efficient evaluations of networks in large
batches of input, mostly for machine learning and computer vision
purposes. However, we only need fast inference once at a time. For
this purpose, our current TensorRT implementation can only use
the GPU at around 25%. Therefore, a specialized and efficient CUDA
implementation that fully utilizes tensor cores (potentially built on
cuDNN and cuBLAS) would be able to further boost our perfor-
mance. Since generating G-buffers for extrapolated frames requires
additional computational cost, it is also an interesting future topic
to avoid this process to further accelerate the whole pipeline, while
still preserving high image quality.

8 CONCLUSIONS AND FUTURE WORK
We have presented ExtraNet, an efficient neural network that pre-
dicts accurate shading results on an extrapolated frame, to minimize

both the performance overhead and the latency. With the help of the
rendered auxiliary geometry buffers of the extrapolated frame, and
the temporally reliable motion vectors, we train our ExtraNet to per-
form two tasks simultaneously: irradiance in-painting for regions
that cannot find historical correspondences, and accurate ghosting-
free shading prediction for regions where temporal information is
available. We present a robust hole-marking strategy to automate
the classification of these tasks, as well as the data generation from
a series of high-quality production-ready scenes. Finally, we use
light-weight gated convolutions to enable fast inference. As a result,
our ExtraNet is able to produce plausibly extrapolated frames with-
out easily noticeable artifacts, delivering a 1.5× to near 2× increase
in frame rates with minimized latency in practice.

In the future, it would be immediately beneficial to combine our
ExtraNet with the aforementioned orthogonal techniques. It would
also be interesting to train multiple networks to extrapolate more
than 1 frames consecutively, and see if the quality is still acceptable
while having an even higher frame rate. It is also worth exploring
the possibility of an inverse application: using our proposed method
(essentially 0 SPP rendering) to help with real-time ray tracing and
denoising (using at least 1 SPP). This may lead to further acceleration
and potential adaptive sampling insights.
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