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Fig. 1. We render a complex scene containing several spatially-correlated media, demonstrating that our method is able to reproduce a wide range of
appearances stemming from short-range to long-range correlations and support macroscopic heterogeneity (left). A reference generated by the classical
transport theory is provided for a comparison (right).

Transmission of radiation through spatially-correlated media has demon-
strated deviations from the classical exponential law of the corresponding
uncorrelated media. In this paper, we propose a general, physically-based
method for modeling such correlated media with non-exponential decay
of transmittance. We describe spatial correlations by introducing the Frac-
tional Gaussian Field (FGF), a powerful mathematical tool that has proven
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useful in many areas but remains under-explored in graphics. With the FGF,
we study the effects of correlations in a unified manner, by modeling both
high-frequency, noise-like fluctuations and k-th order fractional Brownian
motion (fBm) with a stochastic continuity property. As a result, we are able
to reproduce a wide variety of appearances stemming from different types of
spatial correlations. Compared to previous work, our method is the first that
addresses both short-range and long-range correlations using physically-
based fluctuation models. We show that our method can simulate different
extents of randomness in spatially-correlated media, resulting in a smooth
transition in a range of appearances from exponential falloff to complete
transparency. We further demonstrate how our method can be integrated
into an energy-conserving RTE framework with a well-designed importance
sampling scheme and validate its ability compared to the classical transport
theory and previous work.
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1 INTRODUCTION
When propagating through a participatingmedium, light is scattered
and absorbed in a very complicated way, heavily depending on the
material properties. The classical radiative transfer equation (RTE)
[Chandrasekhar 1960] is valid only when the independent scattering
approximation (ISA) holds: the particles forming the medium are far
apart from each other, and each particle scatters light independently.
The assumption of statistical independent particle positions gives
rise to the classical transport equation with exponential falloff of
light.

However, most participating media found in nature are not entire-
ly uncorrelated, and the resulting radiation transport will differ from
classical transport theory. As non-classical radiation propagation
has attracted much attention in many science and engineering fields,
different types of models have been proposed to account for spatial
correlations in a medium [Davis and Mineev-Weinstein 2011; Davis
and Xu 2014; Davis et al. 2018]. In computer graphics, non-classical
transport is initially studied and simulated in the context of discrete
granular materials [Meng et al. 2015; Moon et al. 2007; Müller et al.
2016]. Recent work attempts to explore a general framework to han-
dle spatially correlations in arbitrary random media [Bitterli et al.
2018; Jarabo et al. 2018]. Jarabo et al. [2018] introduce the General-
ized Boltzmann Equation (GBE) proposed by Larsen and Vasques
[2011] to the graphics realm, allowing a wide range of both positive
and negative correlations. Although heterogeneity is theoretically
supported by the GBE, implementing it in a renderer is still challeng-
ing. Bitterli et al. [2018] present a more convenient framework based
on ensemble-averaged transport in stochastic media and adapt the
classical RTE to satisfy energy conservation with non-exponential
transmittance. However, only high-frequency (“noisy”) stochastic
media are modeled in a physically plausible manner, which limits
the range of spatial variability at the micro-scale.

In this paper, we demonstrate that spatial correlations can be rep-
resented by a powerful mathematical tool named Fractional Gauss-
ian Field (FGF) [Lodhia et al. 2016] which not only includes the
high-frequency noise (e.g., pink noise) as a special class, but also
covers another well-known class: fractional Brownian motion (fBm)
[Mandelbrot and Van Ness 1968]. A notable strength of the FGF is
its capability of modeling a broad range of spatial variability from
noise-like to completely smooth. This characteristic enables us to
study and simulate the effects of both short-range and long-range
correlations [Samorodnitsky 2007].

Based on the FGF, our goal is to provide a unified framework with
a hand of physically meaningful and easily adjustable parameters for
modeling random media with different types of spatial correlations.
We use a homogenization approach [Davis and Mineev-Weinstein
2011] to derive analytical expressions of transmittance functions
which exhibit heavy-tailed free path distributions of the power-law
type instead of the exponential type. In our framework, long-range
spatial correlations are properly modeled by random media with the
micro-scale density of a fBm type and even a kth-order fBm type
[Perrin et al. 2001]. We show that the synthesized media tend to be
transparent when the order is high.

We implement our non-exponential transmittance functions in an
energy-conserving RTE and show that a broad range of appearances

can be simulated with low variance benefiting from a well-designed
importance sampling scheme. We demonstrate that the parameter
tuning is convenient and intuitive since each parameter has a clear
physical meaning. We also show that our method is easily extended
to support macro-scale heterogeneity.

Note that our work focuses on deriving a physically-based trans-
mittance model covering a wide range of spatial correlations. The
presented model is complementary to existing non-exponential ren-
dering frameworks such as the GBE [Jarabo et al. 2018; Larsen and
Vasques 2011] and the framework of Bitterli et al. [2018].

In summary, our contributions are the following:
• We introduce a mathematical tool for physically-based model-
ing of a broad range of spatial correlations in random media.

• We generate long-range correlations using k-th order fBm
and explain the effect of transparency that can be achieved
by a high order of k-fBm.

• Wedemonstrate the practicality of the proposed non-exponential
transmittance functions in an energy-conserving RTE frame-
work.

• We design an effective and unified importance sampling
scheme for all different types of transmittance functions mod-
eled by FGFs.

2 RELATED WORK

2.1 Classical transport
An overwhelming body of literature exists on simulating the radia-
tive transfer in uncorrelated media [Cerezo et al. 2005; Fong et al.
2017]. Conventionally, two main techniques have been proposed
for solving the classical RTE: Monte Carlo path integration meth-
ods [Novák et al. 2018; Veach 1997] and photon density estimation
methods [Hachisuka et al. 2013; Jarosz et al. 2011]. The former tech-
nique focuses on stochastic sampling of light paths connecting light
sources and cameras while the latter technique is primarily based on
photon mapping [Jensen and Christensen 1998]. It is also possible
to unify these two techniques to combine their strengths in a ro-
bust estimator [Křivánek et al. 2014]. To significantly speed-up the
light transport computation in optically dense media, the diffusion
approximation is frequently adopted with strong constraints on
the properties of the media [d’Eon and Irving 2011; Donner and
Jensen 2005; Frisvad et al. 2014; Jensen et al. 2001]. Considering the
versatility and robustness, our method currently builds upon Monte
Carlo path integration.

2.2 Non-classical transport
Evidence for the correlation of scattering particles in many fields,
including optics [Kostinski 2001; Rojas-Ochoa et al. 2004; Tsang
et al. 2002], nuclear engineering [Larsen and Vasques 2011; Larsen
and Clark 2014] and atmospheric science [Davis 2006; Davis and
Marshak 2004; Doicu et al. 2014], has inspired researchers to inves-
tigate the mechanism of non-classical particle transport. In essence,
three categories of models have been designed to deal with spatially-
correlated media. The so-called homogenization approaches seek
effective material properties of the medium to use in the solution
of a classical transport problem [Bal and Jing 2011; Davis and Mar-
shak 2004; Davis and Mineev-Weinstein 2011]. These approaches
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are quite attractive since they retain the general form of the RTE by
correcting conventional radiative parameters into effective parame-
ters taking into account spatially-correlated effects. An alternative
is to linearly combine solutions from uniform media and obtain ap-
proximated results for spatially-correlated media [Barker et al. 2008;
Cahalan 1994]. In the last category, researchers seek to develop new
RTEs amenable to either analytical or numerical solutions [Davis
and Xu 2014; Davis et al. 2018; d’Eon 2018a; Larsen and Vasques
2011]. Although approaches in the third category should be more
broadly applicable, they are rather difficult to be implemented in
existing renderers.

In computer graphics, non-classical transport was first explored
by Moon et al. [2007] in the context of rendering granular materials.
Later, this work was extended to support dynamic scenes [Meng
et al. 2015] and heterogeneous mixtures of grains [Müller et al. 2016].
Recently, simulating non-exponential radiative transfer in arbitrari-
ly stochastic media has become a topic of increasing interest, which
largely enriches the range of achievable appearance [Bitterli et al.
2018; d’Eon 2014, 2018a,b; Jarabo et al. 2018; Wrenninge et al. 2017].
Based on the GBE proposed by Larsen and Vasques [2011], Jarabo
et al. [2018] proposed a new solution to capture different types
of correlations in the media. Similar to ours, Bitterli et al. [2018]
also utilized a homogenization method to derive non-exponential
transmittance in a physically-based manner. Their method built
upon the Davis and Mineev-Weinstein model [2011] in which only
high-frequency noise-type media could be simulated. Our goal in
this paper also focuses on developing a general solution to solve
the non-exponential radiation problem in spatially-correlated me-
dia. Compared with previous work, we significantly expand the
admissible regime of spatially-correlated media benefiting from the
FGF.

2.3 Volumetric representation of media
Spatial correlations are generally caused by unevenly distributed
micro-structures inside the media. A straightforward way to model
these micro-structures relies on constructing their geometric de-
tails explicitly [Meng et al. 2015; Moon et al. 2007; Müller et al.
2016; Schröder et al. 2014; Zhang et al. 2013]. Then, scattering pa-
rameters of the bulky behavior of the material are derived. In the
context of rendering fibrous materials such as hair and fur, Kajiya
and Kay [1989] pioneered the idea of using volumetric representa-
tions instead of a large quantity of explicit geometries to encode
the micro-appearance of fibrous materials. The fabric volumes can
be modeled procedurally [Schröder et al. 2011] or gathered from
micro CT scans of real samples [Khungurn et al. 2015; Zhao et al.
2011]. After that, the classical RTE is still adopted by specifying
the scattering parameters converted from the volumetric data. To
account for angular structures in fibrous materials, the microflake
model [Dupuy et al. 2016; Heitz et al. 2015; Jakob et al. 2010] is often
used in the conversion which is able to reproduce the anisotropic
behavior of light scattering. Although images rendered with these
explicitly constructed volumetric data contain rich details, the data
collection procedure is quite time-consuming. On the contrary, the
model in this paper does not rely on any concrete form of media
and only statistical quantities related to the FGF are required.

3 FRACTIONAL GAUSSIAN FIELDS
We now give a brief description of some mathematical terminologies
and basic facts associated with fractional Gaussian fields (FGFs)
[Lodhia et al. 2016]. FGFs are a set of special Gaussian random
fields with a property of self-similarity, characteristic of a fractal
behavior, which have been studied in many disciplines including
hydrology, physics, oceanography and geography. Mathematically,
the d-dimensional FGF indexed by a spectral parameter s(≥ 0) is
given by

M = (−∆)−
s
2W (1)

whereW represents a zero-mean Gaussian white noise on Rd and
(−∆)−

s
2 is the fractional Laplacian 1 [Kwaśnicki 2017]. Some well-

known random fields are special cases of FGFs, such as white noise
(s = 0), Brownian motion (s = 1, d = 1) and fractional Brownian
motion (1/2 < s < 3/2, d = 1). Defining the Hurst parameter
H = s − d/2, self-similarity (or scale invariant) means the field
M(ax) has the same law as aHM(x) for any a > 0 and x ∈ Rd .

3.1 Fourier analysis
Eq. (1) can be explained in the Fourier space2:

F [M] = (2π |ν |)−sF [W ] (2)

with ν ∈ Rd denoting the frequency variable. This equation allows
us to interpret the FGF as a white noise filtered by a power function
in the Fourier domain. Intuitively, any FGF can be generated by
applying an inverse Fourier transform to the left-hand side of Eq. (2).
However, this is not generally well-defined for s ≥ d/2 [Duplantier
et al. 2017; Lodhia et al. 2016]. When s ∈ (0,d/2), the power spectral
density (PSD) of the FGF is given by

S(ν ) = (2π |ν |)−2sSw (3)

where Sw is the PSD of white noise.

3.2 Autocovariance function
It is more convenient to study the characteristics of the FGF using the
autocorrelation function cov(x, y) = ⟨M(x)M(y)⟩. Here ⟨·⟩ refers
to the ensemble average over all possible realizations of the FGF.
Obviously, the autocovariance function of white noise is a delta
function Swδ (x − y), implying that white noise is uncorrelated in
space and its variance is Sw . For 0 < s < d/2 (i.e., −d/2 < H < 0),
the autocovariance function is given by

cov(x, y) = C(H ,d)Sw |x − y|2H (4)

in which C(H ,d) is a scaling term varying with respect to both H
and d :

C(H ,d) =
2−2H−d Γ(−H )

πd/2Γ(H + d/2)
. (5)

Here Γ(H ) =
∫ ∞

0 xH−1 exp(−x)dx is the Euler’s Gamma function
satisfying Γ(H ) = (H − 1)Γ(H − 1). Visualization of C(H ,d) with
varied H and d is provided in Fig. 2 left. Conventionally, Eqs. (4) and
(5) can be derived via applying inverse Fourier transform to the PSD

1The fractional Laplacian generalizes the notion of derivatives to fractional powers.
2In this paper, the Fourier transformation of a function f (x) is defined as F[f ](ν ) :=∫
Rd f (x)e−2π ix·ν dx.
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Fig. 2. Left: Visualization of the scaling term C(H , d ). Right: The family of
FGFs.

of the FGF (i.e., Eq. (3)) according to the Wiener-Khinchin theorem3.
M(x) equipped with this type of autocovariance function is widely
known as pink noise 4. A notable property of the above autocovari-
ance function is that it remains unchanged when shifted in space
and is invariant under rotation. Therefore, the corresponding FGF
is stationary and isotropic.
However, when s > d/2 (i.e., H > 0) the stationarity does not

hold. For instance, the autocovariance function for H ∈ (0, 1) is
given by [Reed et al. 1995]

cov(x, y) = C(H ,d)Sw (|x − y|2H − |x|2H − |y|2H ) (6)

which clearly depends on the spatial positions of both x and y. These
FGFs are actually multi-dimensional fractional Brownian motion
(fBm) on Rd .

The definition of fBm can be generalized to higher order. Precisely,
the kth-order fBm (k-fBm) of H parameter in (k − 1,k), where k
is a positive integer, has the autocovariance function [Perrin et al.
2001]:

cov(x, y) = C(H ,d)Sw

{
|x − y|2H

−

k−1∑
j=0

(−1)j
(
2H
j

)
·

[(
|x|
|y|

) j
|y|2H +

(
|y|
|x|

) j
|x|2H

] } (7)

with (
2H
j

)
=

Γ(2H + 1)
Γ(j + 1)Γ(2H − j + 1)

. (8)

Clearly, it is also non-stationary and includes fBm for the special
case in which k = 1. Unlike pink noise (i.e., −d/2 < H < 0), PSDs
of these non-stationary FGFs are difficult to interpret despite using
some special tools [Flandrin 1989].
As summarized in Fig. 2 right, the boundary condition H = 0 di-

vides the family of FGFs into two main groups. When H ∈ (−d/2, 0)
(gray shaded region) the FGF is defined as pink noise and is station-
ary. When H ∈ (k − 1,k) (blue shaded region) the FGF is defined as
k-fBm and is non-stationary.

3The Wiener-Khinchin theorem states that the PSD of a random field and its autoco-
variance function are Fourier transform pairs.
4The term pink noise has different explanations in literature and in this paper it refers
to the random tempered distribution with a power law decay of its PSD.

H = −0.4 H = −0.3 H = −0.2 H = −0.1

Fig. 3. Simulated realizations of 1D pink noise with different values of H
(top) and visualization of their covariance matrices (bottom).

The above discussion assumes thatH is not a nonnegative integer.
WhenH is a strictly nonnegative integer (i.e., s ∈ {d/2,d/2+1,d/2+
2, ...}), there is a logarithmic correction in the correlation function
[Duplantier et al. 2017]. These special cases are not further discussed
in this paper. To avoid numerical errors around the integer values
of H , we can simply clamp C(H ,d) to a predefined threshold in
practice.

3.3 Long-range correlation
Physical phenomena modeled by k-fBm usually exhibit long-range
correlation (or long memory) behavior that can hardly be obtained
by stationary random fields (e.g., pink noise) [Davis and Marshak
2004; Samorodnitsky 2007]. It is well recognized in diverse fields
that long-range correlation is the rule rather than the exception
[Davis 2006; Davis and Marshak 2004; Davis and Xu 2014]. The
Hurst parameter H , describing the raggedness of the resultant field,
can serve as a measure of roughness and also a measure of the extent
of long-range correlation.

Fig. 3 shows simulated realizations of pink noise with increasing
values of H and visualization of the corresponding autocovariance
functions. As expected, when H < 0, the FGF is noise-like and
contains high-frequency fluctuations. The covariance in this case
is very close to the delta function, implying that the correlation is
relatively short. In comparison, the curves of k-fBm shown in Fig. 4
tend to be smooth asH increases and their autocovariance functions
have remarkable long-range dependencies. In Fig. 5, 2D FGFs are
visualized and sampled point sets are generated according to the
2D FGFs served as the density maps. Comparisons show that the
point sets generated via white noise and pink noise are quite similar
while as H goes up to the scope of fBm the patterns of the point
sets have noticeable changes. In particular, aggregates are typically
formed when H is large.

In conclusion, if H is large, the field varies very slowly and long-
range correlation occurs. As H decreases, the dependencies lessen
and the field fluctuates more and more rapidly. Additionally, we see
that k-fBm has a never-ending growth of covariance with respect to
the spatial location as predicted by Eq. (7) and evidenced in Fig. 4.

4 FLUCTUATION MODELING OF MEDIA
With FGFs at hand, we are able to model random media with dif-
ferent degrees of spatial correlations ranging from short-range to
long-range in a physically plausible manner. We assume that the
small-scale density of a medium fluctuates according to a FGF and
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H = 0.3 H = 0.8 H = 1.3 H = 1.8

Fig. 4. Simulated realizations of 1D k -fBm with different values of H (top)
and visualization of their covariance matrices (bottom).

H = −0.5
white noise

H = −0.1
pink noise

H = 0.3
1-fBm

H = 0.8
1-fBm

Fig. 5. Simulated realizations of 2D FGFs. Here we show the density maps
(top) of different distributions and the point sets generated according to the
density maps (bottom).

only statistical parameters that provide a complete quantitative
description of the medium inhomogeneity are required. Using a
homogenization strategy focusing on the ensemble averages over
all possible realizations, the transmittance functions are derived and
used in an energy-conserving RTE.

4.1 Extinction field
We consider a medium that consists of a large quantity of tiny par-
ticles interacting with light either by absorbtion or scattering. The
scattering coefficient σs and absorption coefficient σa respectively
represent the fractions of light that are scattered and absorbed. They
are routinely combined into the extinction coefficient σt = σs + σa
to give the total reduction per unit volume in radiance. The single-
scattering albedo Λ is defined as the ratio of σs to σt , i.e., Λ = σs/σt .
Let us first investigate the behavior of light transport in a statis-

tically homogeneous medium. It is worth noting that all physical
media are intrinsically heterogeneous at some scale. We show that
the micro-scale heterogeneities, which cannot be resolved determin-
istically, significantly influence the shape of transmittance.
In our model, the extinction of a medium is expressed as

σt (x) = σm + σµ (x) (9)

when viewed at the micro-scale. Here σm is a constant describing
the overall density of the medium and σµ (x) is depicted by a random
field whose 1D transects are from a 1D FGF with mean zero. Thus for
a given position x in the medium, σt (x) defines a random variable

following the Gaussian distribution with its mean ⟨σt (x)⟩ = σm . Its
variance is controlled by the FGF, and hence is influenced by its
autocorrelation function.

Note that σµ is not modeled in 3D. This can simplify the calcula-
tion of statistical quantities for the FGF, especially for k-fBm, and is
reasonable if we assume that the FGF is isotropic. In fact, any 1D
transect of an isotropic 3D FGF is a 1D FGF with the same property
(e.g., the Hurst parameter). In 1D, C(H ,d) reduces to

C(H , 1) = −
1

2Γ(2H + 1) sin(πH )
. (10)

Please refer to the supplemental document for the detailed deriva-
tions. For brevity, we drop the dimension parameter (which is always
1) and rewrite C(H , 1) as C(H ) henceforth.

4.2 Optical depth and line-averaged extinction
In simulating radiative transfer, we are primarily interested in the
variability of the optical depth τ (x, t) which is defined as

τ (x, t) =
∫ t

0
σt (x + t ′ω)dt ′ (11)

whereω ∈ S2 is a unit direction along which a photon is travelling
and t denotes the free path between two interaction points. Holding
t constant, τ (x, t) is still a random variable following the Gaussian
distribution.

Now consider the line-averaged extinction σ̄t = [
∫ t
0 σt (x+t ′ω)dt ′]/t

which is related to τ (x, t) by

τ (x, t) = tσ̄t . (12)

It’s easy to verify that the ensemble-averaged σ̄t over all possible
realizations is

⟨σ̄t ⟩ = σm . (13)
The variance of σ̄t is not trivially determined and varies signifi-

cantly with respect to the Hurst parameterH . Defining x′ = x+ t ′ω
and x′′ = x + t ′′ω, the variance of σ̄t is calculated as

var[σ̄t ] =
1
t2 (⟨τ (x, t)

2⟩ − ⟨τ (x, t)⟩2)

=
1
t2

∫ t

0

∫ t

0
⟨σµ (x′)σµ (x′′)⟩dt ′dt ′′

=
1
t2

∫ t

0

∫ t

0
cov(x′, x′′)dt ′dt ′′.

(14)

As seen, the variance of σ̄t is tightly linked to the autocovariance
function of the FGF.
Substituting the autocovariance function of pink noise (i.e., Eq.

(4)) into the above formula allows us to obtain the variance of σ̄t as
(see the derivations in the supplemental document)

varp [σ̄t ] = −2C(H + 1)Sw t2H . (15)

This reveals that the variance of σ̄t has a pow-law decaywith respect
to t when the media have a pink noise property at the micro-scale.
This is evidenced in Fig. 7 where we conduct numerical experiments
to show the correctness of Eq. (15). In the numerical experiments
as sketched in Fig. 6, we first generate many realizations (1000 in
our experiments) of 1D pink noise (σm = 0 and Sw = 1) for a given
Hurst parameter H . Each realization contains N = 2048 samples
and is defined on a scale from tmin = 0 to tmax = L where L is the
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Fig. 6. Illustration of the numerical experiments. We collect line averages
of length t from many realizations of an FGF and then build a histogram
(blue bars) for the collected values.
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Fig. 7. Comparisons of varp [σ̄t ] between numerical results (Num.) and
theoretical results (Theo.). Left: Histograms of σ̄t with different sample
length n and Hurst parameter H collected in numerical experiments. Right:
Plots of numerical results and theoretical results.

outer-scale of the field. We then collect the values of line-averaged
extinction σ̄t with sample length n = 1, 10, and 50, respectively. The
path length t and the sample length n are connected by t = nL/N .
Histograms of different n and H are provided on the left panel
of Fig 7. Variances of σ̄t are estimated and plotted on the right
panel. As seen, the theoretical results predicted by Eq. (15) achieve
a reasonable agreement with numerical simulations.

For fBm, we may obtain a similar result using the same strategy.
However, since it is non-stationary, the variance derived in this way
will depend on the spatial position x. Please refer to the supplemental
document for the detailed derivations and more discussions. A more
reasonable expression of the variance can be derived according to
the one-point scale-independence property of fBm. Specifically, if a
random field satisfies one-point scale-independence, the variance
of the line-averaged field and the variance of the field itself differ at
most by a small amount on the order of a very small ratio [Davis
and Marshak 2004]. With this property, we have

var[σ̄t ]
var[σt ]

≈ 1. (16)

Therefore, we can estimate the variance of σ̄t in the case of fBm
via the variance of σt itself. The variance of a field of fBm with an
outer-scale L is calculated as varf = [

∫ L
0 cov(x, x)dx]/L. Hence, we

have

varf [σ̄t ] =
1
L

∫ L

0
−2C(H )Sw |x |2H dx = −

2C(H )Sw
2H + 1

L2H . (17)

In this case, the variance keeps unchanged with respect to t and
only varies according to H for a given outer-scale L. Note that an
identical expression is derived in the supplemental document using
the strategy of substituting Eq. (6) into Eq. (14).
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Fig. 8. Left: Comparisons of varkf [σ̄t ] between numerical results (Num.)
and theoretical results (Theo.). Right: Plots of varkf [σ̄t ] with respect to the
Hurst parameter H and outer-scale L.

The one-point scale-independence property also holds for k-fBm
such that we can generalize the above calculation of variance to
k-fBm (see the derivations in the supplemental document):

varkf [σ̄t ] =
2C(H )Sw (−1)k

2H + 1

(
2H − 1
k − 1

)
L2H . (18)

Clearly, Eq. (17) is a special case of Eq. (18).
We verify the correctness of Eq. (17) and Eq. (18) by conducting

the same numerical experiments as in the case of pink noise. The
results (with L = 10 and Sw = 1) are shown in Fig. 8 left. Note
that changing the sample length n and hence the path length t
does not alter the value of varkf [σ̄t ] for different H and the errors
between numerical results and theoretical results are very subtle.
This fulfills the property of one-point scale-independence for k-fBm.
The comparison between Fig. 7 right and Fig. 8 left also tells that
fields with a pink noise property (as well as a white noise property)
are not one-point scale-independent.

All in all, the variance of σ̄t is given by

var[σ̄t ] =


Sw t
−1 H = −1/2

Sp (H )t2H H ∈ (−1/2, 0)
Skf (H )L2H H ∈ (k − 1,k)

(19)

in which

Sp (H ) =
Sw

Γ(2H + 3)| sin(πH )|
(20)

Skf (H ) =
Sw

Γ(2H + 2)| sin(πH )|

(
2H − 1
k − 1

)
. (21)

Generally, var[σ̄t ] becomes large as the Hurst parameter H grows;
see Fig. 8 right. Moreover, we see in Fig. 8 that the outer-scale L has
a great impact on var[σ̄t ] when the field is modeled as k-fBm. Since
the k-fBm has a never-ending growth of variance with respect to the
spatial location, a large L will inevitably cause a large variance. In
practice, L should be chosen larger than the extent of the medium.

4.3 Transmittance
We already know that traditional transmittance for participating
media without spatial correlation is exponential. In this section, we
derive transmittance for spatially-correlatedmedia modeled by FGFs
and show that their expressions of transmittance deviate greatly
from the exponential function.
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Fig. 9. The differences of var[σ̄t ] between the Bitterli model (left) and our
model (right).

In ourmodel of randommedia, we attempt to capture the ensemble-
averaged transmittance:

⟨Tr(t)⟩ = ⟨e−t σ̄t ⟩ =

∫ ∞

0
e−t σ̄tp(σ̄t )dσ̄t (22)

in which p(σ̄t ) is the probability density function (PDF) of the ran-
dom variable σ̄t . Similar to previous work [Bitterli et al. 2018; Davis
and Marshak 2004; Davis and Mineev-Weinstein 2011], ⟨Tr(t)⟩ can
be evaluated by the characteristic function of p(σ̄t ), as this form
of calculation in the above equation resembles the computation of
the characteristic function. Moreover, we assume σ̄t follows a strict-
ly non-negative gamma distribution in calculating the ensemble-
averaged transmittance. This avoids the problem that the extinction
becomes negative in the Gaussian distribution. Based on the char-
acteristic function of the gamma distribution, we derive analytic
expressions of transmittance for media with different types of spatial
correlations. Mathematically, we have

φσ̄t (t) =

∫
R
e it σ̄tpΓ(α )(σ̄t )dσ̄t =

(
1 −

it ⟨σ̄t ⟩
α

)−α
(23)

and the transmittance is given by

Tr(t) = φσ̄t (it) =
(
1 +

⟨σ̄t ⟩

α(t)
t

)−α (t )
(24)

with

α(t) =
⟨σ̄t ⟩

2

var[σ̄t ]
. (25)

Substituting ⟨σ̄t ⟩ = σm and the expressions of var[σ̄t ] into Eq. (24)
and Eq. (25), we obtain the transmittance for different types of spatial
correlations. The expressions of various transmittance functions are
listed in Table 1.

The transmittance functions derived above bear some similarity
to the fractal noise model of Bitterli et al. [2018] which utilizes the
Davis and Mineev-Weinstein model [2011] to derive closed-form
expressions of non-exponential transmittance. Unlike our model
in which the mean extinction σm and the variance of σ̄t are de-
coupled, the mean extinction in their models has a great impact
on the variance of σ̄t except for some special cases. As shown in
Fig. 9 left, var[σ̄t ] would grow dramatically as σm increases when
H is relatively high. However, this is not the case in our model
(Fig. 9 right). As an advantage, the decorrelation of σm and var[σ̄t ]
facilitates independent parameter tuning.
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Fig. 10. Ensemble-averaged transmittance functions of the Bitterli model
[Bitterli et al. 2018] (left) and our model (right). The Bitterli model will
produce non-physical transmittance functions when H > 0.
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Fig. 11. Explanation of transparency as an extreme case of our model. Left:
Illustration of light interacting with a random medium with a large H value.
Right: The transmittance functions between our model (k-fBm) and the
traditional model (Exp.) with low extinctions are quite different although
similar transparent effects can be achieved.

Another main difference between the Bitterli model and our mod-
el is that we support a much wider scope of spatial correlations,
ranging from short-range to long-range. In this context, the Bitterli
model can be viewed as a subset of our model which only handles
random media with a pink noise property (−1/2 < H < 0). Unnatu-
ral transmittance will be generated if H in the Bitterli model goes
beyond the scope −1/2 < H < 0, as shown in Fig. 10.

4.4 Transparency
The tendency in Fig. 10 right also indicates that the transmittance
function will degrade into a constant function Tr = 1 when H is
sufficient large. In this extreme case, we actually get a transparent
medium. This phenomenon can be explained physically in Fig. 11. A
very large value of H implies that primary particles (blue dots) in a
random medium start to tightly bound together, forming aggregates
or even agglomerates. Obviously, this medium has a very strong
spatial correlation, i.e., most of the particles in the medium share
the same position. When a light beam hits such a medium, it rarely
hits an aggregated scatter in the medium, leading to an almost con-
stant transmittance function after performing ensemble averaging.
Although setting the extinction coefficient to a small value may also
achieve the transparent effect, the variation trends of transmittance
decay between these two models are quite different as illustrated in
Fig. 11 right. Visual comparisons of synthesized images provided in
Fig. 15 and Fig. 16 further showcase the differences between these
two settings.
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Table 1. Expressions of transmittance functions and the corresponding derivatives for different types of spatial correlations at the micro-scale.

H var[σ̄t ] Transmittance Tr(t) ∂α(t)/∂t ∂β(t)/∂t

White noise −1/2 Sw t
−1

(
1 + Sw

σm

)− σ 2
m
Sw

t σ 2
m
Sw 0

Pink noise (−1/2, 0) Sp (H )t2H
(
1 + Sp (H )

σm t2H+1
)− σ 2

m
Sp (H )

t−2H
−2Hσ 2

m
Sp (H )

t−2H−1 (2H+1)Sp (H )

σm t2H

k-fBm (k − 1,k) Skf (H )L2H
(
1 + Skf (H )

σm L2H t
)− σ 2

m
Skf (H )

L−2H

0 Skf (H )

σm L2H

5 RENDERING TECHNIQUES
So far, we have derived the expressions of transmittance for vari-
ous spatially-correlated media modeled by FGFs. We now use these
transmittance functions in a physically-based rendering framework.
Classical RTE suffers from unacceptable non-conservation of energy
when these non-exponential transmittance functions are used direct-
ly. To alleviate this problem, an energy-conserving RTE framework
is proposed by Bitterli et al. [2018].

Similar to the classical RTE, the integral form of this framework,
i.e., the Volume Rendering Equation (VRE), is expressed as

Lo (x,ω) =∫ t

0
T (x, x′)Λσt (x′)Li (x′,ω)dt ′ +T (x, xs )Ls (xs ,ω)

(26)

where
Li (x′,ω) =

∫
S2

L(x′,ω ′)fp(ω,ω
′)dω ′ (27)

is the in-scattered radiance, xs is a point on the surface, and fp
denotes the phase function. To ensure energy conservation, the
transport kernel T (x, x′) should be set to

T (x, x′) =

{
Tr(x, x′) if x′ on surface
− 1
σt (x′)

∂Tr(x,x′)
∂t if x′ in media. (28)

It is easy to verify that if the medium fluctuates as white noise at
the micro-scale the transport kernel is exponential and the energy-
conserving VRE converges to the classical VRE. Seemore discussions
in the supplemental document.
Although energy-conserving, this form of VRE is not currently

reciprocal. To ensure reciprocity, some term rearrangements and ap-
proximations are required in the path integral formulation [Bitterli
et al. 2018].
Eq. (28) shows that the transport kernel relies on the partial

derivative of the transmittance. Since every transmittance function
in our model has the form Tr(t) = β(t)−α (t ), its partial derivative
with respect to t is calculated as

∂Tr(t)
∂t

= Tr(t)
[
−
∂α(t)

∂t
ln β(t) −

∂β(t)

∂t

α(t)

β(t)

]
. (29)

The expressions of ∂α(t)/∂t and ∂β(t)/∂t are also listed in Table 1.

5.1 Importance sampling
When solving the above VRE via Monte Carlo-based integration,
it is central to design a proper importance sampling scheme for
sampling the free path t [Novák et al. 2018]. For the case of k-fBm,
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Fig. 12. Sampling PDF comparisons of our method against the traditional
exponential distribution. From left to right, H = −0.4, −0.3, −0.2, and −0.1,
respectively.
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Fig. 13. Equal-sampling-rate (64 spp) comparisons of our analytical path
sampling method against traditional path sampling method using an ex-
ponential distribution on rendering a homogeneous medium with fixed
mean extinction σm = 2 and different degrees of correlations. From top
left to bottom right, H = −0.3, −0.2, −0.1, 0.5, 1.5, and 2.5, respectively.
Quantitative measures in terms of RMSE are shown in the brackets.

the sampling PDF is relative easy to obtain since the transport kernel
reduces to

T (x, x′) =
{ (

1 + σm
α t

)−α if x′ on surface(
1 + σm

α t
)−α−1 if x′ in media

(30)

with α = L−2Hσ 2
m/Skf (H ) which is actually a constant. In this case,

we sample the free path t with the PDF:

pkf (t) = σm
(
1 +

σm
α

t
)−α−1

(31)

according to the transport kernel in media.
For the case of pink noise, sampling according to the transport

kernel is impractical since the inverse of the cumulative distribution
function (CDF) lacks a closed-form expression. Observing that the
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transport kernel of pink noise lies between that of white noise and
k-fBm, we suggest use the following sampling PDF:

pp (t) = w1c1

(
1 +

Sp (H )

σm
t

)− σ 2
m

Sp (H )
−1

+w2c2

(
1 +

Sp (H )

σm

)− σ 2
m

Sp (H )
t

(32)

in which c1 = σm and c2 =
σ 2
m

Sp (H )
ln

(
1 + Sp (H )

σm

)
are two scaling

constants ensuring that the PDF is properly normalized. The weights
w1 andw2 are set to (2H + 1) and −2H , respectively. Fig. 12 verifies
that this sampling PDF (red curves) tightly matches the transport
kernel in media (blue curves). As this sampling PDF comprises two
components, an additional random variable is required to select the
component first according to the weightsw1 andw2.

Fig. 13 compares our sampling method to the traditional sampling
method using an exponential function on rendering a homogeneous
medium with various spatial correlations. The sampling rate for all
algorithms is fixed to 64 spp. As expected, our method produces
visibly smoother images containing less firefly artifacts for all types
of microscopic fluctuations of media. Quantitative comparisons in
terms of root mean squared error (RMSE) further prove the effec-
tiveness of the proposed sampling method.

5.2 Heterogeneous media
Currently, we borrow the same idea from the Bitterli model [Bitterli
et al. 2018] to support macro-scale heterogeneity. Assuming a con-
stant correlation throughout the medium, this strategy scales the
free path t to match the macroscopic density locally. Specifically, de-
noting σM as the average extinction of the heterogeneous medium
at the macro-scale, the transmittance function is modified as

Tr(x, t) = ⟨Tr(τ (x, t)/σM )⟩. (33)

When handling heterogeneous media, we first sample an optical
depth τ using the above sampling strategy and then search for the
corresponding free path t via regular tracking or ray marching. A
prevailing alternative is to use delta tracing [Novák et al. 2018; Raab
et al. 2008] which is more efficient and unbiased in general. Unfortu-
nately, delta tracking, which is based on rejection sampling, requires
that the transmittance to be exponential [Bitterli et al. 2018]. Al-
though our transmittance functions do not satisfy this requirement,
we can still perform delta tracking for k-fBm since the PDF of σ̄t is
independent with t in this case. Looking back to the calculation of
ensemble-averaged transmittance in Eq. (22), it is possible to approx-
imate ⟨Tr(t)⟩ with the Monte Carlo estimator [

∑N
i exp(−tσ̄ti )]/N

where the samples σ̄ti are drawn from the gamma distribution:

σ̄t ∝ Γ

(
σ 2
m

Skf (H )L2H ,
σm

Skf (H )L2H

)
. (34)

Now, traditional delta tracing applies for each sample σ̄ti .

6 RESULTS
We have implemented the proposed technique on top of the Mitsuba
physically based renderer [Jakob 2010] and successfully used it to
simulate different types of spatially-correlated media. The degree

of correlations of the media is mainly determined by the Hurst
parameter H . For other parameters, L is set to 10, Sw is set to 1 and
the phase function is set to isotropic unless mentioned otherwise.
All synthesized images are created by a PC with Intel Core i7-6900K
CPU and 16G RAM.

Rendering of homogeneous media. In Fig. 14 we render a ho-
mogeneous medium with the same overall density σm but different
spatial correlations. The Hurst parameter H ranges from −0.4 (pink
noise) to 1.5 (2-fBm) which means the correlations become longer
gradually. Compared with the reference generated by the classical
exponential transmittance, spatial correlations, either a pink noise
type or a k-fBm type, yield brighter appearances due to slower-than-
exponential attenuations. It achieves a near transparent effect when
H is very large (e.g.,H = 1.5) since the transmittance function tends
to be unity in this case. Oppositely, when H is very close to −1/2,
e.g., H = −0.4, the result is almost identical to that of the classical
transport with exponential falloff. This implies that our method con-
verges to the classical transport when the FGF is white noise. Here,
we set the phase function to isotropic. For the results of anisotropic
phase functions, please refer to the supplemental document.

Rendering of heterogeneous media. To test the versatility of
our technique, we render three different forms of heterogeneous
clouds under side lighting, front lighting and back lighting, respec-
tively. Irrespective of lighting condition, the appearance becomes
softer as H increases and approaches transparency steadily. Due to
the short-range correlation of pink noise, the difference between the
exponential transmittance and the non-exponential transmittance is
not that remarkable. For k-fBm, media become uneven as shown in
Fig. 5, i.e., regions where particles have an excess of close neighbors
are surrounded by regions devoid of particles. This allows light pen-
etrate further on average, leading to transparency in some extent.
Although it is also possible to get transparent effects via scaling the
original density with a very small value in the classical RTE, the
results are quite different in these two cases as evidenced in Fig. 16.
As seen, lowering the overall densities only makes the media thin
globally while increasing H leads a local change of transparency.
Fig. 17 further shows that significant appearance changes exist in
different spatially-correlated media even after normalization such
that the transmittances share the same mean free path. In addition,
as H increases the media tend to create less scattering interactions,
which reduces the total rendering cost.

Comparison to previous work. In Fig. 18 we compare to the
GBE proposed by Jarabo et al. [2018] in simulating non-exponential
transmittance of a homogeneous medium. Although their transmit-
tance is different from ours, a similar appearance can be obtained
with carefully parameter adjusting. Unfortunately, the GBE current-
ly does not support macroscopic heterogeneous in practice, which
significantly limits its applicability. We also compare to the Bitterli
model [Bitterli et al. 2018] in Fig. 19. Fixing other parameters, the
appearance changes are subtle with respect to H in that model,
since they only support random media of a pink noise type, i.e.,
H ∈ (−1/2, 0). Because of the long-range correlation of k-fBm, a
much wider range of appearances can be achieved by our model
through adjusting the Hurst parameter H only.

Impact of L and Sw . In Fig. 20, we analyze the impact of L and
Sw on the effects of correlations by rendering a simple object under
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Exp. H = −0.4 (Pink noise) H = −0.1 (Pink noise) H = 0.5 (1-fBm) H = 0.8 (1-fBm) H = 1.5 (2-fBm)

Fig. 14. Effects of spatial correlations in homogeneous media. The Hurst parameterH ranges from −0.4 (short-range correlation) to 1.5 (long-range correlation)
which yields a wide range of appearances. Other medium parameters are σm = 1.5 and Λ = 1.

Side lighting

Exp. H = −0.1 (Pink noise) H = 0.2 (1-fBm) H = 1.2 (2-fBm)

Front lighting

Exp. H = −0.1 (Pink noise) H = 0.2 (1-fBm) H = 1.2 (2-fBm)

Back lighting

Exp. H = −0.1 (Pink noise) H = 0.2 (1-fBm) H = 1.2 (2-fBm)

Fig. 15. Effects of spatial correlations in heterogeneous media under different lighting configurations. In general, the appearance becomes softer as H
increases and approaches transparency steadily. The albedo Λ is set to 1 in all scenes.

a variety of configurations. Recall that in our model L is the outer-
scale of the random field while Sw is the PSD of the underlying
white noise. L only influences the k-fBm type media and has no
effect on the pink-noise type media since pink noise is stationary.
To make our model physically plausible, we ensure that L is larger
than the extent of the media. However, if L is very large, the medium
will approach complete transparency very fast as H increases. The
parameter Sw is similar to the parameter “C” in the Bitterli model

which generally determines the energy level of the field. As Sw
increases, the variance of line-averaged extinction increases and the
attenuation of light tends to be small.

Rendering of a complex scene. In Fig. 1, we render a complex
scene containing several spatially-correlated media, either homoge-
neous or heterogeneous, using our method (left). The Hurst param-
eter H ranges from −0.4 (pink noise) to 1.8 (2-fBm). As expected,
the appearance is quite different from the one generated by the
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Side lighting

Exp.

Front lighting

Exp.

Back lighting

Exp.

Fig. 16. The nearly transparent effects achieved by lowering the overall
densities of the media. In these scenes, we set the density of each cloud to
one percent of the original density. Note the differences compared against
our model with a large value of H (the right-most column of Fig. 15).

Exp. H = 0.2 H = 1.2

Fig. 17. The same cloud as in the last row of Fig. 15 is rendered with
different degrees of spatial correlations, but normalized such that all three
transmittances have the same mean free path.

GBE Ours Exp.

Fig. 18. Comparing to the GBE [Jarabo et al. 2018] in rendering a spatial-
correlated, homogeneous medium. To closely match the appearance gen-
erated by the GBE, we choose H = 1.2 in this scene. A reference rendered
with the traditional exponential transmittance is also provided.

classical exponential light transport (right). Since long-range spatial
correlations allow the light penetrate deeper, the appearance will be
softer and more details in the media may become clear, especially
for the heterogeneous media. In addition, spatial correlations also
enhance the effect of caustics.

7 LIMITATIONS AND FUTURE WORK
Negative correlations. The correlations simulated by our tech-
nique using Hurst parameter H > −1/2 are widely recognized as
positive correlations. In this vein, many particles huddle together,
leaving empty regions in the media and hence letting more light pass
through. On the opposite side, there are negative correlations [Shaw
et al. 2002] in which the particles distribute more uniform thanwhite
noise 5, leading to faster-than-exponential attenuations. Actually,
our model can achieve negative correlations with super-exponential
extinction when setting H to a value smaller than −1/2. However,
this is empirical and lacks a mathematically rigorous explanation.
See more discussions in the supplemental document.

5We actually get a blue noise type in this case.
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Fig. 19. Compared with the Bitterli model [Bitterli et al. 2018] (top row),
our model (bottom row) can achieve a much wider range of appearances
through adjusting the Hurst parameter H only.
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Fig. 20. Impact of L and Sw on the appearance of spatially-correlated media.
Other medium parameters are H = 0.5, σm = 5 and Λ = 1.

Unbiased delta tracking. Although unbiased delta tracking
works for the case of k-fBm in our model, it can not be easily extend-
ed to the general case. Delta tracking requires that the transmittance
is exponential such that it is multiplicative along a ray. This is not
satisfied by general transmittance functions. Considering the effi-
ciency of unbiased delta tracking, it is quite attractive to develop
proper importance sampling solutions for handling arbitrary non-
exponential transmittance functions, and we leave it as future work.

Visible aggregates. As we mentioned earlier in Sec. 4, the ap-
pearance of spatially-correlated media become transparent as H
increases gradually. This is due to the fact that tiny particles in a
medium form larger aggregates, leading to the almost unity trans-
mittance. If the original medium is dense enough, the aggregates
will be so large that their shapes are even visible. In this case, it is
possible that geometric optics have to be employed to capture the
appearance of each bulky particles. However, to ensure conserva-
tion of mass, the relative densities of bulky particles and original
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tiny particles should be taken into consideration. How to model the
relative densities and how to enable smooth transitions from media
to visible aggregates require further investigation.

8 CONCLUSION
We have presented a new framework to model and render spatially-
correlated media in a physically-based manner. Built upon the frac-
tional Gaussian field (FGF), our modeling strategy of the spatially-
correlated media is capable of reproducing a much wider variety of
media exhibiting diverse appearances. We have derived the trans-
mittance functions for different types of spatial correlations from
short-range to long-range, and demonstrated their practicality in an
energy-conserving RTE framework.We also have discussed a special
transparent effect that our model converges to as the Hurst param-
eter of the FGF continuously increases. Experiments and results
show that our method is able to significantly expand the admissible
regime of spatially-correlated media benefitting from the powerful
functionality of the FGF. We believe that our method is another
important step towards fully understanding, representing and con-
necting the micro and macro worlds, and we also hope this paper
will increase the exposure of the FGF in the rendering community.
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