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Soft shadows, depth of field, and diffuse global illumination are common
distribution effects, usually rendered by Monte Carlo ray tracing. Physi-
cally correct, noise-free images can require hundreds or thousands of ray
samples per pixel, and take a long time to compute. Recent approaches
have exploited sparse sampling and filtering; the filtering is either fast (axis-
aligned), but requires more input samples, or needs fewer input samples but
is very slow (sheared). We present a new approach for fast sheared filtering
on the GPU. Our algorithm factors the 4D sheared filter into four 1D filters.
We derive complexity bounds for our method, showing that the per-pixel
complexity is reduced from O(n2l2) to O(nl), where n is the linear filter
width (filter size isO(n2)) and l is the (usually very small) number of sam-
ples for each dimension of the light or lens per pixel (spp is l2). We thus
reduce sheared filtering overhead dramatically. We demonstrate rendering
of depth of field, soft shadows and diffuse global illumination at interactive
speeds. We reduce the number of samples needed by 5− 8×, compared to
axis-aligned filtering, and framerates are 4× faster for equal quality.

Categories and Subject Descriptors: I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Color, shading, shadowing, and tex-
ture

General Terms: Fourier Analysis, Sampling, Filtering

Additional Key Words and Phrases: Soft Shadows, Depth of Field, Diffuse
Global Illumination, Sheared Filtering

1. INTRODUCTION

Monte Carlo distribution raytracing is an accurate way to render ef-
fects such as depth-of-field, soft shadows and indirect illumination.
But convergence to a noise-free image is slow, often requiring over
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a thousand rays per pixel. Thus, there is a considerable interest in
fast adaptive sampling and filtering approaches.

Fortunately, there is significant coherence in the intensity be-
tween pixels. Our work is closest to the 4D sheared filtering meth-
ods, pioneered by Egan et al. [2009]. These methods perform
a careful frequency analysis to determine near-optimal sampling
rates for a number of different effects, such as motion blur, soft
shadows and spherical harmonic/ambient occlusion [Egan et al.
2011a; Egan et al. 2011b]. While the sample count reductions are
dramatic, with very few additional assumptions, these sheared fil-
tering techniques are usually memory intensive and have high re-
construction overheads. One of the key challenges is the irregular
search for samples. Even if the initial samples are stratified, they
are distributed irregularly once one considers the footprint of the
4D sheared filter for each pixel. Therefore, inspite of numerous ef-
forts to accelerate the basic sheared filtering algorithm, it remained
a slow process taking several minutes per frame for reconstruction,
often dwarfing the cost of even offline raytracing.

Thus, sheared reconstruction was established as a theoretically
sound technique that reduced sample counts by one to two orders
of magnitude. But it was not practical for fast or interactive raytrac-
ing systems, since irregular sampling and high memory usage made
reconstruction too expensive. Methods based on axis-aligned filter-
ing [Mehta et al. 2012; Mehta et al. 2013; Mehta et al. 2014] were
developed in the past three years in response to this, to bring sam-
pling and filtering into the real-time domain. There is a significant
tradeoff in sample count, with axis-aligned filtering requiring an
order of magnitude more samples than 4D sheared filtering. Nev-
ertheless, the simplicity of the filter and its natural separability in
pixel-light, pixel-time or equivalent space can be exploited to min-
imize filtering time, and enable inclusion in interactive raytracing
systems. However, one needs many more input ray samples, since
the simple filter doesn’t bound the frequency spectrum tightly.

In this paper, we describe a solution to the now long-standing
problem of fast 4D sheared filtering, showing that the sample count
tradeoff in axis-aligned filtering methods is no longer needed, for
the common visual effects of soft shadows, depth of field, and
diffuse global illumination. Indeed, we achieve the best of both
worlds—the low sampling rates of sheared filtering, and recon-
struction times comparable with axis-aligned filtering.

We start from the 4D pixel-light sheared filter [Egan et al. 2011b]
in the primal domain for soft shadows (a similar analysis applies
to depth of field and indirect illumination). Inspired by the natural
separability of axis-aligned filtering, we come up with a solution
that handles the high-dimensional sheared filtering by factorizing it
into lower-dimensional forms. This overcomes the problem of ex-
pensive irregular search for samples, caused by the shearing that
couples pixel and light dimensions [Egan et al. 2011b]. Besides
the theoretical contribution of fast high dimensional filtering, that
bridges sheared and axis-aligned filtering algorithms, we dramati-
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(a) Soft shadows, 8 spp, 6.5 fps (b) Depth of Field, 11 spp, 7.5 fps (c) Diffuse Global Illum., 16 spp, 2.5 fps

Fig. 1: We can render soft shadows (CARS, two area lights), defocus blur (POOL, two point lights, modified from NVIDIA OptiX SDK)
and diffuse global illumination (ROOM, one point light) at interactive speeds by fast 4D sheared filtering on a sparsely sampled Monte Carlo
(MC) input, which is very noisy as seen in the insets. We require very low sampling rates, often under 16 samples per pixel (spp). Compared
to axis-aligned filtering (AAF) with adaptive sampling [Mehta et al. 2012; Mehta et al. 2013], we perform 4× faster, and reduce the sampling
rate required by 5-8×.

cally reduce the practical computational cost, achieving a 4x faster
implementation compared to Mehta et al. [2012; 2013], and orders
of magnitude faster than Egan et al. [2009; 011b]. Specifically, we
make the following contributions:

Factoring 4D sheared filter into four 1D filters: We first ob-
serve that the 4D sheared filter is a product of two 2D sheared filters
along orthogonal pixel-light planes, and develop a two step factored
algorithm. We then derive a further factorization into four 1D inte-
grals, that separate the 2D sheared shape into a pre-convolution and
a collection. The computational complexity1 per pixel is reduced
from O(n2l2) to O(nl), where n is the linear filter size (along one
dimension) and l2 is the number of samples per pixel (so l is the
number of samples along each dimension of the lens or light). In
sheared filtering, l can be very small, typically l ≤ 4 and the sam-
ples per pixel (spp) l2 ≤ 16. Thus, the complexity is comparable to
the O(n) cost of (fully factored) axis-aligned filtering.2

Efficient GPU Implementation of Sheared Filter: With an ef-
ficient GPU (CUDA) implementation of the factored sheared filter,

1The full complexity is O(nl + l3) but the O(nl) term is dominant, as
explained later.
2The fast sheared filter is still somewhat more expensive, both from the l
factor, and because of the larger sizen of the sheared filter. This is more than
made up for, by the much smaller number of ray samples that are needed by
our method, as compared to axis-aligned filtering.

we reduce filtering time per frame to about 70 msec. In comparison,
a direct implementation of the 4D sheared filter takes one to two or-
ders of magnitude longer. This is the first general implementation
of fast 4D sheared filtering that gives interactive performance.

Interactive Rendering of Distribution Effects: We demon-
strate accurate results for soft shadows, depth of field, and dif-
fuse global illumination with only 6-16 samples per pixel (spp),
as shown in Fig. 1. (In the main body of this paper, we consider
only single effects at a time; handling multiple effects simultane-
ously as in [Mehta et al. 2014] is discussed briefly in the Appendix,
with example images). Even though the input data is very noisy, we
are able to perform high quality reconstruction. Our results match
ground truth closely, which is typically obtained with 100× the
number of samples per pixel (see Figs. 6-8). We implement our fil-
tering algorithm on the GPU-based real-time Optix raytracer, and
demonstrate a 4× speedup in framerate over equal quality axis-
aligned filtering, while reducing sample counts by 5− 8×.

2. PREVIOUS WORK

Our work builds on a recent history of methods for adaptive image
filtering to remove noise in ray traced solutions, but most of these
methods were not intended for real-time use. Our approach also
relates to Fourier and light field reconstruction techniques, as well
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as initial approaches for fast sheared filtering for depth of field and
motion blur.

Image and Adaptive Filtering: Image filtering has a long his-
tory, including [Rushmeier and Ward 1994; McCool 1999]. Adap-
tive image sampling also has a long history, with seminal work
by Mitchell [1991]. Recently, Hachisuka et al. [2008] presented
multi-dimensional adaptive sampling and anisotropic reconstruc-
tion, that has inspired much follow-on work. Recent work also in-
cludes adaptive wavelet rendering [Overbeck et al. 2009], the A-
Trous wavelet transform [Dammertz et al. 2010], cross bilateral fil-
ters [Petschnigg et al. 2004; Paris and Durand 2006] and filtering
of stochastic buffers [Shirley et al. 2011]. A significant advance is
random parameter filtering [Sen and Darabi 2012] which seeks to
separate variation from random parameters and geometric signals.
Other recent works are based on statistical theories like SURE [Li
et al. 2012] and non-local means filtering [Rouselle et al. 2012].
Recently, Kalantari and Sen [2013] developed a method to locally
identify noise in different parts of the image, followed by standard
adaptive sampling and denoising, while Delbracio et al. [2014] use
ray color histograms. However, these methods do not exploit the
Fourier structure of the higher-dimensional light field, and typically
require high sampling rates with offline reconstruction; they are not
interactive.

Real-time Distribution Effects: Real-time soft shadows are
commonly produced using soft shadow maps that consider occlu-
sion from the entire area source [Guennebaud et al. 2007; Annen
et al. 2008]. As noted in [Johnson et al. 2009], these methods make
various tradeoffs of speed and accuracy. Soler and Sillion [1998]
provide an analytic solution, but only for geometry in parallel
planes. Shadow volumes [Crow 1977] can also be extended to soft
shadows using geometric ideas like penumbra wedges [Assarsson
and Möller 2003] and shadow volumes [Laine et al. 2005]. Another
body of work is precomputed relighting [Sloan et al. 2002], but it
is usually limited to static scenes lit by environment maps. Analo-
gously, for real-time depth of field, the general approach is to raster-
ize layers using a pinhole camera [Lee et al. 2010; Lei and Hughes
2013], and then splat and gather the samples on the image plane
to approximate defocus blur for a particular focus depth. There are
also simpler post-processing algorithms [Potmesil and Chakravarty
1981; Yu et al. 2010] that use a single pinhole rendering and depth
buffer to simulate defocus blur.

Real-time approximate global illumination techniques (a survey
can be found in [Ritschel et al. 2012]) include voxel-based cone
tracing [Crassin et al. 2011] on the GPU. Point-based approaches
include micro-rendering such as [Ritschel et al. 2009] which ray-
traces shading points and partitions them by k-means, and then does
a final gather using GPU-based photon mapping.

Although these approaches are commonly used for their high
performance, they make approximations that can produce aliasing
and other artifacts. Our method is based on unbiased Monte-Carlo
sampling, and can offer high-quality results with nearly the same
speed.

Fourier and Light Field Analysis: Our goal is to obtain low
sample counts from sheared filtering [Egan et al. 2009; Egan et al.
011b; Egan et al. 011a], while achieving interactive filter times
comparable to axis-aligned filtering methods [Mehta et al. 2012;
Mehta et al. 2013]. Our method applies to any sheared filtering
approach; we demonstrate soft shadows, depth of field, and dif-
fuse global illumination, but it could be easily extended to motion

blur [Egan et al. 2009].3 We also support multiple distribution ef-
fects [Mehta et al. 2014], as we briefly discuss in the appendix.

Both sheared and axis-aligned filtering are based on a frequency
analysis of the light field [Chai et al. 2000; Ramamoorthi and Han-
rahan 2001; Durand et al. 2005]. Other recent work in the area
includes Fourier depth of field [Soler et al. 2009] and covariance
tracing [Belcour et al. 2013] that uses a covariance representation
of the 5D space-angle-time light field. In terms of light field recon-
struction, Lehtinen et al. [2011; 2012] proposed a reconstruction
method for motion and defocus blur from sparse sampling of the
3D/5D (spatial position, lens and time) light field, but with a high
memory and computation overhead. In general, these methods are
not intended for interactive use, except for axis-aligned filtering
that requires higher sample counts. In contrast, we provide accu-
rate results with very low sample counts and interactive frame rates
using fast sheared filtering.

Fast Sheared Filtering: We are inspired by Vaidyanathan et
al. [2015], who demonstrate a fast sheared filtering approach for
defocus blur. This method was later extended by Munkberg et
al. [2014] to handle both defocus blur and motion blur at the same
time, for which Clarberg and Munkberg [2014] proposed an effi-
cient implementation. However, these methods assume a fixed fil-
ter for a small range of depths, and therefore require separation
of the scene into multiple layers. They use a two-step approach—
first project all samples through the center of the lens to neigh-
boring pixels, accumulate per-layer color and alpha, and then do a
screen-space convolution (further separated along image axes into
two passes). In contrast, we pre-convolve sampled radiance at each
pixel individually along the sampling dimension, and then perform
a sheared spatially-varying convolution by picking up appropriate
pre-convolved samples from neighboring pixels—in a total of 4
steps. Our sheared filter implementation works for multiple distri-
bution effects (soft shadows, defocus blur, diffuse global illumi-
nation), with no need for separating the scene into multiple depth
planes. Visual comparisons are made in Fig. 10. We also analyze
the computational complexity of our method, showing how it im-
proves on the basic sheared filtering algorithm.

3. BACKGROUND AND MOTIVATION

In this section, we introduce our notation for the sheared filter, and
describe the basic motivation and challenges involving factoriza-
tion as a solution for fast sheared filtering.

3.1 Basic Notation

We introduce the flatland 2D sheared filter. The next section devel-
ops the concept in 3D, and introduces the full 4D filter. We follow
notation in previous work [Egan et al. 2011b; Mehta et al. 2012]
and discuss our filtering approach for soft shadows first. Let x de-
note receiver (surface visible at a pixel) coordinate and y ∈ [−L,L]
denote the light coordinate. Very similar parameterization and no-
tation can be used for the lens coordinate for defocus, or incident
direction parameterization for global illumination, and important
details are mentioned below.

Soft Shadows: Following Mehta et al. [2012], we assume the
light has a Gaussian intensity with standard deviation σy , and a side
length 2L = 4σy . For each pixel, we want to simultaneously filter

3We do not include motion blur, since the real-time GPU Optix framework
does not natively support raytracing with motion. However, it can be easily
implemented within a CPU renderer such as PBRT or Intel’s Embree.
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and integrate light visibility and intensity, to compute the overall
pixel irradiance. Let f(x, y) be the visibility function and I(y) be
the Gaussian light intensity. Then the pixel irradiance is

h(x) =

ˆ L

−L
f(x, y)I(y)dy. (1)

It is shown in [Egan et al. 2011b] that a single occluder plane at
distance d2 from the light, produces a single line of slope given by
s = d1/d2−1 in the Fourier spectrum of f , when the receiver pixel
is at a distance d1 from the light source. With multiple occluders,
most of the Fourier energy lies between lines of slopes smin and
smax, as shown in Fig. 2(a). These bounds can be estimated during
the ray-tracing phase. The double-wedge spectrum of f is filtered
by the light intensity spectrum on the Ωy axis, and this bandwidth
is Ωmax

y = 4/L. The computation of soft shadows theoretically
requires that the receiver’s material be diffuse, but in practice mod-
erately glossy receivers also work, as shown by [Mehta et al. 2012]
and most algorithms based on shadow maps [Hasenfratz et al. 2003;
Guennebaud et al. 2006; Annen et al. 2008].

Depth of Field: For rendering depth of field, x ∈ [−W,W ]
is measured in pixel space, where W is the width of the image,
and u ∈ [−A,A] is on the lens, where 2A is the lens aperture.4
The light field incident on the camera sensor in (x, u) space has a
Fourier transform similar to the area-light visibility f . As shown
in [Mehta et al. 2014; Vaidyanathan et al. 2015], a plane at a sin-
gle depth z produces a line of slope s = W (F/z − 1)/S in the
fourier spectrum of the light field, which corresponds to the circle
of confusion at that depth. Here F is the focal distance, and S is
the size (meters) of the focal plane. Hence, most of the spectrum
is bounded between the minimum and maximum circles of confu-
sion, smin and smax. The bandlimit due to the integration with the
Gaussian lens aperture is Ωmax

u = 4/A.

Diffuse Indirect Illumination: To get the double-wedge spec-
trum for the indirect light field, it must be parameterized in coordi-
nates x along the receiver and v on a plane parallel to the receiver
at unit distance. Then a single parallel reflecting surface at distance
z from the receiver produces a line of slope s = z in the light field
spectrum in the (Ωx,Ωv) space. With multiple sloped reflectors,
as shown in [Mehta et al. 2013], we get a double wedge between
slopes smin, smax. Finally, the double wedge is band-limited by the
transfer function of the diffuse BRDF, given by:

γ(v1, v2) =
1

(1 + v21 + v22)2
. (2)

As derived in [Mehta et al. 2013] the bandlimit Ωmax
v ≈ 2.8. Note

that the bandlimiting function in this case is not a Gaussian, unlike
the lens and light functions before. Hence, we do not use Gaus-
sian weights for filtering. Instead, we importance sample along the
(v1, v2) plane and apply appropriate weights to make it equivalent
to cosine-hemisphere sampling, and then use a box filter to filter
the samples. This is explained further in Sec. 5.

Sheared Filtering: We now introduce the sheared filter for soft
shadows. A similar formalism applies to depth of field and diffuse
global illumination, except for a different choice of variables. As in-
dicated in Fig. 2(a), the resulting Fourier-domain sheared filter has
a shear slope given by the harmonic average of the min and max

4This normalization is chosen to be analogous to the soft shadow example,
and is slightly different from Mehta et al. [2014] who normalize the lens
coordinate in [−1, 1], and therefore have an extra aperture factor in their
formula for circle of confusion.

slopes, and the filter scale is proportional to the difference in the
slopes (See [Egan et al. 2011b] for details). We are only concerned
with the primal domain filter, as shown in Fig. 2(b). The final fil-
tered pixel irradiance h(x) can be obtained as follows, using a 2D
sheared filter w in flatland:

h(x) =

¨
f(x′, y′)w(x′, y′;x, y) dx′ dy′

=

¨
f(x′, y′)wx(x

′ − x;σx)wy(y
′ − y(x, x′);σy) dx′ dy′.

(3)

Both wx(·), wy(·) are Gaussian functions, with standard devia-
tions σx and σy respectively. σx depends on the sheared filter scale,
and σy depends on the light bandlimit with:

σy =
2

Ωmax
y

σx =
2

Ωmax
y

sminsmax

smax − smin

. (4)

(a) (b)

Fig. 2: Illustration of the 2D sheared filter in flatland in (a) Fourier
domain and (b) primal domain. The sheared filter in flatland gives
the weight of a sample at (x′, y′) for a pixel of interest x. The filter
can be split into two Gaussians: The x-axis Gaussian is fixed with
center at x; the y-axis Gaussian has a varying center given by y =
ηx(x− x′).

The filter is a sheared spatially-varying convolution, with the
center of the filter along the x′ axis determined by the desired lo-
cation x. The center of the filter along the y′ axis is determined by
the shear amount ηx, as in Fig 2(b),

y(x, x′) = ηx(x− x′)

ηx = − sminsmax

2(smin + smax)

(5)

while the standard deviation σy remains constant and is related to
the maximum bandlimit of the light, lens, or sloped reflectors in
different applications. Note that we have introduced the auxiliary
variable y for the center of the filter along the y′ axis.

As an aside, axis-aligned filtering can be thought of as a special
case with a shear of η = 0, so that y = 0 always. Then, the overall
filter wx(x′ − x)wy(y′ − y) can be separated into two 1D axis-
aligned Gaussians, as described in [Mehta et al. 2012]. First, they
integrate along the y′-axis and store the result for each x′. Second,
they filter the 1D result along the x-axis5 to get the final noise-free
image.

5In practice, they filter the noisy 2D image by separating the filter further
along the image axes; thus their overall filter is 1D.
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3.2 Motivation

The idea is to speed up the integrals for computing the
sheared filter, similar to speed-ups obtained by factoring function
transforms—for example when converting an image into basis co-
efficients such as spherical harmonics, fourier or wavelets. In that
canonical case, an image of N ×N pixels is transformed into N2

function coefficients,

h(u, v) =

¨
f(x, y)w(x, y;u, v) dx dy, (6)

where f(x, y) is the image or function on a 2D domain, h(u, v)
are the basis coefficients, and w(x, y;u, v) are the basis functions.
A direct implementation has cost O(N4). However, if the basis is
separable along x and y as wx(x;u)wy(y; v) , we can write:

h(u, v) =

ˆ (ˆ
f(x, y)wx(x;u)dx

)
wy(y; v)dy. (7)

A two-stage factored algorithm can reduce complexity:

g(u, y) =

ˆ
f(x, y)wx(x;u) dx

h(u, v) =

ˆ
g(u, y)wy(y; v) dy,

(8)

where both steps are now O(N3).6
Axis-aligned filtering methods that first integrate samples and

then perform image-space convolutions exploit a similar speedup.
However, sheared filtering is a slow algorithm because the filter is
not separable. Unlike in equation 7, y is not an independent variable
in equation 5. Hence, we cannot directly separate the dimensions of
the sheared filter. Also note that for different x, we have varying ηx
values in equation 5. This prevents us from separately integrating
along the y′-axis, because the filter’s center y is uncertain.

4. FAST 4D SHEARED FILTERING

We now describe our fast sheared filtering algorithm in its full four-
dimensional form. Our key insight is that with an appropriate fac-
torization, the general 4D sheared filter can be made separable into
a two-stage 2D integral. By further factoring these 2D integrals
into 1D integrals, greater speedups are obtained. We enable inter-
active frame rates, with overhead not significantly different from
axis-aligned filtering, but with much lower sample counts. Table I
gives the computational complexity of the various steps.

4.1 4D sheared filtering

Consider the 4D form of equation 3, with both x and y split into
two dimensions each. The sheared filtering integral becomes,

h(x1, x2) =

˘
f(x′1, x

′
2, y

′
1, y

′
2)wx(x

′
1 − x1)wx(x

′
2 − x2)

wy(y
′
1 − y1(x1, x′1))wy(y

′
2 − y2(x2, x′2)) dx′1dy′1dx′2dy′2,

(9)

where we have omitted the standard deviations for clarity.
Following the definitions in flatland, here (x1, x2) represent re-

ceiver space coordinates (pixel coordinates) and (y1, y2) repre-
sents the light space coordinate. The wx(x′1 − x1), wx(x′2 − x2)

6Further speed-ups may of course be obtained by a Fast Fourier Transform
or an in-place wavelet transform, but are not immediately relevant to the
sheared Gaussian filters used in this paper.

Method Input Output Integral Complexity
dim. dim. dim.

4D sheared filtering 4 2 4 O(n2l2)

Axis-aligned filtering 2 2 2 O(n)

2D factoring, Step 1 4 3 2 O(nl2)

2D factoring, Step 2 3 2 2 O(nl)

Our Method, Step 1a 4 4 1 O(l3)

Our Method, Step 1b 4 3 1 O(nl)

Our Method, Step 2a 3 3 1 O(l2)

Our Method, Step 2b 3 2 1 O(l)

Table I. : Computational complexity (per-pixel) and input/output
dimensions of various methods. The integral dim. column is the
number of dimensions we integrate over. Bold is the overall com-
plexity (most expensive step for the factored algorithms). Here n is
the linear filter size, and l2 is the number of samples per pixel.

are (spatially-varying) convolutions for each pixel (x1, x2), while
wy(y′1− y1), wy(y′2− y2) are integrals which eliminate y′1 and y′2.

Similar to [Egan et al. 2011b], we require that the area light
is parameterized with orthogonal basis vectors, guaranteeing that
(x1, y1) and (x2, y2) span orthogonal 2D subspaces of the 4D light
field. For the simplicity of derivation and implementation, x1 and
y1 are arranged as parallel, and the same for x2 and y2.

Solving this 4D sheared filtering integral efficiently is a long-
standing problem. There are two main challenges. First, the convo-
lution center on the y-plane (y1, y2) is determined by the relative
deviation on the x-plane, or (x′1−x1, x′2−x2). This indicates that
y1 and y2 are functions of x′1 and x′2 respectively, making the filter
non-separable between x and y. Second, the visibility function f
is sampled over the entire 4D space. Unlike the 2D x-plane, which
is regularly divided as a pixel grid over the output image, the 2D
y-plane is continuous, over which different pixels (x1, x2) could
(and should) sample at different locations. This means separating
samples on y1 and y2 is difficult. Hence, neither the filters nor the
samples can be easily separated.

To analyze the computational complexity, we define the im-
age resolution in (x1, x2) as N × N = O(N2), where a typical
N ∼ 1000. We define the extent of the sheared filter in w(x− x′),
corresponding to the integrals in x′1 and x′2 as n, where we use
n ≤ 32. The number of light samples along y′1 or y′2 is small and
can almost be taken as a constant, since sheared filtering works with
very low sample counts. We define this as l, where typically l ≤ 4.

As shown in Table I, the input dimensionality (of f ) is 4D,
and the output is a 2D image. The computational complexity is
O(N2) for the output, and O(n2l2) for the integral for each
pixel. The effective complexity is thus O(N2n2l2), or O(n2l2)
per pixel. In contrast, the spatially-varying image-space convolu-
tions in axis-aligned filtering can be performed in O(N2n) time
or O(n) per pixel, using image-space separable Gaussian filters.
We will show that our final separated sheared filtering algorithm
has only slightly higher O(N2nl) complexity or O(nl) per pixel
instead of O(n2l2).

4.2 Separating into two 2D integrals

The last section showed that neither the filters nor the samples
are easily separable, which would suggest that accelerating the 4D
sheared filter is very difficult. Our key insight is that while sepa-
rating (x1, x2) and (y1, y2) dimensions directly is not possible, we
can try to separate the (x1, y1) and (x2, y2) dimensions as shown
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Fig. 3: Separating a 4D sheared filter into a product of two inde-
pendent 2D sheared filters in (x1, y1) and (x2, y2). Note that, as
discussed in Sec. 4.1, separating a 4D sheared filter into 2D filters
over x-plane and y-plane respectively is more intuitive, but not fea-
sible in theory.

in Fig. 3. In this section, we show how the 4D sheared filter be-
comes a product of two independent 2D sheared filters applied over
the (x1, y1) and (x2, y2) planes respectively, and we develop a two
step factored algorithm. We keep the samples and reduce their di-
mension at each filtering step, eliminating the dependency between
y1 and y2 by integrating them one by one.

Step 1: We first apply one sheared filter in the x1y1 plane, effec-
tively evaluating the inner two integrals in eqn. 9. Since y1 and x′1
are related by equation 5, we also remove y1. We denote the three
dimensional filtered integral of f as g:

g(x1, x
′
2, y

′
2) = (10)¨

f(x′1, x
′
2, y

′
1, y

′
2)wx(x

′
1 − x1)wy(y

′
1 − y1(x1, x′1)) dx′1dy′1.

Once again, we omit the standard deviations on the Gaussians for
clarity. The complexity of this step is O(N2nl2), since g needs
to be evaluated at O(N2l) points, and the integral has complexity
O(nl). The per-pixel cost is thus reduced fromO(n2l2) toO(nl2).

Step 2: Once g is computed, we apply the second sheared filter.
We integrate along x′2 and y′2 to determine the final pixel irradiance
h(x1, x2). Similarly, y2 is eliminated since it is determined by the
value of x′2 − x2,:

h(x1, x2) =

¨
g(x1, x

′
2, y

′
2)wx(x

′
2−x2)wy(y

′
2−y2(x2, x′2)) dx′2dy′2

(11)

The complexity of this step is O(N2nl) or O(nl) per pixel. It is
less than step 1, since we only need to produce a 2D output, and the
dimensionality of g is already less than that of f .

In theory, the separation of the 4D filter into a product of two 2D
filters in equations 10 and 11 is exact only when the filter kernels
remain constant over the image plane. However, similar to separat-
ing a 2D box filter over an image into a two-pass orthogonal linear
filter, the inaccuracy when this approximation is violated is usually
negligible in practice. We will evaluate our approximation against
brute force 4D sheared filtering in Sec. 6, and limitations are shown
in Fig. 11.

4.3 Separating into 1D integrals

While the separation into two 2D integrals provides savings, the
first step in equation 10 is still expensive, with complexity O(nl2)
per pixel. We derive a further factorization into 1D integrals, with
a two-step computation of each 2D step. Both 2D filters have a
sheared shape in the xy plane. The basic idea is to separate the
sheared filter’s shape into a pre-convolution and a collection as in
Fig. 4.

Step 1a: To compute g in Step 1 efficiently, we first perform a
pre-convolution for each y1 (outer integral in eqn. 10), to produce

(a) Step a (b) Step b

Fig. 4: We first separate the 4D sheared filter into two 2D sheared
filters, and then evaluate each 2D filter in two 1D integration steps.
As shown in (a), we first convolve along the y-axis and compute a
y-dependent function (we show the visibility samples with open cir-
cles, and reconstruction locations with filled black circles, and the
red circle shows an example convolution). Then in (b), we convolve
along the x-axis to remove the y-dependence, effectively collecting
pre-convolved samples along the shear direction, using the nearest
neighbor pre-convolved values (shown in red).

an intermediate result p:

p(x′1, x
′
2, y1, y

′
2) =

ˆ
f(x′1, x

′
2, y

′
1, y

′
2)wy(y′1 − y1) dy′1. (12)

There are several important points to note here. Unlike elsewhere
in this section, y1 is an independent variable, and p is precomputed
(pre-convolved) for each y1 in preparation for step 1b, where y1
will be expressed as usual in terms of x1 and x′1. p is calculated for
each pixel (x′1, x

′
2) and each value of y′2.

Since y1 is a continuous parameter, we discretize (stratify) the
range of y1 into O(l) bins.7 In practice, accurate reconstruction
requires about 4l bins. Since l ≤ 4 in our case, we use 16 bins.

Note that p needs to be stored at O(N2l2) points, and the cost
of the integral is O(l), so that the total complexity is O(N2l3) or
O(l3) per pixel. While this is still cubic, note that l� n is a small
constant (typically l ≤ 4), and this cost is generally less than the
O(nl2) per-pixel complexity of equation 10.8 In practice, step 1a
is not even the most expensive in our implementation.

Step 1b: After this pre-convolution step, we can finally compute
g by applying the filter in the x-dimension (inner integral in eqn. 10
as follows:

g(x1, x
′
2, y

′
2) =

ˆ
p(x′1, x

′
2, y1(x1, x

′
1), y′2)wx(x′1 − x1) dx′1.

(13)
This is a 1D integral that does a “gather” around x1. Since p is al-
ready computed, it can be quickly queried. Note that the parameter
y1 on right, is a function of x′1 − x1 as usual, and is also integrated

7In practice, we use uniform jittered sampling so the samples for a given
pixel are offset the same way in each stratum, but this is not critical for our
method as long as stratified sampling is used.
8Just as in practice we must use ≈ 4l bins, we need a similar number of
bins for storing y′2 in equation 10, since the jitter offsets for different pixels
are different for the next step.
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out in this step. Since we still need to filter and integrate g along
y′2, we also discretize y′2 into O(l) bins, similar to y1.9

The complexity of this step is O(N2nl) since we need to store g
at O(N2l) values, and the integral has complexity O(n). The per-
pixel cost is thus O(l3 + nl) from combining steps 1a and 1b. In
practice, the sheared filter size n is about 32 pixels, while the num-
ber of samples on the light l2 is usually about 16. Hence we have
n > l2 and step 1b dominates, with the net per-pixel complex-
ity being O(nl). Note that this is the square root of the original
O(n2l2) complexity in equation 9.

Step 2a: As for step 1, we separate the sheared filter in step 2
into two 1D filters. Similar to step 1a, we first pre-filter the result
of step 1b, and determine the result q for every possible y2:

q(x1, x
′
2, y2) =

ˆ
g(x1, x

′
2, y

′
2)wy(y′2 − y2) dy′2. (14)

Step 2b: Finally, we integrate on x′2 while quickly querying q,

h(x1, x2) =

ˆ
q(x1, x

′
2, y2(x2, x

′
2))wx(x′2 − x2) dx′2. (15)

This last step also integrates out the y2 dependence, because y2
depends in the usual way on x′2 − x2. Finally, we have evaluated
the 4D integral of h in equation 9 using four 1D filters.

The complexity of step 2a isO(N2l2) and of step 2b isO(N2n).
Since n > l2, the last step dominates and the net per-pixel cost is
O(n) per pixel, as compared to O(nl) for equation 11. Step 1b is
the overall dominant cost, which is O(nl) per pixel. Since l is a
small constant, this is effectively O(n) per pixel, and the computa-
tional complexity is comparable to (but with higher constants than)
axis-aligned filtering.

5. IMPLEMENTATION

Our implementation involves two basic components, as in most pre-
vious work: Sampling by ray or path tracing to obtain the origi-
nal noisy samples of f(·), and filtering or reconstruction by fast
sheared filtering. We implement our algorithm using OptiX 3.0 and
CUDA 5.0 inter-operation. We use OptiX to do the sampling step,
and we store the result in OptiX buffers. Then we use four sequen-
tial CUDA pixel shader passes to perform our four-pass filtering.
We will release the source code online upon publication. Note that
while we have described filtering using integrals above, these map
almost directly to discrete summations over a grid of points. We
now discuss a few important details of the implementation.

Ray Tracing and Sampling: To reduce memory footprint while
avoiding banding artifacts, we use uniform jittered sampling [Ra-
mamoorthi et al. 2012], so that a given pixel’s samples have the
same random offset on a regular stratifed sampling grid. This makes
it easier for the filtering steps, that can now operate on a regular
grid, as well as in reducing memory in storing samples for interme-
diate stages. For soft shadows and depth of field, we sample uni-
formly on the light and lens respectively (and use Gaussian filter
weights which account for the Gaussian intensity and aperture re-
spectively). For a given pixel, we store the jitter value (∈ [0, 1]2),
and each sample’s visibility or radiance, i.e., discrete samples of
the function f(·) for filtering. These samples also determine the
pixel’s frequency information, and ultimately the slope bounds for

9Instead of enumerating each possible y′2 value and searching for feasible p
samples, we instead use an inverse method by projecting different y′2 values
of the p samples onto the discretized y′2 space.

(a) (b)

Fig. 5: (a) Since soft shadows must be filtered along x1, x2 axes as
defined by the light source, we first determine these axes in screen
space, by projection from the light to the receiver and then to im-
age space. (b) We sample indirect illumination along the v-plane
instead of the usual cosine-hemisphere sampling.

the sheared filter, smin and smax. In contrast to previous work on
axis-aligned filtering, we use only a single (non-adaptive) sampling
pass, since our sampling rates (4 to 16 samples per pixel) are so
low; these samples determine both f(·) and the sheared filter.

Filtering: Our filtering algorithm was described in the previous
section. We clamp the maximum filtering range to a diameter of
32 pixels; this prevents rapid changes in rendering speed when the
view is changed. The number of discrete bins used in filtering steps
1a and 1b for storing y values is 16 ≈ 4l. In steps 1b and 2b, it
is required that we filter along x1, x2 directions exactly—these are
given by the projection of the light’s axes y1, y2 on the receiver for
soft shadows. So, we first compute each pixel’s x1 and x2 in the
world coordinate frame, sample along each direction, then project
the sampled point back to the screen as shown in Fig. 5(a). For
indirect illumination, the filtering directions x1, x2 are orthogonal
in world space to the receiver normal, and locally aligned. For depth
of field x1, x2 are exactly along the screen’s row and column axes,
so the filtering algorithm can be applied directly.

Slope Smoothing for Soft Shadows: After the initial sampling,
many pixels on the edges of shadows do not have valid smin, smax

values (if none of the samples hit occluders), which causes edge
artifacts. Hence, similar to [Mehta et al. 2012], we obtain the slope
range for unoccluded pixels by smoothing over a 5×5 window. The
(small) time for this operation is shown as pre-filtering in Table II,
and included in the total overhead of our algorithm.

Adaptive Sampling for Depth of Field: For depth of field, for
some pixels, the slope bounds smax and smin could be of oppo-
site signs. In such cases, the shear value can be close to zero, and
the filtering is inaccurate. As in [Vaidyanathan et al. 2015], we find
that using axis-aligned filtering gives better results for pixels with
smax ·smin < 0. These pixels usually need more samples even with
filtering, so we trace a fixed 36 more samples for such pixels in a
second sampling pass (and then do standard axis-aligned filtering—
this small post-filtering time is reported as part of the overhead in
Table II). In most cases, the fraction of the image that requires fur-
ther sampling is very small. For the scene of Fig. 7, the first pass
requires 9 spp and the average from the second pass is 2.2 spp.

Sampling/Filtering for Indirect Illumination: As described
in Sec. 3.1, indirect illumination must be filtered in v-space, and
hence we also sample on the v plane. For a single pixel, we map
a uniform jittered sample with a cubic function and a scaling, to
approximate the non-uniform PDF of the diffuse transfer function
γ(v1, v2) on (v1, v2) ∈ [−5, 5]2, and then compute the ray direc-
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(a) Soft Shadows (Ours), 9 spp, 12.2 fps (b) MC Input
9 spp, 0.05s

(c) AAF (ET)
13 spp, 0.08s

(d) AAF (EQ)
46 spp, 0.30s

(e) Ours
9 spp, 0.08s

(f) Gr. truth
1K spp, 3.94s

(g) 4D SHF
9 spp, 2.92s

Fig. 6: The CAMEL scene with soft shadows, rendered at 12.2 fps with 9 samples per pixel (spp), demonstrates our ability to accurately
reconstruct overlapping and thin-occluder shadows. Comparisons show (b) noisy unfiltered MC input to our method (note that we store
individual samples for sheared filtering), (c) Equal time (ET) Axis-aligned filtering (AAF) retains some low-frequency noise, and overblurs
sharp shadow edges (since we use µ < 1) (d) Equal time (EQ) AAF is 4× slower, while (g) simple 4D sheared filtering is 50× slower.

Sampling Our fast GPU sheared filtering algorithm AAF Total
Scene Tris spp Optix

(ms)
Pre/Post
filt.(ms)

Step 1a
(ms)

Step 1b
(ms)

Step 2a
(ms)

Step 2b
(ms)

overhead
(ms)

AAF
(ms)

time
(ms)

fps

CARS 4 K 8 85.2 8.2 4.0 28.6 11.4 16.2 68.4 32.0 153.6 6.5
CAMEL 43 K 9 48.0 4.3 2.0 14.4 5.7 7.6 34.0 16.0 82.0 12.2
POOL - 11.0 69.5 1.2 4.8 25.8 11.3 20.6 63.7 13.0 133.2 7.5
STILL
LIFE

233 K 11.2 146.0 2.0 6.4 44.0 11.1 22.4 85.9 18.0 231.9 4.3

ROOM 163 K 16 310.0 - 7.5 47.9 11.5 23.8 90.7 75.0 400.7 2.5
SIBENIK 75 K 16 225.2 - 7.5 40.8 11.5 23.0 82.8 72.5 310.0 3.2

Table II. : Detailed timings of our scenes (in milliseconds) rendered at 720 × 720. Cars and Camel show soft shadows, Pool and Still Life
are depth of field, Room and Sibenik are diffuse global illumination. We list triangles and samples per pixel for all six scenes (Pool uses
spheres rather than triangles). We also list the per-frame sampling time for raytracing in Optix, followed by timings for various stages or our
algorithm, and the total overhead for fast sheared filtering. For comparison, we also list the total overhead for axis-aligned filtering. Finally,
we list the total time and frame rates. We achieve interactive frame rates of 3-12 fps on a variety of complex scenes.

tion, as shown in Fig. 5(b). Theoretically, the range of (v1, v2) is
the infinite plane, but our truncation contains over 99% of the total
energy of γ(·) and only introduces a very small bias. Note that we
apply the BRDF weight to each sample (v1, v2) and also account
for the sampling PDF. Finally while filtering in steps 1a and 2a,
we use a box function instead of a Gaussian as for soft shadows
and depth of field, since the BRDF transfer function is no longer a
Gaussian. Steps 1b and 2b (spatial filtering) can still use Gaussian
weights.

6. RESULTS

Our results are produced on an Intel 6-core 3.6GHz i7-4960X CPU,
with a NVIDIA GTX Titan video card. We show results for interac-
tive soft shadows in Figs. 1(a) and 6; depth of field in Figs. 1(b) and
7; and diffuse indirect illumination in Figs. 1(c) and 8. We compare
to stratified Monte Carlo sampling without filtering, unaccelerated
4D sheared filtering [Egan et al. 2011b], and to axis-aligned filter-
ing [Mehta et al. 2012; Mehta et al. 2013]. The accompanying video

shows animations and screen captures with moving light source,
viewpoint and some examples of dynamic geometry. We require
no precomputation except the ray-tracer BVH, and each frame is
rendered independently.

6.1 Accuracy and Speedup over Monte Carlo

The accuracy of our method, and the benefit of filtering over strati-
fied Monte Carlo is evident from the figures, for all three visual ef-
fects (soft shadows, defocus, diffuse global illumination) in a num-
ber of different situations. We take as input a Monte Carlo result
with 4-9 average samples per pixel for depth of field and soft shad-
ows, and 16 samples per pixel for indirect illumination. As shown
in the insets of Fig. 1, and Figs. 6(b)-8(b), this input is very noisy,
but our fast sheared filtering technique produces visually accurate
results compared to ground truth Monte Carlo with 1024-4096 sam-
ples, which is 100-200× slower. A quantitative comparison is in the
graph of Fig. 9. While the quantitative errors are somewhat higher
than from a visual comparison, our method converges with more
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(a) Defocus Blur (Ours), 11.2 spp, 4.3 fps (b) MC Input
11.2 spp, 0.16s

(c) AAF (ET)
15 spp, 0.22s

(d) AAF (EQ)
94 spp, 1.43s

(e) Ours
11.2 spp, 0.23s

(f) Gr. truth
1K spp, 19.2s

(g) 4D SHF
15 spp, 12.2s

Fig. 7: The STILL LIFE with depth of field is illuminated by two point lights and rendered at 4.3 fps with only 11.2 average samples per
pixel (spp). Comparisons show (b) noisy unfiltered MC input to our method, (c) Equal time (ET) Axis-aligned filtering (AAF) retains some
low-frequency noise, (d) Equal quality (EQ) AAF is 6× slower, while (g) simple 4D sheared filtering is 45× slower. Our method (and 4D
SHF) produces slight overblur for background regions and underblur for foreground ones, and transition artifacts near the focal plane where
AAF and our method switch. However, our method reduces most noise and requires the least number of samples.

(a) Diffuse Global Illum. (Ours), 16 spp, 3.2
fps

(b) MC Input
16 spp, 0.23s

(c) AAF (ET)
19 spp, 0.32s

(d) AAF (EQ)
94 spp, 1.39s

(e) Ours
16 spp, 0.31s

(f) Gr. truth
4K spp, 128.2s

(g) 4D SHF
16 spp, 7.1s

Fig. 8: The SIBENIK scene showing only 1-bounce diffuse indirect lighting with one point light, rendered with only 16 samples per pixel at
3.2 fps. Monte Carlo input in (b) is noisy, while equal time axis-aligned filtering in (c) has artifacts at this low sample count. Equal quality
AAF in (d) requires 6× as many samples as our method in (e), and is 4× slower. While there are a few artifacts remaining, our method
significantly reduces noise to the level of ground truth in (f) and simple 4D sheared filtering in (g), but is more than an order of magnitude
faster.

samples, and for equal RMS error, reduces the number of samples
needed by over an order of magnitude compared to Monte Carlo,
and about 6× relative to axis-aligned filtering.

6.2 Timings

In Table II, we show timings for steps of our algorithm on differ-
ent scenes, rendered at a resolution of 720×720. The CARS scene
in Fig. 1 has 4K triangles with soft shadows from two area lights,
each sampled with 4 samples per pixel (total 8 spp). The CAMEL
is a more complex example of soft shadows, rendered with 9 spp

for the light. The POOL (which uses spheres, rather than triangles
as primitives) and STILL LIFE show depth of field effects, while
ROOM and SIBENIK are complex scenes with over 105 triangles,
that demonstrate diffuse indirect illumination with 16 spp. The ray-
tracing time using OptiX varies with scene complexity, from 39ms
for POOL to 310ms for ROOM. The total overhead of our method
is about 40-60ms for soft shadows and depth of field, and about
80ms for indirect illumination. This is less than the cost of raytrac-
ing in most cases, and about 25% of the total cost for the more
complex ROOM and SIBENIK scenes, resulting in only a modest
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Fig. 9: RMS error of the CAMEL scene as a function of sam-
pling rate for our method, unfiltered stratified Monte Carlo and
axis-aligned filtering with adaptive sampling. At very low sample
counts, we obtain an overall benefit of more than an order of magni-
tude over Monte Carlo (even better visually), and around 4× over
axis-aligned filtering. Moreover, our method converges to ground
truth, and is always more accurate than axis-aligned filtering.

decrease in the overall performance of the real-time raytracer. Step
1b, involving the gather operation is the most expensive step, as
discussed in the text, accounting for about half the total overhead.

Compared to axis-aligned filtering (AAF), our overhead is about
2× as much for soft shadows, 4× for depth of field, and only 20%
more for diffuse indirect illumination. While equal time AAF can
use slightly more samples (and adaptively sample), the many fewer
samples needed by our method provides a net win of 4× in wall
clock time and about 5−6× sample count reduction for equal qual-
ity, as shown in the figures. Our algorithm does require more mem-
ory compared to the axis-aligned approach, since we need to store
intermediate results. However, since we usually need low sampling
rates, GPU memory is usually adequate. Even for visually indistin-
guishable convergence, we usually need no more than 25 samples
per pixel for soft shadows and depth of field effects, and 49 sam-
ples per pixel for global illumination. We achieve interactive frame
rates of 3-12fps for a wide range of scenes.

6.3 Comparisons

Axis-aligned filtering: We use the authors’ code for soft shad-
ows and indirect illumination, and implement depth of field analo-
gously. Their user-specified parameter µ is used to control filter size
and adaptive sampling rate. We use µ = 1 for equal quality compar-
isons in all six of our scene figures, and this requires about 5− 6×
the sampling rate of our method. For equal-time comparisons in
Figs. 6(c), 7(c), 8(c), we need to use µ < 1 to reduce the sampling
rate. This increases the filter sizes, and slightly overblurs the image.
Low-frequency noise is also retained in high-variance regions. For
diffuse global illumination, much higher sample counts are needed,
and the equal time comparison in Fig. 8(c) shows artifacts. Our
method performs better; While inaccuracies exist in out-of-focus
regions and artifacts can be seen around discontinuous geometry in
soft shadows and diffuse global illumination situations, our method
filters out most visible noise with significantly fewer samples.

Layered light field reconstruction: We use the source code of
LLFR [Vaidyanathan et al. 2015] to make comparisons with our
method both in terms of quality and speed for filtering depth-of-

Fig. 10: We compare insets of the STILL LIFE scene (top row) and
the POOL scene (bottom row) to LLFR [Vaidyanathan et al. 2015],
with a uniform 9 spp for both scenes and 12 layers for LLFR (the
default). Overall, LLFR has good quality and takes less reconstruc-
tion time than our method. However, it usually produces more vis-
ible noise, as mentioned in Sec. 6.3, and is limited to depth of field
only. Our method makes no assumptions about depth layers and is
general enough for soft shadows and indirect illumination as well.

field images. We use the GPU implementation of LLFR, with their
default filter width of n = 16 pixels, rather than n = 32 as used
in our results. Since the LLFR code takes as input only uniformly
sampled light fields, we disable adaptive sampling and use a con-
stant 9 spp for both depth-of-field scenes compared. LLFR requires
segmentation of the scene into depth layers, where the same filter
can be applied within a layer. Our method makes no such assump-
tions. As shown in Fig. 10, LLFR produces more noise in some
regions, because the sheared spectrum it is using is not as compact
as ours due to layering. However, LLFR has a slightly lower recon-
struction time than our method, which is partly due to their use of
half-precision floating point numbers for all stored data.

4D sheared filtering: Our method is equally accurate as the full
4D brute-force sheared filter of [Egan et al. 2011b] (compare Figs.
6, 7, 8 (c) and (g)). We implemented the simple 4D sheared filter
without any of our factorizations in CUDA, so we could compare
using the same framework as our method. We used a single filtering
pass for the 4D sheared filter, which accumulates radiance from all
samples in the neighborhood of a pixel. As seen in the figures, this
is about 40 − 50× slower than our approach. For all the depth of
field results using 4D sheared filtering, adaptive sampling is used
according to the general sampling rate formula for sheared filters
derived in [Egan et al. 2009]. At in-focus regions, since the shape
of the spectrum is no longer a double wedge, 4D sheared filtering
falls back to brute force Monte Carlo as described in [Egan et al.
2009].
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7. DISCUSSIONS AND LIMITATIONS

Complexity: The actual complexity of our four-step filtering
should be O(l3)+O(nl)+O(l2)+O(n). Clearly, steps 1a and 1b
have cost O(l3 +nl) which is l more than steps 2a and 2b. In prac-
tice, l2 < n, since l is typically 4 or less and n is 32. Therefore,
step 1b dominates. Furthermore, since the O(l3) step 1a happens
within each pixel, an efficient pixel-level parallelized implemention
is used to avoid much of the overhead caused by conflicts in pixel-
access. Hence, the O(l3) term can be absorbed into the numerical
constant, and the total complexity would be O(nl) per pixel.

Multiple Effects: Our method currently focuses on seperated
single effects. Simultaneously handling multiple effects [Mehta
et al. 2014; Munkberg et al. 2014], including soft shadows, depth
of field and motion blur, requires filtering higher dimensional (of-
ten 5D or 6D) data, while the spectrum of each slice of the data
for a single effect still remains a sheared shape. This can be diffi-
cult, since it further increases dimensionality and non-separability
of samples for different effects. However, by introducing a reason-
able approximation, we demonstrate that multiple effects could be
separated into a combination of several individual effects. Please
refer to the Appendix for detailed derivations and results.

Limitations: For soft shadows, minor artifacts could emerge due
to projections of world space receivers to screen space, when the re-
ceiver becomes almost perpendicular to the viewing direction (pro-
jection from receiver to screen space collapses to a single point),
or when the light becomes normal to the receiver (the x1, x2 axes
become parallel). For depth of field, inaccuracies may result when
the slope range at a pixel is large. In diffuse indirect lighting, a
small bias is introduced in sampling due to using truncated v-plane
sampling, but the bias is usually not perceivable.

Fig. 11: Comparisons of our method (top row) and the ground truth
(bottom row) in difficult regions. Our method produces minor arti-
facts in certain regions as pointed out and discussed in Sec. 7.

When a large filter is applied to locations where the filter sizes
vary rapidly, inaccuracies could occur since our method uses sepa-
rable passes. This is often encountered when filtering near in-focus
regions for depth of field effects, resulting in slight overblur around
these regions. We do not filter between neighboring pixels if they
are distant in world space, or if they have very different normals

(angle threshold 20◦). Pixels at which many such neighboring pix-
els are rejected may retain noise or artifacts. Figure 11 shows some
of these difficult regions and points out the artifacts.

In depth of field rendering, our method falls back to axis-aligned
filtering in regions where smax · smin < 0. Therefore, ghosting
artifacts may appear on the boundary where this switch occurs, e.g.,
around the stem of the pear in the Still Life Scene (Fig. 11 middle)
and the topmost apple. These transitions and ghosting artifacts also
occur in the original 4D sheared filtering, since the problem is not
related to separability.

Our method also suffers from the general problem of sheared fil-
tering — noisy occluding geometry. Since we are using a fairly low
number of sample rays, the occluding geometry may not be accu-
rately captured — thus the shape of the sheared filter itself could be
inaccurate and noisy. This will consequently lead to flickering be-
tween frames. However, video comparisons show that our method
still performs better than previous methods, even when the previous
approaches use many more samples and more time.

Similar to [Egan et al. 2009], our method needs to store and filter
the entire 4D light field f(x1, x2, y1, y2), which is of complexity
O(N2l2). This introduces significant storage overhead, practically
limiting our method to about 25 spp for a resolution of 2K × 2K
(for our specific hardware configuration). For HD applications, a
block-wise sampling and filtering configuration could be derived
from our work with an expected but small additional performance
cost for inter-block operations. We leave this for future work.

8. CONCLUSIONS AND FUTURE WORK

We demonstrate an interactive GPU-based method of sheared filter-
ing for Monte-Carlo rendering of distribution effects. We propose a
novel factorization of the 4D sheared filter into two 2D filters, and
we further split each 2D filter into two 1D filters. We also derive a
complexity analysis for our method, and compare it to axis-aligned
filtering. Our results show soft shadows, depth of field and diffuse
global illumination at interactive speeds for complex scenes, and
we are 4× faster than axis-aligned filtering for the same quality,
with a 5− 6× reduction in sample count.

In future work, we plan to extend our range of applications to
environment lighting or spherical harmonic occlusion [Egan et al.
2011a], and generalize our method for filtering Monte Carlo im-
ages involving higher dimensional integrals, including simultane-
ous primary and secondary distribution effects [Mehta et al. 2014;
Munkberg et al. 2014]; initial results are shown in the appendix. A
simple extension for adaptive sampling could also be considered.

Sparse sampling, followed by sophisticated filtering and recon-
struction, has emerged as an important method to dramatically
speed up Monte Carlo rendering. However, the slow performance
of methods like sheared filtering have limited the performance
gains and interactivity. We have taken an important step towards
real-time physically accurate rendering, by developing the first fac-
tored GPU 4D sheared filtering method, and expect many future
developments that enable both low sampling rates and high perfor-
mance.
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Appendix: Multiple Effects

(a) Our method, 9 spp, 580 ms (b) Ground truth, 12288 spp

(c) Unfiltered (d) Filtered visibility (e) Filtered indirect illumi-
nation

Fig. 12: The TOASTERS scene rendered with an area light, depth
of field and global illumination. Our method achieves visually plau-
sible results but uses only 9 samples per pixel, each sample with 1
ray for depth of field, 1 ray for soft shadows and 1 ray for indirect
illumination.

In this section, we focus on how to efficiently separate multiple
effects (soft shadows, depth of field and diffuse global illumination)
into independent single effects. Similar to [Mehta et al. 2014], we
observe that soft shadows and diffuse global illumination represent
direct and indirect lighting respectively, and they could therefore

be naturally separated. Thus, without loss of generality, we demon-
strate the derivation of our separation scheme only for the combina-
tion of soft shadows and depth of field effects. Figure 12(e) shows
a separate pass for the filtered indirect illumination (using the algo-
rithm in the main text), that is added to the final result in Fig. 12(a).

We refer to a simplified notation, using x as (2D) screen coor-
dinate, u as lens coordinate, and y as light coordinate. Intuitively,
the pixel radiance due to direct illumination is a two-step integral.
The first or inner step filters out the correct outgoing radiance due
to the area light, and the second or outer step filters for the lens.
The equation is given by

Ldir(x) =

ˆ
u

(ˆ
y

f(x, u, y)V (x, u, y) dy

)
k(x, u) du. (16)

where f(x, u, y) is the BRDF term, V (x, u, y) is the visibility
term, and k(x, u) represents the texture or reflectance. Note that,
this equation is difficult to separate, because both the BRDF term
and the visibility term depend on samples from the lens and sam-
ples from the area light.

To solve the problem, we first denote the product of the BRDF
term and the visibility term as F (x, u, y) = f(x, u, y) ·V (x, u, y).
Then we introduce an approximation by replacing F for each pixel
with its average over every related lens sample u, or F (x, u, y) ≈
F̄ (x, y)|u. Then equation 16 becomes

Ldir(x) ≈
ˆ
u

(ˆ
y

F̄ (x, y)|u dy

)
k(x, u) du. (17)

We have essentially factored out the inner integral over the light
for soft shadows, and the outer integral over the lens for defocus.

We now propose a two-step filtering algorithm. For each pixel,
we sample the lens to shoot primary rays. For each valid hit, we
shoot one (or more) secondary shadow rays and compute the cor-
responding F term. After this, we average primary rays to get F̄ .

The following filtering steps are straightforward. We first filter
the F̄ (x, y) light field samples, using our proposed four-step fast
sheared filtering. Then we filter the resulting (x, u) light field from
the previous step according to the lens to get the depth of field
effect, again with our fast sheared filtering algorithm. Figure 12
shows the final result as well as different stages using our method.
Compared to the claimed running time of 3.61 seconds for the same
scene using axis-aligned filtering in [Mehta et al. 2014], we achieve
a 6× speed up, yet achieving a visually convincing result, although
differences are noticeable as compared to the ground truth.

Note that, the approximation we proposed is almost as conser-
vative as that introduced in [Mehta et al. 2014]. In practice, it also
guarantees accuracy. When the effect of u range is small, the ap-
proximated F̄ is accurate. This indicates that the closer to the focal
plane, the more accurate the approximation is. For those areas far
from the focal plane, since the outer integral (lens filter) dominates,
the output image is largely blurred, so minor inaccuracies of the
visibility approximation could be neglected.

The time complexity of our separation scheme is still O(nl),
because we simply perform our fast sheared filtering twice. For the
storage, the approximation allows us to store the samples for each
effect separately, i.e. the storage cost is still 4D rather than 6D. So
we consider it practical and efficient for our algorithm to handle
multiple effects.
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