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Fig. 1. A bowl of hamsters rendered using our aggregated fur appearance model. This scene originally contains about 147 million strands of fur fibers, but we
only use 1.8 million strands of aggregated fur fibers. We use 512 samples per pixel (spp), and compare with the reference (Ref.) [Yan et al. 2017a] at equal time
(ET) and equal quality (EQ). Our method not only converges 13.5× faster than the reference at EQ (because each light path in our approach introduces a
smaller variance), but also traces more spp at ET (because the average number of bounces along a light path in Ref. is 8× more than ours). On the right, we
show the difference images between GT (converged Ref. w/ 16384 spp) and our result (still 512 spp). Note the extremely small scale marked on the color bar.

Fur appearance rendering is crucial for the realism of computer generated
imagery, but is also a challenge in computer graphics for many years. Much
effort has been made to accurately simulate the multiple-scattered light
transport among fur fibers, but the computation cost is still very high, since
the number of fur fibers is usually extremely large. In this paper, we aim at
reducing the number of fur fibers while preserving realistic fur appearance.
We present an aggregated fur appearance model, using one thick cylinder to
accurately describe the aggregated optical behavior of a bunch of fur fibers,
including the multiple scattering of light among them. Then, to acquire the
parameters of our aggregated model, we use a lightweight neural network to
map individual fur fiber’s optical properties to those in our aggregated model.
Finally, we come up with a practical heuristic that guides the simplification
process of fur dynamically at different bounces of the light, leading to a
practical level-of-detail rendering scheme. Our method achieves nearly the
same results as the ground truth, but performs 3.8×-13.5× faster.
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1 INTRODUCTION
Computer generated animals are pervasively seen in all kinds of art
forms from animations and movies generated by offline rendering
techniques to real-time applications such as video games and vir-
tual/augmented reality. The fuzziness and the saturated appearances
of animal furs greatly enhance the realism of animal characters as
well as the entire artistic work.

However, rendering the appearance of fur is never an easy task.
The main reason, as one might immediately think of, is that the
number of individual fur fibers is enormous, easily passing the
order of millions. The huge number of fur fibers imposes heavy
computation cost on ray-scene intersections, shading, as well as the
entire rendering process. Moreover, in order to render the realistic
appearance of an entire fur pelt, a renderer is supposed to simulate
multiple (usually from 30 to 100) bounces of light among fur fibers.
What is worse, in modern computer generated imagery (CGI), it
is common to see hundreds of animals in one scene, making it
impractical to simply leave the complex light transport problem to,
e.g., brute force path tracing.

Much effort has been devoted to accelerating animal fur rendering.
Some previous work focuses on simplifying the complex multiple
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scattering of light within the hair/fur volume. For example, Zinke et
al. [2008] proposed the technique of dual scattering to approximate
multiple scattering without tracing rays. Some other work turns
the problem of hair/fur rendering into a relatively better-studied
problem of participating media rendering. For example, Moon et
al. [2008] convert human hair geometry to a volume of participating
media to approximate low-frequency multiple scattering. Yan et
al. [2017a] use subsurface scattering, specifically designed for animal
fur, to simplify and reduce the appearance of fur from multiple
bounces of light to a simple BSSRDF (Bidirectional Surface Scattering
Reflectance Distribution Function) model.
Despite the success of these methods, we notice that approxi-

mating light transport is still not the most straightforward way to
speed up fur appearance rendering. Instead, sharply reducing the
number of fur fibers in the sense of geometry is more intuitive and
potentially more efficient for the purpose of acceleration. One naïve
but pervasively used method by the industry is to reduce the num-
ber of fur fibers while making each of the remaining fiber a thicker
cylinder. However, this approach results in overly hard/bold/dry
appearances with unrealistically biased brightness/hue that fails to
match the original. Therefore, we ask the question: can we do better
than the naïve method?
In this paper, we analyze the possibility of reducing the number

of fur fibers without visually noticeable compromise to the render-
ing quality. We seek a solution that is both accurate and practical.
The key idea of our method is to use one thick fiber to represent
the aggregated appearance of a bunch of fur fibers, including the
multiple bounces of light among these fibers. And we show that the
aggregated appearance can be well captured using a single fur fiber’s
optical properties with some extensions. For example, we assign
our aggregated fur fiber different optical properties according to dif-
ferent incident directions. Then we refer to a data-driven approach,
using a neural network, lightweight enough to be implemented in-
line in shaders, to evaluate our model practically. We further come
up with a level-of-detail scheme that dynamically simplifies the
fiber geometry based on the viewing distance and different num-
ber of bounces along one light path, achieving reliable appearance
aggregation together with controllable geometry simplification.
We demonstrate that our results are almost indistinguishable

from the ground truth, but are 3.8×-13.5× faster. Moreover, since our
method aims at accelerating fur rendering in the level of geometry
and appearance, other methods that approximate light transport as
mentioned earlier, can still be applied in addition to our method.
Therefore, our work can benefit a variety of applications, from those
who can only afford a small amount of fur fibers, possibly due
to the constraint on computational power, to those requiring high
precision but still needing better performance. Therefore, we believe
that our method has made an important contribution to the long-
standing research problem of geometry/appearance prefiltering.

2 RELATED WORK
Hair/fur models for single fiber. Hair and fur fibers share similar

types of structure form outside to inside: cuticle that reflects light,
cortex that absorbs light, and medulla that scatters light. The medul-
las in human hair fibers are usually small, therefore, Marschner et al.
[2003] proposed the initial physically-based human hair reflectance
model, approximating hair fibers as rough dielectric cylinders and

presenting a longitudinal-azimuthal decomposed parametric appear-
ance model (Fig. 2 (a)). Their model has three types of reflectance: 𝑅,
𝑇𝑇 and 𝑇𝑅𝑇 , where 𝑅 and 𝑇 stand for reflection and transmission,
respectively. The Marschner model assumes that the azimuthal sec-
tions (Fig. 2 (b)) of hair fibers are perfectly smooth, which is not
strictly physically correct. Therefore, d’Eon et al. [2011] extended
the Marschner model to account for azimuthal roughness. How-
ever, their computational cost is significant, because the evaluation
containing azimuthal roughness relies on Gaussian quadrature and
Taylor expansion. Chiang et al. [2016] adopted a near-field formula-
tion by considering accurate incident positions azimuthally. Their
model uses an exaggerated azimuthal roughness to mimic the scat-
tering effects from the inner structure of hair/fur fibers, which is
not physically based, but achieves good visual effects. Khungurn
and Marschner [2017] focused explicitly on elliptical hair fibers,
revealing the different properties compared to those with circular
azimuthal sections. Xia et al. [2020] proposed a hair reflectance
model based on the wave optics theory. This paper focuses on the
fur reflectance under the geometric optics framework.

Compared to human hair, a fur fiber usually has a non-negligible
medulla volume in the center part, which scatters transmitting
light. Kayjiya and Kay [1989] introduced an empirical fur shading
model with a diffuse lobe and a specular lobe, similar to the Phong
reflectance model. Yan et al. [2015] proposed a physically accurate
fur model, known as the double cylinder model, in which the cuticle,
the cortex and the medulla are all involved. Yan et al. [2017a] further
simplified the light scattering types, resulting in a model that only
appends two additional lobes TTs and TRTs based on the Marschner
hair reflectance model (Fig. 2 (c)). In this paper, we use the model
by Yan et al. [2017a] as a base model that accounts single fur fiber
appearance and propose an extended model to account for a bunch
of aggregated fur fibers.

Hair/fur multiple scattering methods. Accurate simulation of mul-
tiple scattering is very costly because it requires tracing light bounc-
ing between hair fibers. Unlike the case when the light bounces
between surfaces, where 3 ∼ 5 bounces is usually good enough, the
number of light bouncing between hair/fur fibers can easily reach
30 ∼ 100, which is very costly to simulate. Some methods accelerate
multiple scattering by using better importance sampling. Hery et
al. [2012] and d’Eon et al. [2013] proposed different importance
sampling schemes for hair fibers to accelerate the convergence of
path tracing global illumination. These methods made it possible
to ray-trace the hair geometry, thus are widely used. We adopt the
importance sampling scheme by d’Eon et al. [2013].
A line of work focuses on the similarity between the multiple

scattering between hair fibers and in participating media. Moon et
al. [2006] adopted the photon mapping method to distribute pho-
tons within the hair volume as light bounces inside. But the photon
mapping method is still inefficient, especially when the importance
sampling approaches emerge. Moon et al. [2008] further provided
a volumetric representation to replace the actual hair fiber geome-
try, and precomputed a 3D grid of spherical harmonic coefficients
that stores the directional distribution of scattered radiance in the
hair volume. However, those volumetric approaches cannot capture
fine details, thus are usually used in combination–hair fibers for
primary hits, and volumes for further bounces–which impose even
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heavier storage and memory consumption. Moreover, since these
methods were designed for human hair, they cannot easily match
fur appearance, as will be shown in Sec. 6. To our knowledge, the
work by Yan et al. [2017a] is the only work that approximates the
multiple scattering of light between animal fur fibers. In that work,
a conversion scheme was proposed to switch the problem of ren-
dering multiple scattering from fur fibers to rendering Bidirectional
Surface Scattering Reflectance Distribution Functions (BSSRDFs).
This method does not need extra storage, but it requires a preprocess
stage (5-7 minutes for each scene) to each static pose/model, and
usually introduces bias/overblur in the rendering result.

The dual scattering approximation [Zinke et al. 2008] is a widely-
used method that fakes multiple scattering in the hair volume. It
assumes that the scattering events always happen along the main
path–the light hits a hair fiber and penetrates through the hair
volume in a straight line. Globally, the light reaches the shading point
by going through the hair volume. And locally, the light scatters
forward and back, assuming all hair fibers are the same near the
shading point. The dual scattering method is successfully used in
real-time rendering. However, the bold simplifications (main path
and local similarity) make it difficult for the results to match the
ground truth. Moreover, the results will be inconsistently brighter or
darker, since the brightness is determined by a couple of empirical
parameters up to artists.

Appearance prefiltering. Appearance prefiltering includes surface-
based prefiltering and volume-based prefiltering. Surface-based ap-
proaches such as LEAN [Olano and Baker 2010], LEADR [Dupuy
et al. 2013], Han et al. [2007] and Wu et al. [2019] simplify the com-
plex surface details in geometry, and adjust the resulting BRDFs
to keep the overall appearance unchanged. Yan et al. [2014; 2016]
rendered high-frequency materials by accurately prefiltering the
microfacets’ distribution as a sum of contribution from 4D Gaussian
primitives.

Zhao et al. [2016] proposed a volumetric micro-appearance prefi-
lering method. They prefilter phase functions to accurately down-
sample heterogeneous and anisotropic media. Vicini et al. [2021]
presented an empirical method that adds surface-like correlation
to the volume representation. However, for hair and fur, as well
as general fibers, the difference between geometric and volumetric
representations are still obvious [Khungurn et al. 2015]. It is not
yet clear how to convert hair/fur fibers into volumes, while accu-
rately accounting for their orientations, lengths and the correlation
between different fibers.
Prefiltering also happens among sub-components of the entire

appearance. Granular materials are composed of numerous dielec-
tric grains, and their aggregate behaviour determines the overall
appearance. In order to accelerate rendering, a line of research [Lee
and O’Sullivan 2007; Meng et al. 2015; Moon et al. 2007; Müller et al.
2016] use precomputed teleport functions or BSSRDFs to “jump over”
blocks of grains approximately. Nevertheless, we cannot directly
use those methods to speed up fur appearance because fur fibers
are cylinders and have more complex appearance.

Neural aided rendering. Neural networks have been successfully
introduced to solve the complex and high-dimensional problems in
the field of physically-based rendering. Since rendering is sensitive
to performance, we mainly introduce those designed to facilitate

(a) (b) (c)

Fig. 2. (a) Longitudinal-azimuthal parameterization for hair/fur fibers. Any
direction 𝜔 can be parameterized into 𝜃 in the plane spanned by 𝜔 and
the cylinder axis 𝑢, and 𝜙 orthogonal to the plane. (b) Longitudinal and
azimuthal lobes of the Marschner hair model. (c) Lobes of the fur model by
Yan et al. [2017a]

the rendering process, bypassing those requiring large-scale deep
networks.

Early work used small multilayer perceptrons (MLPs) to estimate
global illumination [Ren et al. 2015, 2013] and to denoise the Monte
Carlo path tracing [Kalantari et al. 2015]. Lightweight networks
have also been applied as compressed representations by overfitting
to specific assets that can be efficiently stored and evaluated [Davies
et al. 2020; Zhu et al. 2021]. Yan et al. [2017b] proposed a lightweight
MLP to convert fur fiber properties to participating media scattering
properties. We also use a lightweight MLP to provide the actual
parameters that describe an aggregated fiber’s optical properties.

Industrial approaches. In the industry, Unreal Engine 4 (UE4) [Epic
Games 2019] and Frostbite Engine [EA DICE 2006] focus on real-
time rendering model for hair, and use the same model for fur. They
both use a simplified version of the Marschner model [Marschner
et al. 2003] for single scattering. UE4 uses an ad-hoc model for
multiple scattering, which generates fake normal for the hair volume
and UE4 approximates the multiple scattering with a Lambertian
model. The Frostbite Engine uses simplified dual scattering [Zinke
et al. 2008] to calculate the multiple scattering. Neither method is
physically-based on multiple scattering, and neither can afford a
large amount of hair/fur fibers (note specifically that the Nanite
technique in UE5 can only simplify triangular geometry).

3 BACKGROUND AND MOTIVATION
In this section, we first briefly recap some background knowledge
of hair/fur reflectance models for individual fibers. Then we pro-
vide observations on facts and existing methods that motivate our
approach.

Hair/fur fibers look like cylinders from outside, but have complex
internal structures. As Fig. 2 illustrates, from outside to inside, a
hair/fur fiber has two common types of layers: cuticle that is covered
with tilted scales, cortex that contains pigments thus absorbing light,
and the medulla that scatters light like participating media.
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Table 1. The parameters used to describe our aggregated model. Input:
the first 10 parameters are adopted from Yan et al. [2017a], defining a
single fur fiber’s properties. 𝜌 , N and 𝜃𝑖 are the parameters specifying
the aggregation statistics. Output: additional parameters that we use to
evaluate our aggregated BCSDF model.

Parameter Definition
Input
𝜅 medulla index (rel. radius length)
𝜂 refractive index of cortex and medulla
𝛼 scale tilt for cuticle
𝛽𝑚 longitudinal roughness of cuticle (stdev.)
𝛽𝑛 azimuthal roughness of cuticle (stdev.)
𝜎𝑐,𝑎 absorption coefficient in cortex
𝜎𝑚,𝑎 absorption coefficient in medulla
𝜎𝑚,𝑠 scattering coefficient in medulla
𝑔 anisotropy factor of scattering in medulla
𝑙 layers of cuticle
𝜌 (positionally-varying) density of aggregated fiber
N number of single fibers in an aggregated fiber
𝜃𝑖 longitudinal incident angle
Output
𝜇 the scaling parameter
𝜃𝑡 center of the longitudinal top lobe
𝜃𝑚 center of the longitudinal middle lobe
𝜃𝑏 center of the longitudinal bottom lobe
𝛽𝑡 roughness of the longitudinal top lobe
𝛽𝑚 roughness of the longitudinal middle lobe
𝛽𝑏 roughness of the longitudinal bottom lobe
𝐴𝑡 attenuation term of the azimuthal top lobe
𝐴𝑚 attenuation term of the azimuthal middle lobe
𝐴𝑏 attenuation term of the azimuthal bottom lobe
𝑦0...4 the interpolating spline’s control points

3.1 Hair/fur appearance model
Researchers model the hair/fur fibers as cylinders and use the BCSDF
(Bidirectional Curve Scattering Distribution Function) [Zinke and
Weber 2007] to model how hair/fur fibers scatter light:

𝐿𝑟 (𝜔𝑟 ) =
∫

𝐿𝑖 (𝜔𝑖 ) 𝑆 (𝜔𝑖 , 𝜔𝑟 ) cos𝜃𝑖 d𝜔𝑖 , (1)

where 𝑆 is the BCSDF, 𝐿𝑖 and 𝐿𝑟 are the incoming radiance from
direction 𝜔𝑖 , and the outgoing radiance to direction 𝜔𝑟 , respectively.

Hair BCSDF model. For simplicity, the BCSDF model is generally
analyzed using a longitudinal-azimuthal (𝜃 , 𝜙) parameterization. As
shown in Fig. 2 (a), Marschner et al. [2003] modeled the hair BCSDF
as a product of𝑀 and 𝑁 profiles which represent the longitudinal
and azimuthal light-cylinder interactions separately:

𝐿𝑟 (𝜃𝑟 , 𝜙𝑟 ) =
∫ 𝜋

−𝜋

∫ 𝜋
2

− 𝜋
2

𝐿𝑖 (𝜃𝑖 , 𝜙𝑖 ) 𝑆 (𝜃𝑖 , 𝜃𝑟 , 𝜙𝑖 , 𝜙𝑟 ) cos2 𝜃𝑖 d𝜃𝑖 d𝜙𝑖

(2)
where the single cosine term becomes squared because the solid
angle d𝜔𝑖 = cos𝜃𝑖 d𝜃𝑖 d𝜙𝑖 in this parameterization. And the BCSDF

𝑆 can be further specified as

𝑆 (𝜃𝑖 , 𝜃𝑟 , 𝜙𝑖 , 𝜙𝑟 ) =
∑
𝑝

𝑆𝑝 (𝜃𝑖 , 𝜃𝑟 , 𝜙𝑖 , 𝜙𝑟 ) /cos2 𝜃𝑑

=
∑
𝑝

𝑀𝑝 (𝜃𝑖 , 𝜃𝑟 ) · 𝑁𝑝

(
𝜙 ;𝜂 ′

)
/cos2 𝜃𝑑 ,

(3)

where𝜃ℎ = (𝜃𝑟 + 𝜃𝑖 ) /2 is the longitudinal half angle,𝜃𝑑 = (𝜃𝑟 − 𝜃𝑖 ) /2
is the longitudinal difference angle, and 𝜙 = 𝜙𝑟 − 𝜙𝑖 is the relative
azimuthal angle. The 𝜂 ′ can be written as 𝜂 ′ =

√
𝜂2 − sin2 𝜃𝑑/cos𝜃𝑑

which is the cortex’s virtual index of refraction, accounting for in-
clined longitudinal incident directions. As shown in Fig. 2 (b), this
model takes three types of light paths/lobes 𝑝 ∈ 𝑅, 𝑇𝑇 , 𝑇𝑅𝑇 into
consideration, where 𝑅 stands for reflection and 𝑇 for transmission.

Fur BCSDF model. Yan et al. [2015] proposed a double cylinder
model for fur fibers. The outer cylinder represents the cuticle and the
inner cylinder represents the medulla, which scatters light. And be-
tween these two cylinders is the cortex, which simply absorbs light.
Yan et al. [2017a] summarize the double cylinder model into five
lobes, including the classic unscattered 𝑅, 𝑇𝑇 and 𝑇𝑅𝑇 lobes from
the Marschner model and two additional scattered lobes 𝑇𝑇 𝑠 and
𝑇𝑅𝑇 𝑠 to describe the scatter properties when light passes through
the medulla. Fig.2 (c) illustrates the structure of the double cylinder
model and the five lobes. Fur BCSDF model can still be defined as
Eqn. 3 with additional 𝑇𝑇 𝑠 and 𝑇𝑅𝑇 𝑠 paths in 𝑝 .

Unscattered lobes: 𝑅,𝑇𝑇 and𝑇𝑅𝑇 are unscattered lobes formed by
light paths that do not go through the medulla or are not scattered
through the medulla. The longitudinal lobes 𝑀𝑝 are normalized,
while the azimuthal lobes are further separated as 𝑁𝑝 = 𝐴𝑝 · 𝐷𝑝 ,
where 𝐴𝑝 is the attenuation term specifying the amount of energy
loss, and 𝐷𝑝 is the distribution term that describes how the attenu-
ated energy distributes, which is also normalized. The unscattered
lobes are generalization and extension of the those from the hair
BCSDF model.

Scattered lobes (𝑇𝑇 𝑠 , 𝑇𝑅𝑇 𝑠 ): The scattered lobes 𝑇𝑇 𝑠 and 𝑇𝑅𝑇 𝑠

are formed by the light paths going through the medulla and being
scattered. Both scattered lobes are still parameterized longitudinally
and azimuthally. Since the scattering behavior can be complex, Yan
et al. [2017a] precomputed the scattering profiles of the medulla
for different parameters. Then an analytical representation of the
longitudinal distribution as well as the azimuthal distribution and
attentuation can be presented similar to the unscattered lobes.

Near field and far field models: Near field scattering specifies the
offset ℎ azimuthally as the incoming position (Fig. 2 (c)). For far
field approximation, parallel light is assumed, covering a fiber’s
width. Thus, far field approximation yields the azimuthal scattering
function 𝑁𝑝 by integrating over all possible offsets ℎ:

𝑁𝑝 (𝜙 ;𝜂 ′) =
1
2

∫ 1

−1
𝑁𝑝

(
ℎ, 𝜙 ;𝜂 ′

)
𝑑ℎ. (4)

The visual difference between near field and far field models is
significant when viewed from closeup: near field models render a
hair/fur fiber like a cylinder, while far field models generate flat and
ribbon-like appearance, due to ignoring of different azimuthal offset
ℎ. Nevertheless, when viewed from sufficiently far away, i.e. when a
hair/fur fiber is narrower than a pixel, near field and far field models
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produce exactly the same results. However, far field models in this
case will be far more efficient to render, since near field models are
essentially leaving the integration numerically to the renderer.
Since we focus on the reduction of the number of fur fibers, it

directly implies that we should always use far field models.

Table 2. Statistics of various types of animal fur including density (number
of fur fibers/cm2), average skin area (cm2), estimated number of fibers in
total, and radius for a single fur fiber. We mark the maximum of each
property as red and the minimum as blue.

Species fibers/cm2 skin area
(cm2)

Est.
#fibers

radius
(𝜇m)

Gorilla 48 98283 4.4M 80
Badger 320 16875 5.4M N/A
Monkey 501 10443 5.23M 60
Vole 3000 1150 3.4M 5
Antelope 780 177504 138.4M 45
Kangaroo 1960 76514 149.9M N/A
Mink 6387.5 7120 45.4M 65
Hamster 9519 200 1.90M 15
Rabbit 5699.5 3725 21.2M 35
Cat 3572.3 10720 38.2M 40
Dog 1640 4866 8.0M 45
Fox 3780 32830 124.1M 35
Squirrel 10425 2954 30.8M N/A
Yak 1616 111494 180.17M 20
Horse 6351 96480 608.2M N/A

3.2 Motivation
Number of fur fibers. When we talk about fur, one immediate

property to consider is the huge number of fur fibers. Sandel [2013]
collected the statistics of fur fibers from a wide range of animal
species, listed in Tab. 2. As we can immediately observe, the total
number of fur fibers on an animal can already be extremely large
even for offline applications, let alone it is quite likely that multiple
animals can appear together in one viewport. Therefore, several
problems can arise at once.

• Performance. In offline applications such as animations, the
rendering process requires tracing hundreds of bounces along
each light path through the fur volume. And the number of
bounces scales up with the number of fibers. Classic trade-
offs, such as Russian Roulette, will introduce significant noise
to the rendering result. Meanwhile, rasterizing this amount
of fibers is nearly impossible for real-time applications.

• Memory consumption. The fibers have to be fully stored in
video memory for real-time applications. And an acceleration
structure for the fibers, such as a Bounding Volume Hierarchy
(BVH), must be built in main memory in offline applications.
In either case, thememory consumption scales at least linearly
with the number of fur fibers, which can easily reach the level
of dozens of gigabytes. Moreover, a complex BVH also slows
down the performance significantly. In fact, when we render
the hamster model (Fig. 3) with only one million fur fibers,

naïve 0.15M

ours 0.15M

reference 1.5M

ours 0.15M

naïve 0.15M

Fig. 3. We reduce the number of the hamster’s fur fibers to 10%. Then we
render it with our aggregated BCSDF model, and compare with the naïve
approach that only simplifies but does not aggregate. The naïve method
results in a harder and brighter appearance. Note specifically that since
this is an extremely close-up view, using 10% fur fibers is a drastic over-
simplification according to our proposed heuristics (Sec. 4.3). However, even
with such small amount of fur fibers, our method is still able to plausibly
recover the original appearance with minor detail loss.

101% 100% 99%
(a) (b) (c)

Fig. 4. The Pelt scene rendered using the fur BCSDFmodel [Yan et al. 2017a]
with manually scaled total energy of each fur fiber to (a) 101%, (b) 100% and
(c) 99%. After multiple scattering, (a) is 30% brighter than (b), and (c) is 20%
dimmer than (b). The average bounces of a light path in this scene is only
about 32. In a real scene with a lot more fibers, slight energy gain or loss
due to implementation will be magnified even more significantly.

the BVH traversal time already takes up about 10% of the
total rendering time.

• Energy conservation. Any undesired energy gain or loss (e.g.
±1% due to improper numerical cut-offs or other issues in
the implementation) at each bounce will be accumulated and
magnified as illustrated in Fig. 4. This is a severe problem that
did not draw enough attention from the academia, but perva-
sively encountered in the industry. More fibers leads to more
bounces, thus much larger possibility that the results will not
be energy conserving, even if they are guaranteed/designed
to be energy conserving theoretically.

Since the number of fur fibers is an issue, in the industry, a com-
monly used simplification method is to directly reduce the number
of fibers. Meanwhile, in order for the result not to appear more
sparse, each of the remaining fibers will be simply thicken. Indeed,
reducing the number of fibers this way could alleviate the aforemen-
tioned issues. However, as Fig. 3 shows, the rendered appearance is
almost completely different to the original.
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Fig. 5. Left: An illustration of the guard hair and underfur. Right: A photo
of actual rabbit guard hair and underfur. The guard hair is straight, long
and thick while the underfur is frizzier, shorter and thinner. For rabbit, the
guard hair only occupies about 10% amount of total fur fibers.

We identify this approach as a typical mistake, as pointed out
by various appearance prefiltering work [Han et al. 2007; Yan et al.
2014], where the core idea is that geometry and appearance are
mutually convertible. The simplified geometry is not gone. Instead,
it becomes more complex appearance. Think about the microfacet
BRDF as an example, the microfacets are simplified so the macro
surface is perfectly flat, but the macro surface must aggregate the
mirror-like normals from the microfacets into a normal distribution
that is no longer mirror-like.

With the above analysis, we seek a solution to reduce the number
of fur fibers by asking the following question: what is the appearance
of a fiber, if it is used to represent an aggregation of a bunch of fur
fibers? We model the complex appearance of the aggregated fiber
in Sec. 4.1.

Guard hair and underfur. For most types of animals, their fur
consists of a combination of guard hair on top and underfur beneath.
The guard hair is relatively sparse, taking up ∼ 10% of the total (as
verified in Fig. 5) number of fibers, and is often oily and thick. The
underfur is usually not seen directly, and is much thinner but much
more, forming a thick layer of cover close to the skin of animals.

The biological functionality of guard hair and underfur is out of
the scope of this paper, but the existence of the underfur immediately
signals us that they can be safely simplified since they are not usually
seen directly. And we find that in practice we can also simplify the
guard hair together. So, in this paper, we won’t distinguish the
difference between guard hair and under fur and we simplify fur
fibers all together.

The similarity between single fiber and aggregated fiber. Although
the BCSDF will complexify after the simplification of geometry,
we observe that there is still some interesting similarity between
an aggregated fiber’s and a single fiber’s appearance, as will be
elaborated in the next section. Based on the observation, we derive
an analytical model for aggregated fur fibers based on the double
cylinder model. In the next section, we define this model, and explain
how to acquire the parameters for it.

4 OUR METHOD
In this section, we introduce our aggregated BCSDF model mainly
concern themultiple scattering effects (Sec. 4.1). Because it is difficult
to derive analytical solutions to represent each distribution, we
propose a lightweight parameter conversion network to evaluate
some scattering terms of our fur model (Sec. 4.2). Finally, we describe

Aggregated Fiber

N = #

𝜌 =
∑ /

±180◦𝜙0◦
90◦

𝜃

−90◦

Fig. 6. (Left) An aggregated fur fiber. (Right) Illustration of common posi-
tions and shapes of all the lobes in its RDM.

how to apply a level of detail representation based on our aggregated
fur model to handle complex scenes with many fur characters in
the same view frustum (Sec. 4.3).

4.1 Aggregated BCSDF Model
We define the aggregated fur fiber as a thick bounding cylinder of a
bunch of fibers. And we would like to derive an aggregated BCSDF
model in the same form as that described as Eqn. 3. That is, our
model is still the sum of distinct lobes, where each lobe is a product
of𝑀 (longitudinal) and 𝑁 (azimuthal) profiles. The difference is that
we introduce new types of lobes to describe the multiple scattered
light bounces inside our aggregated fur fiber.

Before we dive into the components of our BCSDF model, we first
explain its input parameters. Based on the parameters of original
five-lobe fur BCSDF [Yan et al. 2017a], we further introduce three
additional parameters N , 𝜌 and 𝜃𝑖 in our aggregated BCSDF model.
The first two parameters are naturally added: N is the number of
fibers inside an aggregated fiber, and the density parameter 𝜌 is
ratio between the the total area covered by the N fibers and the
area of the thick cylinder in the cross-sectional plane. Different
from the idea that derive an analytical form for the aggregated
fiber’s behavior from the distributions of inside fibers, we focus on
a statistical average method and introduce the longitudinal incident
angle 𝜃𝑖 as a parameter.

To describe the aggregated behavior of fur fibers, we start from the
observation and analysis of the Radiance Distribution Map (RDM).
As illustrated in Fig. 6, an RDM of a fiber, either single or aggregated,
is a recording of the exiting energy towards all directions in the
𝜃 -𝜙 spherical coordinates, given an incident light hitting this fiber
from a certain direction, and assuming far field. We generate ground
truth RDMs using Monte Carlo random walk until convergence.

By comparing the RDMs (Fig. 7), we first notice that the radiance
distribution of an aggregated fiber is similar to those of a single fiber.
However, the single fiber’s BCSDF is still not capable of replacing
the RDM of the aggregated fiber. The main differences between a
single fiber and an aggregated fiber are:
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(a) single fiber
𝜙 = ±180◦0◦ 0◦

(b) a bunch of fibers
𝜙 = ±180◦0◦ 0◦

(c) Our aggregated model
𝜙 = ±180◦0◦ 0◦

(d) dual scattering
𝜙 = ±180◦0◦ 0◦90◦

𝜃

−90◦
𝜙 = ±180◦0◦ 0◦ 𝜙 = ±180◦0◦ 0◦ 𝜙 = ±180◦0◦ 0◦ 𝜙 = ±180◦0◦ 0◦

90◦

𝜃

−90◦

Fig. 7. A comparison of the RDM of (a) single fiber, (b) a bunch of fibers with N = 100 and 𝜌 = 0.3, (c) our aggregated model and (d) dual scattering. The
top row uses the mouse’s parameters and the longitudinal incident angle is 𝜃𝑖 = 0◦. The bottom row uses the raccoon’s parameters and the longitudinal
incident angle is 𝜃𝑖 = −45◦. Our aggregated model can closely fit the distinct nine lobes on the RDM. In contrast, dual scattering predicts brighter 𝑅 and
wrong backward scattering, and fails to simulate the bright regions on the top 𝑡 and bottom 𝑏 of the RDM.

(1) Compared to the RDM of a single fiber, the aggregated RDM
still has five distinct lobes but dimmer. This is in accordance
with the observation by Zinke et al. [2008]–after being multi-
ple scattered, the BCSDF will keep a similar distribution as
the single fiber.

(2) The aggregated RDM has noticeable distributions resulted
from multiple scattering at the top, middle and bottom re-
gions, marked as 𝑡 ,𝑚 and 𝑏, respectively. The middle part is
mostly backward-scattering, around 𝜙 = 0. Due to the Fresnel
effect in the longitudinal cross section, part of the energy will
keep on deviating from the incident direction and tends to
aggregate along the fibers in the end, and finally forms the
bright bands on the top and bottom parts in a RDM. This
effect is in essence similar to how optical fibers conduct the
light running through, just happening on the outside.

(3) Part of the light can directly pass through the aggregated
fiber and form a bright point opposite to incident direction.
Note again that once aggregated, the original fibers will be
gone and only statistics are left. Therefore, this part of energy
is not binary (either occluded by a fiber or not), but always
exists.

Based on the observations, we classify the radiance distributions
of an aggregated fiber into three parts:

Inherited part. (𝑅, 𝑇𝑇 , 𝑇𝑅𝑇 , 𝑇𝑇 𝑠 , 𝑇𝑅𝑇 𝑠 ). Since there is a part of
radiance distribution similar to that of a single fur fiber (Fig. 7), we
first keep the five lobes the same as single fur fiber BCSDF model
(Sec. 3.1) as an inherited part. However, since the inherited part’s
energy is lower than that of a single fiber, to control the energy of
this part, we define an extra scaling parameter 𝜇 ∈ (0, 1). How to
determine the value of 𝜇 will be stated in Sec. 4.2.

Extended part. (𝑡 ,𝑚 and 𝑏). Since multiple scattering mainly pro-
duces three additional regions, top, middle and bottom in the RDM,
in practice, we find that using three lobes (𝑡 ,𝑚 and 𝑏) is adequate
to simulate this entire part of radiance distribution.
In Fig. 8, we show 1D profiles extracted from the RDM longi-

tudinally and azimuthally. As we can see, the three lobes in this

Fig. 8. The 1D profiles extracted from the RDM of an aggregated raccoon
fiber (N = 100, 𝜌 = 0.3, dots) with a longitudinal incident angle 𝜃𝑖 = −45◦,
and our fitted profiles (lines). (Left) the longitudinal profiles, where we can
clearly observe three lobes located near the angle 𝜃𝑟 = −90◦, 0◦ and 90◦.
Note specifically that the lobe near 𝜃𝑟 = 45◦ is a mixture of inherited lobes
(𝑅 only for 𝜙 = 180◦ and 150◦, and 𝑅, 𝑇𝑇 , 𝑇𝑇 𝑠 for 𝜙 = 120◦), and we
show our fitted profiles w/ and w/o the inherited part. (Right) the azimuthal
profiles, where we find that the three lobes share a very similar shape, albeit
that they are extracted from different longitudinal angles. Therefore, we use
the same spline (with different attenuation) to fit the azimuthal profiles.

extended part also exhibit interesting patterns along the two direc-
tions. Similar to any other lobes in the standard BCSDF definition,
we study each lobe in this extended part as the product of a longitu-
dinal term𝑀 and an azimuthal term 𝑁 . Note that in this figure we
show the fitted inherited lobes and extended lobes separately, and
our aggregated could fit those separate components well.

From Fig. 8 (left), we immediately find that the longitudinal lobes
of all 𝑡 ,𝑚 and 𝑏 can be faithfully represented as Gaussians:

𝑀𝑡,𝑚,𝑏 (𝜃𝑖 , 𝜃𝑟 ) = 𝐺
(
𝜃𝑡,𝑚,𝑏 ;𝜃𝑟 , 𝛽𝑡,𝑚,𝑏

)
, (5)

where 𝜃𝑡,𝑚,𝑏 is the center of each lobe, 𝛽𝑡,𝑚,𝑏 is the roughness re-
spectively, and𝐺 (𝑥 ; 𝜇, 𝜎) means the Gaussian function with mean 𝜇

and standard deviation 𝜎 . How to determine the value of 𝜃𝑡,𝑚,𝑏 and
𝛽𝑡,𝑚,𝑏 will be introduced in Sec. 4.2. Generally, the roughness of the
𝑚 lobe is relatively large, while the other two are small. Note here
we do not describe the amplitude of a lobe longitudinally, following
previous approaches.
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As shown in Fig. 8 right, the profiles of azimuthal terms are more
complex than the longitudinal terms. However, we observe that the
three lobes share a very similar shape azimuthally, all gradually
decreasing from the back (𝜙 = 0) to the front (𝜙 = ±𝜋 ). So we unify
the distribution of the three azimuthal terms. Also, because this
distribution is symmetric in 𝜙 ∈ (−𝜋, 0) and 𝜙 ∈ (0, 𝜋), we only
need to define the distribution on the range of 𝜙 ∈ (−𝜋, 0). We rely
on a cubic interpolated spline controlled by five points to represent
the azimuthal distributions:

𝑁𝑡,𝑚,𝑏 (𝜙) = 𝐴𝑡,𝑚,𝑏 · spline𝑦0...4 (𝜙), (6)

where the five control points are (−𝜋,𝑦0), (− 3
4𝜋,𝑦1), (−

1
2𝜋,𝑦2),

(− 1
4𝜋,𝑦3) and (0, 𝑦4). The 𝐴𝑡,𝑚,𝑏 is the attenuation term that repre-

sents the total energy of each lobe. And the determination of 𝑦0...4
and 𝐴𝑡,𝑚,𝑏 will be discussed in Sec. 4.2.
Direct transport (𝑑). The direct transport part is simpler. It is a

Dirac delta function opposite to the incident direction:
𝑆𝑑 = 𝛿 (𝜃𝑖 ,−𝜃𝑟 ) · 𝐴𝑑 · 𝛿 (𝜙𝑖 , 𝜋 + 𝜙𝑟 ) . (7)

In practice, we treat the direct transport as a Gaussian with a tiny
intrinsic roughness 𝛽𝑑 = 0.05 [Yan et al. 2016], both longitudinally
and azimuthally, simply to facilitate renderer integration:

𝑆𝑑 = 𝐺 (𝜃𝑖 ;−𝜃𝑟 , 𝛽𝑑 ) · 𝐴𝑑 ·𝐺 (𝜙 = 𝜙𝑟 − 𝜙𝑖 ;𝜋, 𝛽𝑑 ) . (8)

The attenuation term 𝐴𝑑 is determined by the statistics N and 𝜌

of aggregation, since they directly control how frequently multiple
scattering can happen, and we find other factors barely contribute
to this term. While it is straightforward to assume that 𝐴𝑑 exhibits
an exponential decay, in practice, we find that using a simple expo-
nential function is unable to represent 𝐴𝑑 well.1 Since our method
is data-driven, we directly derive an empirical formula using a sym-
bolic regression software TuringBot [Software 2020],

𝐴𝑑 = (1.216 + 0.331 · N · 𝜌)−0.623 − 0.038, (9)

producing a goodmatch throughout our simulated RDMdatabase. In
Fig. 9, we verify that the result of our fitted𝐴𝑑 is accurate compared
with simulated data.

A schematic diagram of the lobes in our aggregated fur fiber is
marked on the RDM in Fig. 6 (right). In Fig. 10, we compare the
rendering results using our aggregated model to those rendered
with an actual bunch of fibers using the single fur fiber model [Yan
et al. 2017a]. In Fig. 11, we compare the rendering results using our
aggregated model against those using simulated RDM (regarded as
ground truth) in the fur block scene. Our aggregated model is also
able to simulate a wide range of simulated RDMs, as shown in Fig.
13, with the corresponding best-fit parameters acquired in the next
subsection.

4.2 Lightweight parameter predicting network
Though we now have an aggregated fur BCSDF model to simplify
complex light transport inside, it is still far from complete. One
immediate question is, how do we find the parameters of the aggre-
gated BCSDF model (Tab. 1, Output), if we only know individual
1A similar phenomenon is observed and discussed in the supplementary document
in Yan et al. [2017b]. This reason is very likely to be the correlation between fur
fibers’ positions in the azimuthal section. While a line of research focuses on non-
exponential participating media, we keep our method data-driven and do not extend
further discussion on the physical cause.

𝐴
𝑑

N

fitted
simulated

𝜌=0.197
𝜌=0.366
𝜌=0.534
𝜌=0.702

Fig. 9. Comparison of simulated (square points) and fitted (soiled lines)
direct transport attenuation term. Using our fitted curve, the profiles have
good matches with the simulated data over a wide range of parameters.
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Fig. 10. The actual rendering results of a bunch of fur fibers (left of each
insert) and the corresponding aggregated fur fiber (right of each insert).
Overall appearance of our aggregated model is very close to the reference.
The actual rendering results look like cylinders and our results look like
ribbons because our aggregated BCSDF model is far-field.

fur fibers’ parameters and the statistical parameters (Tab. 1, Input)?
The most straightforward way is to do optimization every time
when a set of input parameters is given. However, it is impractical
to perform optimization per shading event, since it can happen on
every bounce along every light path. Optimization is a good way to
provide correct data offline, but we need immediate online queries
of the mapped output from any given input.
We propose a lightweight neural network to perform this task,

with the aforementioned input and output. The neural network
keeps taking input-output pairs as training data, generated using
optimization. This step is completely irrelevant to any actual scenes
and any species of animals, and needs to be performed only once.
During rendering, the network will be inferred to begin the shading
process.

Network architecture. The network architecture is shown in Fig.
12. It takes 13 parameters as input include 10 parameters from the
single fur fiber BCSDF and 3 statistical parameters as input (Tab.
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Fig. 11. In this figure, we show the rendering results of the fur block which
keeps the same aggregated fiber geometry but with varying N = 4, 100, 500
for each aggregated fiber. We compare the rendering results using our
aggregated model against the ground truth (GT) using the simulated RDM.
(Top) The RDM of our method and the ground truth. (Middle) Rendering
results with a directional light from front to back. (Bottom) Rendering results
with a directional light from back to front. With N increasing, we can
observe that and the forward scattering becomes weaker (the highlight on
the fur mainly from 𝑅 lobe) and the backward scattering becomes stronger.
In our accompanying video, we show a complete sequence with N changing
continuously from 2 to 1000.

Fig. 12. Our lightweight parameter predicting network architecture is an
MLP with two 50-node fully connected hidden layers using Leaky ReLU
activation function.

1, Input), and outputs 15 parameters to evaluate the aggregated
BCSDF (Tab. 1, Output). For the input parameters and output pa-
rameters, we apply pre/postprocess to map them into proper ranges.
Specific pre/postprocess functions for each parameter are listed in
Tab. 3. The processed input and output are connected with a multi-
layer perceptron (MLP) of 2 hidden layers, each with 50 node. How
to prepare the training data and train the network will be detailed
in Sec. 5.

Essentially, our neural network only serves to compress the high
dimensional (input+output) data. We choose a neural network over

Table 3. This table shows how to pre/post-process input/out parameters for
training the neural network.

Parameter Pre / Postprocess
Input
𝜅 𝐼0 = 2 · 𝜅 − 1, 𝜅 ∈ (0.65, 0.91)
𝜂 𝐼1 = 𝜂 − 1, 𝜅 ∈ (1.19, 1.69)
𝛼 𝐼2 = 0.2 · 𝛼 , 𝛼 ∈ (0.55, 3.48)
𝛽𝑚 𝐼3 = 4 · 𝛽𝑚 − 3, 𝜅 ∈ (0.098, 0.2)
𝛽𝑛 𝐼4 = 2 · 𝛽𝑛 − 1, 𝛽𝑛 ∈ (0.083, 0.31)
𝜎𝑐,𝑎 𝐼5 = 0.2 · log(𝜎𝑐,𝑎 + 1), 𝜎𝑐,𝑎 ∈ (0.04, 1.39)
𝜎𝑚,𝑎 𝐼6 = 0.2 · log(𝜎𝑚,𝑎 + 1), 𝜎𝑚,𝑎 ∈ (0.1, 0.31)
𝜎𝑚,𝑠 𝐼7 = 0.5 · log(𝜎𝑚,𝑠 + 1), 𝜎𝑚,𝑠 ∈ (0.65, 0.91)
𝑔 𝐼8 = 𝑔, 𝑔 ∈ (0.18, 0.79)
𝑙 𝐼9 = 0.5 · 𝑙 , 𝑙 ∈ (0.44, 1.96)
𝜌 𝐼10 = 𝜌 , 𝜌 ∈ (0.05, 0.9)
N 𝐼11 = 0.02 · N

1
2 , N

1
2 ∈ (1, 31.62)

𝜃𝑖 𝐼12 = 0.2 · 𝜃𝑖 + 0.5, 𝜃𝑖 ∈ (− 1
2𝜋,

1
2𝜋)

Output
𝜇 𝜇 = 𝑂0
𝜃𝑡 𝜃𝑡 = 5 · (𝑂1 + 1)
𝜃𝑚 𝜃𝑚 = 10 ·𝑂2
𝜃𝑏 𝜃𝑏 = 5 · (𝑂3 − 1)
𝛽𝑡 𝛽𝑡 = 10 ·𝑂4
𝛽𝑚 𝛽𝑚 = 0.5 ·𝑂5 + 1
𝛽𝑏 𝛽𝑏 = 10 ·𝑂6
𝐴𝑡 𝐴𝑡 = 0.5 · log(𝑂7 + 1)
𝐴𝑚 𝐴𝑚 = 0.1 · log(𝑂8 + 1)
𝐴𝑏 𝐴𝑏 = 0.5 · log(𝑂9 + 1)
𝑦0...4 𝑦𝑛 = 𝑂10+𝑛

other methods, such as tensor decomposition, because the dimen-
sions of the input and output spaces are high, but the mapping can
be naturally smooth. And decompressing the data is also very effi-
cient running through such simple architecture. Therefore, we also
differentiate our method from deep learning methods, because (1)
we only need overfitting; (2) there is no need to go deeper, since our
simple MLP is already sufficient to map the parameters accurately;
and (3) our focus is on simplicity and performance. In practice, our
neural network’s total inference time only takes 2% of the total
rendering time, with an inline CPU-based implementation that does
not require any changes to the modern rendering pipeline. And once
trained, our neural network can be applied to any scene directly.
In Fig. 10 and Fig. 13, we validate that our network produces the
right parameters for our aggregated BCSDF model to closely fit
the simulated appearance/RDM. And we use our neural network
throughout the rendering of all our scenes.

4.3 Level-of-detail simplification
So far, we have a complete introduction of our aggregated BCSDF
model, with whichwe can already simplify the light transport within
a bunch of fibers. The next problem is its usage, i.e., how to apply our
aggregated model to a furry object practically, and howmuch should
the object be simplified. Cook et al. [2007] introduced a stochastic
simplification approach for the aggregated geometry. They proposed
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Fig. 13. We compare the RDMs generated using the output parameters from our neural network against the simulated reference. We randomly select the
input parameters for all examples. All RDMs are scaled and displayed in logarithmic space for perceptually plausible brightness, and we also list the relMSE
for each pair of comparison. The direct transport part is not visualized.

a unified set of requirements for aggregated geometry simplification
and we follow these requirements: (1) the appearance should be
nearly identical to the reference, (2) the transition should be smooth,
e.g. during zooming in/out, or with animated geometry, and (3) the
level of simplification should be dynamically adjustable in different
scenarios. We propose two different simplification heuristics to
meet these simplification requirements, one for the first (primary)
bounce of camera paths and the other for subsequent (secondary)
bounces. Further, we use a pseudo-random approach to strengthen
the temporal coherence.

Simplification for the primary bounce. To simplify fur fibers for
the first bounce, we propose a screen-space heuristic that guarantees
good rendering result with enough details, since the result from the
primary bounce will be directly seen. To ensure a consistently good
quality, regardless of different view distances, we specify the same
average number of fibers 𝜉𝑎 covered in each pixel. Then, the total
preserved number of fur fibers can be written as

𝜉1 = num𝑝 · 𝜉𝑎, (10)

where num𝑝 is the approximate number of pixels occupied by the
model to be simplified.

re
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scene1 far
scene1 middle
scene1 near
scene2 far
scene2 middle
scene2 near
scene3 far
scene3 middle
scene3 near

scene1 far
scene1 middle
scene1 near
scene2 far
scene2 middle
scene2 near
scene3 far
scene3 middle
scene3 near

𝜉𝑎 𝜆

Fig. 14. Left: for the simplification of the first bounce, we plot the relMSE
of the rendering results using different 𝜉𝑎 , for different scenes at different
distances to the camera. We find that 𝜉𝑎 ∈ (10, 20) is a proper range.
Right: for subsequent bounces, we chose different 𝜆 and compare the error,
still for different scenes at different distances. We find that the rendering
results using 𝜆 ∈ (0.3, 0.6) can be both efficient and accurate. Scene 1 is
the standing wolf, scene 2 is the straight hair, and scene 3 is the crawling
hamster.

We could accurately accumulate 𝑛𝑢𝑚𝑝 by casting primary rays
towards themodel and counting the number of intersections as a pre-
rendering process, but this can be too costly. Instead, as illustrated
in Fig. 15 (left), we use a simple approximation by bounding a sphere
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Fig. 15. Illustration of our heuristic simplification on (Left) how to calculate
the number of pixels (num𝑝 ) occupied by a model, and (Right) how to
determine the radius of an aggregated fiber (𝑅𝑎 ) using KNN.

tightly around the model and then calculating the number of pixels
the bounding sphere occupies in screen space:

num𝑝 = numfilm · 𝜋 · 𝑅2𝑠
4 · ∥𝑂 −𝐶 ∥2 · tan2 𝜃fov

, (11)

where 𝑛𝑢𝑚film is the screen resolution.𝐶 is the center of the bound-
ing sphere, whose radius is 𝑅𝑠 . 𝑂 is the position of the camera and
the 𝜃fov is the field of view (fov) of the camera.

Simplification for secondary bounces. Since the multiple scattering
tends to be smoother and is not directly seen, we reduce the num-
ber of fibers for secondary bounces more aggressively, by further
introducing a fixed-percentage reduction:

𝜉𝑛 = 𝜉1 · 𝜆max{𝑛−1,4} (𝑛 ≥ 2), (12)

according to the number of bounces 𝑛 a light path has undergone,
where 𝜆 is the additional reduction ratio, which is again specified
by users. Therefore, 𝜉𝑛 is the total number of preserved fur fibers
for the 𝑛-th bounce.
For a given model, we pre-calculate its different levels of sim-

plification according to Eqs. 10 to 12, but we only need to build
one BVH according to the unsimplified fur fibers, shared among all
different levels. During rendering, we determine the desired level of
simplification according to our simplification heuristics.

Determining user-specified parameters. An important practical
concern is to find reasonable values for 𝜉𝑎 and 𝜆. Referring to Fig. 14,
we can reach a conclusion that the 𝜉𝑎 ∈ (10, 20) and the 𝜆 ∈ (0.3, 0.6)
are reasonable ranges for our heuristic simplification. We emphasize
that 𝜉𝑎 is not the percentage of fur fibers preserved. Even with a
fixed 𝜉𝑎 , the level of simplification can be different per different
views, resolutions, objects and the original number of fur fibers. The
power of 𝜉𝑎 for dynamic simplification can be seen throughout all
our results. In Fig. 16, we show the effects of using different 𝜆 for
secondary bounces.

Selection of simplified fibers. To actually reduce the number of
fibers, we randomly select the fibers to keep (or discard). Similar
to the pervasively used method in procedural appearance model-
ing [Jakob et al. 2014], we assign the same low-discrepancy sequence
to the same object, which avoids clumping, and ensures stratifica-
tion of the selected fibers. Moreover, we fix the the random sequence
to a same object which ensures the temporal stability.

Determining aggregated statistics. We need to determine the pa-
rameters changed during simplification, including the statistical
parameters (N , 𝜌 , 𝜎𝑐,𝑎 and 𝜎𝑚,𝑎) for our BCSDF model and the
radius of the aggregated fiber (𝑅𝑎).
We assume that the N of the each aggregated fiber is uniform

in one model. Then it can be immediately written as N = 𝜉0/𝜉𝑛 ,
where 𝜉0 is the total number of fibers originally.

If we want to keep the same appearance as the original fur model,
we must ensure that an aggregated fiber closely represents the sim-
plified fur fibers. So, when we determine the radius of an aggregated
fiber, we apply the 𝑘-nearest neighbor (KNN) to find the N nearest
roots of single fibers around the center of the aggregated fiber’s
root. And 𝑅𝑎 is equal to the maximum radius attained from KNN
(Fig. 15 right).

The density 𝜌 equals to the sum of the cross-sectional area of
single fibers over the cross-sectional area of the aggregated fiber.
However, 𝜌 is not a constant even for one aggregated fiber, because
the radius of a single fur fiber is usually variable: the radius around
the root of a fiber is thick, while the radius around the tip can be
very thin. This is an important effect named taper in the industry,
which also happens in reality, making the appearance look furry.
In this paper, we also consider the taper effect, not by making the
radius of an aggregated fiber thinner around its tip (therefore, it
stays to be a cylinder), but by simply scaling the density 𝜌 according
to single fur fibers’ taper values (a number between 0 and 1) from
root to tip.

For other aggregated BCSDF parameters, we assume that an object
contains the same species of fur fibers, thus only the two absorption
parameters 𝜎𝑐,𝑎 and 𝜎𝑚,𝑎 are variable, which affect the color of the
fur appearance. We average 𝜎𝑐,𝑎 and 𝜎𝑚,𝑎 of single fibers in one
aggregated fiber to determine the 𝜎𝑐,𝑎 and 𝜎𝑚,𝑎 for the aggregated
fiber.

5 IMPLEMENTATION DETAILS
5.1 Data preparation for training
As mentioned in section 4.2, our lightweight neural network is
designed to compress the parameter conversion and can infer output
parameters very efficiently in the rendering stage. But the data
preparation process for network training is not trivial and we will
explain the details in this section.

Simulating the RDM.We produce one RDM for an aggregated fiber
with a group of input parameters. We first generate the geometry
of the aggregated fiber which contains N ∈ (1, 1000) single fibers
with the Poisson distribution. Then we simulate the light bouncing
process which is similar as the photon mapping method [Jensen
1996]. One photon initially carries the energy of 1 and is shot into
the aggregated fur fiber from a certain longitudinal direction (𝜃𝑖 ),
and we record the direction where the photon leaves and the energy
it carries. Finally, we classify the outgoing directions into 180×360
bins and calculate the radiance of each bin. In our implementation,
we emit 40 million photons for an aggregated fiber and get a RDM
with the resolution of 180×360. The implementation of single fur
BCSDF in the photon mapping stage can refer to [Yan et al. 2017a]
and their measurement data.

Generating the RDMs.We generate 20,000 RDMmaps in the whole
parameter space for one aggregated fiber. Firstly, We generate 1000
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𝜉𝑎=10 𝜆 = 0.6
Ours GT Ours Diff

relMSE: 0.016

𝜆 = 1
Ours
𝜆 = 0.6

Diff

relMSE: 0.019

Ours
𝜆 = 0.2

Diff

relMSE: 0.093

Fig. 16. This figure shows the validation of the secondary bounces heuristic simplification. We set the 𝜉𝑎 = 10, about half of the fibers are simplified for the
first bounce. We compare the rendering results to the ground truth and show the difference maps for 𝜆 = 1.0, 𝜆 = 0.6, 𝜆 = 0.2. In this figure, all the results are
converged.

aggregated fibers’ geometries with different (N ∈ (1, 1000)). Then
we randomly choose the input values in the remaining 12 input
parameters’ space. With the RDM simulation method mentioned
above, we normally will spend about 59h to generate all the RDMs
for one kind of fur. Good things are that the generic parameter
conversion network needs to be trained only once and we do not
need the RDMs in the rendering stage.
Fitting the output parameters. Before training, we first fit each

RDM and get the corresponding output parameters by using Ceres
Solver. The fittings are performed in logarithmic space, with the
cost function defined as the sum of all per-pixel differences of the
normalized log-measured and log-fitted values. The initial values of
all parameters are manually set.

We train our network in the PyTorch framework and the training
process spends 20 minutes with 120 epochs.

5.2 Renderer integration of the neural network
Our neural network can be integrated into a Monte Carlo rendering
pipeline and we implement our method on the Mitusba rendering
engine [Jakob 2010]. Because our network is lightweight, we exe-
cute the inferring process on CPU to avoid transmission delay. We
directly transcribe the network as a matrix and infer our network for
direct evaluation and importance sampling. Inferring the network
once with single thread only takes 0.7 microseconds, and the total
inferring time only takes about 2% of the whole rendering process,
which is almost negligible.

5.3 Importance sampling
Our importance sampling is similar to d’Eon et al. [2013] and can
be summarized in the following three stages:

• Choosing a lobe 𝑝 to sample. The lobes are weighted accord-
ing to the energy they carry. Since the longitudinal term𝑀𝑝

and the azimuthal distribution term 𝐷𝑝 are normalized, the
energy that lobe 𝑝 carries depends on its attenuation term
𝐴𝑝 . We calculate 𝐴𝑝 for each of nine lobes and the sum of all
𝐴𝑝 . The probability that we choose a lobe 𝑝 is determined by
𝐴𝑝 over the sum of all 𝐴𝑝 .

• Sampling an outgoing direction. Similar to d’Eon et al. [2013],
we separately sample the selected lobe 𝑝 in longitudinal and
azimuthal following their distributions. Since lobes 𝑅, 𝑇𝑇 ,
𝑇𝑅𝑇 , 𝑡 ,𝑚 and 𝑏 are in Gaussian distributions in longitudinal,
it is easy to sample the longitudinal outgoing direction 𝜃𝑟 . For
𝑇𝑇 𝑠 and𝑇𝑅𝑇 𝑠 , since they’re smooth, we use cosine sampling
function. Since lobes 𝑅, 𝑇𝑇 , 𝑇𝑅𝑇 and 𝑑 are also in Gaussian
distributions in azimuthal, we apply Gaussian sampling ac-
cording to the lobe’s distribution. The outgoing azimuthal
direction is 𝜙𝑟 = 𝜙𝑖 + 𝜙 , where 𝜙 is the relative outgoing az-
imuthal angle. For lobes𝑇𝑇 𝑠 ,𝑇𝑅𝑇 𝑠 , 𝑡 ,𝑚 and 𝑏, we uniformly
sample them over the azimuthal directions.

• Calculating PDF and sampling weight. The final probability
density function (PDF) is the product of the selected lobe 𝑝’s
azimuthal PDF and longitudinal PDF followed by a conversion
from (𝜃 , 𝜙) space to solid angle space. The final sampling
weight is the selected 𝑝’s BCSDF value divided by its chosen
probability.

6 RESULTS, VALIDATION AND COMPARISON
In this section, we show the rendering results of our aggregated
BCSDF model. We also compare our method to Yan et al. [2017a]
for equal time (ET) and equal quality (EQ) and use relative mean
square error (relMSE) to evaluate the difference between ours and
the ground truth. The ground truth is the converged result rendered
by Yan et al. [2017a]. If not specified explicitly, we set 𝜉average = 10
and 𝜆 = 0.6 for heuristic simplification and compare the rendering
time of our method to that of the EQmethod. All scenes are rendered
using path tracing on an Intel 20-core i9-10900Kmachine.We list test
scenes’ configurations and performances in Tab. 4 and will release
our source code and trained neural network upon publication. Please
also be sure to check out our accompanying video, where we provide
more comparisons on animations.

A bowl of hamsters. This scene includes 120 hamsters and has 147
million fur fibers in total. In Fig. 1, we show the rendering results
of ours, equal time (ET), equal quality (EQ), and the relMSE. Our
method achieves about 13.5× speed up with 0.014 as relMSE. There
are a lot of hamsters in this scene and all of them are far from
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Table 4. Statistics of all the scenes and performance. The references are rendered using Yan et al. [2017a]. We list and compare the number of fur fibers, the
average number of bounces along a light path, samples per pixel, rendering time (range for the video and blue text for the figures) and the error between our
method, equal time (ET) reference, equal quality (EQ) reference and the ground truth.

Scenes #Fibers #Bounces #Samples Time (min) relMSE
Ref. Ours Ref. Ours ET EQ Ours ET EQ Ours ET EQ Ours

A bowl of hamsters 147M 1.8M 119 14 82 1175 512 26.7 360 26.8 0.131 0.014 0.014
Crawling hamster 1.5M 0.085M-1.5M/0.7M 48 8 239 855 512 12.5 74.2 0.47-14.2/12.5 0.077 0.021 0.021

Living room 105M 6.5M-57.2M/7.5M 95 16 103 1344 512 38.0 466 35.3-41.7/38.0 0.142 0.008 0.008
Chameleon array 256M 8.7M-11.6M/9.3M 76 19 144 984 512 68.9 492 64.5-69.8/68.7 0.117 0.010 0.010
Straight hair 15K 6K 24 6 206 710 512 17.1 65.2 17.1 0.105 0.013 0.013
Standing wolf 12M 2.1M 105 27 192 1700 512 62.2 530 62.5 0.194 0.042 0.042

Ours GT

Ours GT

Ours GT

Ours GT

Ours GT

Ours GT

Fig. 17. This figure shows the rendering results of the crawling hamster
under sharp lighting. In this scene, our aggregated model keeps about half of
the fibers for the first bounce. (Top) Rendering results with a directional light
from back to front. (Bottom) Rendering results with a point light in front.
Our method matches the ground truth well without introducing obvious
bias.

the camera, so we achieve a drastic simplification and only use 1.8
million fur fibers in total.

Crawling hamster. Fig. 16 shows the rendering results of the crawl-
ing hamster with different secondary bounces simplification degrees
(𝜆 = 1, 𝜆 = 0.6 and 𝜆 = 0.2). The rendering results match the curve
in Fig. 14. In practice, we choose 𝜆 = 0.6 for secondary bounces’
simplification and achieve an additional 2.6× speedup compared to
the case of 𝜆 = 1. The relMSE value is 0.019 which is also reason-
able. In the video, we show a zooming in/out sequence to verify the
temporal stability of our method with different levels of dynamic
simplification per frame. Fig. 17 shows the rendering results of the
crawling hamster under sharp lighting (intense directional light and
point light). Our method still maintains the highlight distribution
on the fur.

Living room. In this scene, there are many different furry objects
with 105M fur fibers in total. We randomly assign parameters in the
whole parameter space for each fur object. Fig. 18 shows the equal
time (ET) and equal quality (EQ) comparison viewed from far away.
The EQ’s rendering time is 12.3× longer than ours with an relMSE

Ref. (ET) Ours Ref. (EQ) Diff (GT - Ours)
103 spp, 38 min 512 spp, 37.9 min 1344 spp 466 min relMSE 0.008

Ours 512 spp
#strands: 105M

Fig. 18. A fuzzy living room with fur decorative picture, pillows, blanket and
carpet. We randomly set the single fiber parameters for each fur object, and
we compare the equal time (ET) and equal quality (EQ) rendering results
with the reference (Ref.) [Yan et al. 2017a] to our method. The relMSE of
our method is only 0.008 and achieves 12.3× speedup.

value of 0.008. Our method could closely match the ground truth
although we only use 7.5M fur fibers in this scene. A zoom in/out
sequence is also available in our video.

Chameleon array. There are 64 chameleons in this dynamic scene
(Fig. 19), with 256M fur fibers in total. Each column uses a different
kind of measured fur fiber parameters referring to Yan et al. [2017a].
Our method drastically reduces the number of fur fibers to 9M-11M,
and is able to handle the aggregation of fur fibers with heteroge-
neous colors defined with a texture. Moreover, our method preserves
temporal stability as the scene animates. Our method is 7.2× faster
than the EQ reference, and the relMSE is 0.010. We also visualize
the different simplification levels.
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Texture Map Diff (GT - Ours)

N

Our method (512 spp)
relMSE: 0.010

Visualization of the Level-of-Detail simplification

Fig. 19. We render an array of 64 furry chameleon dolls with 512 spp and
the relMSE of our rendering result is 0.01. We show the rendering result,
difference map and the visualization of the heuristic simplification. Every
chameleon has a different set of fur parameters. Following the blue arrow
from front to back, we use different texture maps that define spatially-
varying colors, and we visualize one of the texture maps. Following the red
arrow from left to right, we set the fur parameters as those from bobcat,
cat, deer, fox, raccoon, mouse, dog and oryx.

Standing wolf. The standing wolf has 12 million fur fibers and
we use 2.1 million fur fibers in our method. In Fig. 20, we compare
the existing hair/fur multiple scattering approximation methods in-
cluding the BSSRDF method [Yan et al. 2017b], the volume method
[Moon et al. 2008] and the dual scattering method [Zinke et al. 2008]
to our aggregated BCSDF model. We show the equal time (ET) ren-
dering results and compare several methods’ relMSE values. Ours
relMSE is 0.042. Compared with 0.129 of the BSSRDF method, 0.228
of the volume method, and 0.682 of the dual scattering method, Our
method is more accurate than other multiple scattering approxima-
tion methods.
Straight hair. In Fig. 21, we show the results of hair/fur multiple

scattering approximationmethods and our aggregated BCSDFmodel
rendering with equal time. Our result closely matches the ground
truth while other methods have different kinds of inaccuracies. This
scene also proves that even in close up view with extremely few
human hair fibers(that our fur appearance model is not designed
to work with), our method is still able to halve the number of hair
fibers without introducing obvious artifacts.

7 DISCUSSION AND LIMITATIONS
In this section, we extend the discussion to a deeper understanding
of our method.

Orthogonality w.r.t. other methods. Though we compare with dif-
ferent methods, all aimed at more efficient multiple scattering of
light, we would like to emphasize again on one of the properties
of our method: orthogonality. Our aggregated BCSDF model is es-
sentially a new single scattering model, just with fewer fur strands.
Therefore, previous methods such as dual scattering and volumet-
ric/BSSRDF conversion can still be used in combination with our
model. This is a unique advantage of our method.

Design without simplification. Following the knowledge that our
aggregated BCSDF model is essentially a single scattering model, we
would like to provide another way to understand it. Since our model
takes in only additional statistical parameters such asN , it does not
need to know the original unsimplified geometry. Therefore, it is
possible to directly generate a desired number of fur fibers, and use
our model with user-defined statistical parameters, bypassing the
simplification process. We believe this is of immediate benefit to
improve those applications currently using the naïve simplification
method (e.g., in most video games where the number of fur fibers is
already small), just by replacing the single scattering model with
ours and provide a reasonable N and so on.
Next, though our method has been demonstrated effective in a

variety of situations, there are limitations that we would like to
point out for the concerns of practical use and future research.

Aggregation and far-field BCSDF. Ideally, during aggregation, all
detailed appearance from individual elements should be completely
preserved. However, we do make simplifications for practicality. As
Fig. 23 (a) shows, we can no longer observe original fur fibers inside
an aggregated fiber, which is partly due to using the far-field model,
and partly because we simulate and fit the average RDM of different
realizations of fibers inside. We raise two related questions for future
study. First, is it possible tomake the aggregated fur appearance even
closer to the original, with all the details and variations, but without
making the model unnecessarily complex to evaluate? Second and
more important, since the use of aggregation is mostly tied with
the context of reasonable approximation, is there an evidence that
a more accurate aggregation is required?

Fly-away fibers and fiber misalignment. Since our model aggre-
gates similar fur fibers into one, an immediate issue of concern is
on the fly-away fibers. This issue is the most severe when fur fibers
are extremely long and sparse, which arguably does not happen
frequently on animals, but rather often on human hair, as Fig. 23
(b) shows. In this figure, we can also observe that the curly hair
fibers are not parallel, but the overall appearance is still close to the
reference. We further show the impact of the fiber misalignment
in Fig. 22 where we found that the aggregated BCSDF RDM won’t
significantly change if the standard deviation of misalignment is
less than 12◦.

Spatially-varying simplification. Currently, our simplification heuris-
tic is designed for an entire object, which already demonstrates the
practicality of our aggregated model. For future improvement, it is
useful to design more complex heuristics that performs spatially-
varying simplification. For example, those hidden fur fibers from
the view point can be simplified more drastically, while the reduc-
tion of the number of fly-away fibers can be less aggressive. In the
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(a) BSSRDF (b) Volume (c) Extended DS (d) Ours (e) GT
relMSE: 0.072 relMSE: 0.107 relMSE: 0.296 relMSE: 0.042

Fig. 20. Rendering of the standing wolf with different methods. The BSSRDF rendering method [Yan et al. 2017b] matches the reference well, but the result is
over-blurred. The volume rendering method [Moon et al. 2008] looks flat and faded because the pre-computed Spherical Harmonics (SH) fails to represent
complex distributions of fur fibers accurately. The rendering result of the extended dual scattering [Zinke et al. 2008] is apparently darker and dryer than the
reference, since this method completely bypasses the multiple scattering, and uses an ad-hoc guess to determine the multiple-scattering energy, which could
be higher or lower than the reference. Our method produces the least amount of bias perceptually, without noticeable overblur.

(a) relMSE: 0.079 (b) relMSE: 0.183 (c) relMSE: 0.248 (d) relMSE: 0.031 (e) GT

Fig. 21. We compare different rendering methods on the straight hair scene. (a) BSSRDF method [Yan et al. 2017b], (b) volume method [Moon et al. 2008], and
(c) classic dual scattering [Zinke et al. 2008] will lead to some bias, while (d) our aggregated model closely matches (e) the reference. Even in close up view with
extremely few hair fibers, our method is still able to halve the number of hair fibers without introducing obvious artifacts.

(a) no misalignment (b) 𝜎 = 6◦ (c) 𝜎 = 12◦ (d) 𝜎 = 18◦ (e) 𝜎 = 24◦

Fig. 22. We simulate the misalignment of fibers and show the RDMs with different extent of misalignment. The direction of individual fibers is modeled as a
Gaussian distribution with different standard deviations 𝜎 from 0◦ to 24◦. We also show the difference images between the RDM (a) without misalignment
and other RDMs (b-e) with misalignment on the right of each subfigure.

(a) (b)
Fig. 23. (a) a bunch of fibers (left) and our aggregated fiber (right), our
method ignores the details of individual fibers in a very close view. (b) curly
hair with fly-away fibers, our simplification method (left) removes some
fly-away fibers, which is undesired as compared to the ground truth (right).

future, we can also consider setting the level of simplification ac-
cording to the exact footprint of different bounces along light paths,
as proposed by Müller et al. [2021].

Reciprocity and bias. Since our method is data-driven and its pa-
rameters are also aware of the incident direction, it is difficult to
carry out a theoretical analysis on the reciprocity. Moreover, the
use of neural networks can introduce an uncontrollable amount of
bias to our model. While theoretically difficult, we do not observe
practical issues: if the original single scattering BCSDFs are recipro-
cal, the aggregation is close to perfect. And if the neural network
has reasonably converged, our model will produce similar results to
the reciprocal and unbiased reference.

8 CONCLUSION AND FUTURE WORK
We have presented a practical BCSDF model to describe the ag-
gregated appearance from a bunch of animal fur fibers. We take
advantage of the representation ability of the single scattering fur
BCSDF model [Yan et al. 2017a], and extend it to take aggregation
statistics into account and introduce the dependency of the incident
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direction. Then we refer to a lightweight neural network to eval-
uate the parameters of our aggregated model from individual fur
fiber’s BCSDFs. Finally, we come up with a practical level-of-detail
heuristic that dynamically simplifies the fiber geometry based on
the viewing distance and different number of bounces along a light
path, achieving reliable appearance aggregation together with con-
trollable geometry simplification. Our method produces nearly the
same results as the ground truth, but performs 3.8×-13.5× faster. We
believe that our method can immediately benefit the industry, and
is an important contribution to the long-standing research problem
of geometry/appearance prefiltering.
In the near future, one natural extension to our method is an

optimized and simplified implementation of our aggregated BCSDF
model specifically tailored for real-time applications. Since the added
lobes in our model are based on observation, an artist-friendly inter-
pretation is also possible to advocate a wider use of our aggregated
BCSDF model. We also believe that our model can be generalized to
handle cloth rendering, where the aggregated appearance from an
bunch of cloth fibers, i.e., a ply or a yarn, could be developed in a
similar way. A deeper study regarding fly-way fibers and spatially-
varying simplification will also help to improve the practicality of
our model on human hair appearance.
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