
Position-Normal Distributions for Efficient Rendering of Specular Microstructure

Ling-Qi Yan1 Miloš Hašan2 Steve Marschner3 Ravi Ramamoorthi4
1University of California, Berkeley 2Autodesk 3Cornell University 4University of California, San Diego

our result smooth microfacet
(1.4x faster)

our NDF

reference

Figure 1: A scratched stainless steel kettle rendered with our method (left). The kettle is lit by small area lights and an environment map, with
surface microstructure modeled using a high-resolution normal map. Our method uses millions of 4D Gaussians to fit the position-normal
distribution induced by the normal map; this lets us approximate the normal distribution function of a given pixel almost as accurately as
Yan et al. [2014], but our evaluation is two orders of magnitude faster. Moreover, our technique can integrate area and environment lighting,
and multiple importance sampling, which was not practical with Yan et al. [2014]. Our rendering takes only 1.4× longer than a standard
microfacet BRDF rendering (right).

Abstract

Specular BRDF rendering traditionally approximates surface mi-
crostructure using a smooth normal distribution, but this ignores
glinty effects, easily observable in the real world. While modeling
the actual surface microstructure is possible, the resulting render-
ing problem is prohibitively expensive. Recently, Yan et al. [2014]
and Jakob et al. [2014] made progress on this problem, but their
approaches are still expensive and lack full generality in their mate-
rial and illumination support. We introduce an efficient and general
method that can be easily integrated in a standard rendering system.
We treat a specular surface as a four-dimensional position-normal
distribution, and fit this distribution using millions of 4D Gaussians,
which we call elements. This leads to closed-form solutions to the
required BRDF evaluation and sampling queries, enabling the first
practical solution to rendering specular microstructure.

Keywords: rendering, specular highlights, glints, surface mi-
crostructure, normal distribution function

Concepts: •Computing methodologies → Rendering; Re-
flectance modeling;

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s). c© 2016 Copyright held by the owner/author(s).
SIGGRAPH 2016, July 24-28, 2016, Anaheim, CA
ISBN: 978-1-4503-ABCD-E/16/07

1 Introduction

Sharp lighting exposes a large amount of structure in real-world
specular highlights, especially in close-ups (like in Figure 1, left).
However, the conventional microfacet BRDF models the detailed
surface micro-structure using a smooth normal distribution func-
tion (NDF). While this leads to good results under distant views
and smooth illumination, the high-frequency glint structure is lost
(Figure 1, right). It is certainly possible to model explicit sur-
face microstructure using normal mapping, but the resulting ren-
dering problem is challenging for straightforward Monte Carlo ap-
proaches, because uniform pixel sampling misses the tiny, strong
highlights.

Recently, there has been progress on resolving the full detail of
real-world specular surfaces, in the work of Yan et al. [2014] and
Jakob et al. [2014]. While the results demonstrated in their pa-
pers are compelling, these methods still have drawbacks. Yan et al.
[2014] computes an accurate solution for a surface defined by an
explicit high-resolution normal map. To achieve this, however, a
fine tessellation of the normal map into triangular elements is nec-
essary, and the contribution of a single element to the result requires
a rather involved computation. Jakob et al. [2014] defines distribu-
tions and orientations of specular point scatterers implicitly; this
has the advantage of low storage requirements, but only works for
random piece-wise flat surfaces, and loses the ability to represent
specific desired surfaces with local curvature. Neither method is
fast or easy to integrate in a rendering system, which limits their
practical impact.

DOI: http://doi.acm.org/10.1145/9999997.9999999

http://doi.acm.org/10.1145/9999997.9999999

The traditional definition of a normal map is a function mapping
a surface position to a normal. We instead map a surface position
to a narrow Gaussian lobe of normals, thus thinking of a specular
surface as a position-normal distribution: a function in the four-
dimensional cross-product space of surface positions and normals.
This function can be approximated as a mixture of millions of 4-
dimensional Gaussians, which we call elements. (Their number is
linear in the normal map size, typically 1-4 elements per texel.) In-
tuitively, each element represents a “fuzzy” patch of the surface,
either flat (if the Gaussian is axis-aligned) or curved (for a gen-
eral Gaussian). This works for both piece-wise constant elements
(common in metallic paint) and smooth heightfields (which can be
used to model most other surfaces, including bumps, brushes, and
scratches). The 4D Gaussian primitive, combined with a Gaussian
query representing a desired surface footprint and half-vector, leads
to an efficient closed-form solution. Despite using millions of el-
ements, a single NDF query will only depend on a handful of ele-
ments, which our acceleration hierarchy can efficiently isolate.

Our BRDF evaluation is over 100× times faster than Yan et al.
[2014]. This speed-up has significant benefits: it enables our
method to be used as a standard BRDF in a Monte Carlo renderer,
which is convenient from an engineering perspective. As a conse-
quence, we can now use the BRDF with multiple importance sam-
pling, and transparently handle all effects supported in Monte Carlo
frameworks, such as illumination from environment maps and area
lights (both used in Figure 1). While in theory, the method of Yan
et al. [2014] could also be used as a standard BRDF in this fash-
ion, the 100× slow-down in evaluation performance would limit
the practicality of that approach.

2 Related work

Normal maps are a well-known technique for adding detail to spec-
ular surfaces. The standard approach to compute direct illumination
on a normal-mapped specular surface is to evaluate the normal at
the hit point, and use a low-roughness BRDF to shade it. However,
when truly high resolution maps are used in conjunction with sharp
light sources, both Yan et al. [2014] and Jakob et al. [2014] make a
clear case that this naive approach cannot be effective.

Normal map filtering techniques can deliver artifact-free renderings
by approximating a pixel’s NDF by a single lobe [Toksvig 2005;
Olano and Baker 2010; Dupuy et al. 2013]. These approaches use a
mip-map hierarchy on top of the normal map, together with a way to
interpolate surface roughness in a linear way, such that increasingly
large patches of a complex surface are approximated as flat surfaces
with higher roughness. However, none of these methods can cap-
ture glinty appearance, because the sharp features of the true NDFs
are lost when approximating them by a single smooth lobe.

The closest previous work to our approach, Yan et al. [2014]
considers the actual, unsimplified NDF of a surface patch P seen
through a single pixel. This P-NDF can be easily sampled: simply
choose a point on the patch and take its normal. However, for ef-
ficient direct illumination, the P-NDF needs to be evaluated for a
given half-vector, and a sampling procedure is of little help. They
introduce an algorithm that evaluates P-NDFs by turning the prob-
lem into integration over the normal map, finely discretized into
triangles. This is accurate but quite slow. To get around the perfor-
mance issue, a two-pass approach was used, which only supported
direct illumination from point lights. In contrast, our the better per-
formance of our method enables direct integration into standard,
single-pass Monte Carlo rendering, with only minor slow-down
(Figure 1).

Jakob et al. [2014] addresses the problem of glinty surfaces using
a stochastic approach. They model the surface as a procedural ran-

symbol domain definition
⊥ invalid normal
D⊥ extended unit disk
s = (s, t) D normal (on proj. hemisphere)
u = (u, v) R2 texture space parameters
n(u) R2 → D normal map function
J(u) R2 → R2×2 Jacobian of n(u)
P surface patch (pixel footprint)
Gp(u) R2 → R pixel Gaussian of patch P
u0 R2 center of pixel Gaussian
Gr(s) R2 → R intrinsic roughness Gaussian
DP(s) D → R normal dist. function for patch P
h R step size for seeding Gaussians
σh R std. deviation of seed Gaussians
σr R intrinsic roughness
N (u, s) R4 → R 4D mixture (position-normal dist.)
Gi R4 → R i-th 4D Gaussian in the mixture
m integer number of Gaussians

Table 1: Notation used in the paper.

dom collection of specular flakes. The set of flakes is not given,
but instead implicit in the construction of the hierarchical evalua-
tion algorithm. Therefore, they can count the particles contributing
to a particular illumination calculation without actually generating
them, which is memory-efficient, and retains performance for dis-
tant views. On the other hand, the framework limits the kinds of
surfaces expressible; brushed, scratched, and smooth bumpy sur-
faces cannot be represented. The effects achievable are essentially
a subset of our method’s capabilities, though we do require more
storage (up to 16 million elements for a 20482 normal map).

A mixture of a small number of Gaussian (more precisely von-
Mises-Fisher) lobes is used by Han et al. [2007]. This is related,
but their work targets real-time effects under smooth illumination,
which is a different end of the spectrum from our focus on sharp
glints. Our mixture can contain millions of Gaussians, and a sin-
gle P-NDF can still have hundreds of Gaussians contributing to it,
though a single half-vector query will only depend on a few.

Dong et al. [2015] acquire surface microgeometry of real brushed
metals and develop a material model to fit and render this data.
This is an interesting approach that could be combined with our
work, to construct our position-normal distributions based on real
data. Many other works in graphics explored applying small or
large Gaussian mixtures to approximate other objects, e.g. environ-
ment maps [Tsai and Shih 2006; Xu et al. 2013] and volumetric
distributions [Jakob et al. 2011].

3 P-NDF theory and notation

First we will introduce several concepts from Yan et al. [2014], to-
gether with notation that we will use in the rest of the paper; Table 1
summarizes the symbols.

To render glints correctly, the reflectance over whole patches P of
the surface needs to be considered as a P-BRDF (function of P in
addition to incoming and outgoing directions). The naive Monte
Carlo rendering approach would instead attempt to compute this
implicitly by pixel sampling, which fails because the highlights
form a tiny fraction of the pixel, and the resulting estimate has un-
usably large variance.

In the microfacet framework, BRDF evaluation for an incoming di-
rection turns into NDF evaluation for a half-vector (modulo a few
terms such as cosines, Fresnel and shadowing/masking). In the case

of a patch P , we can evaluate the P-BRDF by turning it into eval-
uation of the P-NDF: the distribution of surface normals over the
relevant surface patch P . Most of the difficulty lies in the P-NDF
evaluation; the other terms can be included easily. (We currently ap-
proximate shadowing-masking by the Smith term for a Beckmann
NDF of matching overall roughness. We include the Fresnel term
for metals or dielectrics as appropriate.)

Our method requires a mapping of normals into a planar domain.
We choose to represent normals as 2D vectors on the projected
hemisphere (unit disk). More precisely, like Yan et al. [2014], we
define the extended unit disk as the union of the unit disk with a
special symbol⊥ for an invalid normal. This definition lets us con-
volve normal distributions on the unit disk with Gaussians, handling
the tiny non-zero probability of invalid normals outside of the unit
disk. Our method could potentially use other planar representations
of normals, e.g. the domain of gradients [Olano and Baker 2010;
Heitz 2014]. However, like Yan et al. [2014] we prefer the extended
unit disk, as it assigns lowest measure to areas of the hemisphere
near the horizon, which are least important for our purposes. Fur-
thermore, an NDF is directly a pdf on our domain, i.e. it integrates
to 1 without needing additional terms in the integrand.

A normal map can be defined as a function n : R2 → D⊥ from
points u = (u, v) in texture space to normals s = (s, t) on the
extended unit disk, representing unit vectors (s, t,

√
1− s2 − t2).

The Jacobian of n(u), denoted J(u), is a measure of local surface
curvature, and comes up regularly in analyzing smooth specular
surfaces.

The footprint P can be defined as a 2D Gaussian Gp in the uv-
parameterization of the normal map. Its size and orientation can be
computed by any common method used for texture mip-mapping,
e.g. by ray differentials [Igehy 1999]. We currently set its standard
deviation σp to 1/16th of the projected pixel radius; for 1024 strat-
ified samples per pixel, this provides enough prefiltering that the
strata become smooth.

Like Yan et al. [2014], we also treat the surface as having a tiny
amount of intrinsic roughness, which prevents singularities (in-
finitely bright highlights), arising on perfectly specular surfaces
when det J(u) = 0. This is achieved by thinking of each normal
as a 2D Gaussian Gr with a very small standard deviation.

Using these concepts, the P-NDF for a footprint P can be defined
as the probability distribution (on D) of a random variable n(X),
defined by sampling the footprint Gaussian Gp, evaluating the nor-
mal at the sampled location, and perturbing the result by a sample
from the intrinsic roughness Gaussian. (The perturbation is taken
onD, the projected hemisphere. This is slightly unusual, but works
well and simplifies the framework considerably.) While sampling
P-NDFs is straightforward (directly from the above definition),
evaluation for a given normal (half-vector) is more involved, and
it is the core challenge of both Yan et al. [2014] and our method.

A key design decision of our approach is the representation of the
high-resolution specular surface detail. We propose to represent
the normals of the surface, with intrinsic roughness applied, as a 4-
dimensional position-normal distribution. This distribution can be
accurately approximated as a mixture of millions of 4-dimensional
Gaussians (on the order of the number of texels). We will denote
these Gaussians as elements. In a sense, our approach has some
properties of both Jakob et al. [2014] (thinking of the surface as
a collection of discrete reflectors) and Yan et al. [2014] (ability to
handle explicit smooth or non-smooth surfaces).

Below, we first explain this idea in flatland (where the Gaussians
are 2-dimensional), and the next section will transfer our intuitions
to the full 4D case.

positions

positions

positions

positions

no
rm

al
s

no
rm

al
s

no
rm

al
s

su
rf

ac
e

he
ig

ht

160 Gaussians 160 Gaussians80 Gaussians

(a) surface heightfield (b) position-normal distribution

(c) flat elements (d) curved elements

Figure 2: A given flatland surface heightfield (a) is converted into
a position-normal distribution, by taking the graph of its normal
map function and blurring it vertically with the intrinsic rough-
ness Gaussian (b). Approximating this distribution by axis-aligned
Gaussians or “flat elements” (c) would clearly need much higher
sampling to be accurate. In contrast, general Gaussians or “curved
elements” (d) enable a much better approximation. Some individ-
ual Gaussians are still noticeable with 80 Gaussians but they dis-
appear with 160.

4 Mathematical framework in flatland

In flatland, the domain analogous to the unit disk (projected hemi-
sphere) is simply the interval [−1, 1]. Yan et al. [2014] demonstrate
that P-NDF evaluation in flatland, with intrinsic roughness, can be
written as:

DP(s) =

∫ 1

−1

Gr(s− s′)
∫ ∞
−∞

Gp(u)δ(n(u)− s′) du ds′

=

∫ ∞
−∞

Gp(u)Gr(n(u)− s) du, (1)

where Gp(u) defines the footprint and s the normal (half-vector)
of interest. Gr is the intrinsic roughness Gaussian with zero mean.
The reasoning is: first define the pdf of the random variable n(X),
where X is a random variable whose pdf is Gp(u). Second, con-
volve by intrinsic roughness Gr , and finally simplify. Note that
both Gr and Gp are normalized (they integrate to 1).

Yan et al. [2014] proceed to evaluate the integral by assuming n(u)
is piecewise linear, which works but leads to harder integrals with-
out closed form solutions. We instead precompute an approxima-
tion to the whole second factor,Gr(n(u)−s). This function is what
we propose to be our surface representation, the position-normal
distribution N (u, s). The top row of Figure 2 demonstrates this:
(a) shows a flatland surface and (b) the position-normal distribution
of this surface. Note that normalization of N over u is not needed;
it is sufficient that Gr is normalized over s.

Next, we propose to approximate N as a sum of 2D Gaussians
in u and s, with scaling coefficients ci, means xi and covariance

(a) overshoot (b) clumping

Figure 3: If the sampling rate is insufficient, or an overly large σh

is used, this leads to overshoot (a): the Gaussians do not follow
the distribution closely enough. In contrast, an overly small σh

used for the seed Gaussians leads to a clumping artifact (b). Both
problems can be avoided by using a sufficiently small step size h
and setting σh = h/

√
8 log 2.

matrices Σ−1
i :

N (u, s) = Gr(n(u)− s) ≈
m∑
i=1

Gi(u, s), (2)

where

Gi(u, s) = ci exp

(
−1

2
(x− xi)

TΣ−1
i (x− xi)

)
(3)

and x = (u, s)T . A key advantage of this representation is that the
P-NDF query (for a given P and s) can be written as:

DP(s) =

∫ ∞
−∞

Gp(u)N (u, s) du ≈
m∑
i=1

∫ ∞
−∞

Gp(u)Gi(u, s) du.

(4)
Conveniently, the integral inside the sum has an efficient closed-
form solution: as s is fixed, this is a product of two 1D Gaussians,
which is just another Gaussian, easily integrable on the infinite do-
main. Fortunately, this convenience will carry over to the full 4D
case. This is in contrast to Yan et al. [2014], whose approach leads
to much harder finite-domain integrals.

4.1 Creating a Gaussian mixture

A key question is how to create the Gaussian mixture approxima-
tion toN (u, s). It would be interesting to consider hierarchical EM
techniques [Verbeek et al. 2006; Jakob et al. 2011], but typical ap-
plications of EM start from discrete samples. In our problem, the
distribution is available explicitly. Specifically, we have access to
the Jacobian of the normal map, letting us tightly align anisotropic
Gaussians to surface curvature. EM would also introduce random-
ness, losing the guarantee that animated normal data will remain
temporally coherent. Therefore we use a more direct approach spe-
cialized for our application.

Flat and curved elements. When creating the Gaussian mixture
representing a surface heightfield, we can think about approximat-
ing the heightfield as locally first-order (flat), or we can approxi-
mate the normal map as locally first-order, essentially making the
heightfield approximation second-order (curved). In the following,
we will explore and compare both approaches. We will define flat
elements as ones given by axis-aligned Gaussians (i.e. ones with a
diagonal covariance matrix); intuitively, these represent flat surface
patches with a constant normal. We also define curved elements

to be given by general Gaussians; these represent patches with ap-
proximately first-order local normal variation, thus a second-order
variation of the surface heightfield.

Seed points. As a first step, we distribute m seed points ui in
the normal map domain. Each of these will be converted into an
element by considering the value, and optionally the derivative, of
the normal map function at ui. The simplest approach to choose the
seed locations is uniform sampling with step h; the ideal value of h
will depend on the frequency content of the normal map function.

Next, we need to choose the standard deviation σh of the Gaussians
in the normal map domain. Consider two Gaussians with standard
deviation of σh whose centers are h apart; we would like them to
decay to half of their peak value exactly at the midpoint between
them. Setting σh = h/

√
8 log 2 achieves this, and works well in

practice.

Flat elements. To convert a normal map into flat elements, we
are approximating the normal n(u) as locally constant; that is, the
surface is assumed locally flat near ui. The i-th Gaussian we are
creating can be written as:

Gi(u, s) = ci exp

(
− (u− ui)

2

2σ2
h

)
︸ ︷︷ ︸

position band

exp

(
− (s− n(ui))

2

2σ2
r

)
︸ ︷︷ ︸

normal band

. (5)

This results in a 2D Gaussian, whose inverse covariance matrix is
diagonal, with values 1/σ2

h and 1/σ2
r on the diagonal. We can see

the above 2D Gaussian as a product of a Gaussian band in posi-
tions around the sampling point ui, and a Gaussian band in normals
around the value n(ui). The resulting approximation can be seen
in Figure 2(c): we can see how axis-aligned Gaussians are subop-
timal for representing the position-normal distribution of a smooth
surface.

Curved elements. For curved elements, we are intuitively trying
to make the Gaussian locally align with the position-normal distri-
bution, by approximating the normal map function n(u) as linear
(first-order) throughout the element. To achieve this, we replace
the above normal band around n(ui) with a “sheared” band, which
follows the first-order expansion n(u) ≈ n(ui) + n′(ui)(u− ui).
This leads to the following definition:

Gi(u, s) = ci exp

(
− (u− ui)

2

2σ2
h

)
exp

(
− (s− n(ui)− n′(ui)(u− ui))

2

2σ2
r

)
. (6)

By using the shorthand notation δu = u− ui, δs = s− n(ui) and
n′ = n′(ui), we can write this as:

Gi(u, s) = ci exp

(
− δu

2

2σ2
h

)
exp

(
−n
′2δu2 − 2n′δuδs+ δs2

2σ2
r

)
.

(7)
This lets us write the 2× 2 inverse covariance matrix of this Gaus-
sian as follows:

Σ−1
i =

1

σ2
h

(
1 0
0 0

)
+

1

σ2
r

(
n′2 −n′
−n′ 1

)
. (8)

The result can be seen in Figure 2(d): the position-normal distribu-
tion is approximated much better, with subtle artifacts still visible
with 80 elements, but barely any error with 160 elements.

The seed size σh and the sampling step h need to be chosen
well, otherwise approximation artifacts will result (Figure 3). The

seed size can be fixed by following our σh heuristic, but the ideal
step size will depend on the normal map frequency content. For
well-sampled normal maps without excessive high frequencies, we
found setting h to half a texel was sufficient for accurate results.
More discussion of step size (and the resulting storage require-
ments) can be found in the results section.

5 Full algorithm in 4D

In this section, we will transfer the flatland derivations to 4D. After-
wards, to turn the framework into a full algorithm, we will discuss
importance sampling and acceleration of the algorithm using a 4D
hierarchy.

5.1 Framework and mixture construction in 4D

For a 2D normal map, we can similarly define the position-normal
distribution, and approximate it as a mixture of Gaussians:

N (u, s) = Gr(n(u)− s) ≈
m∑
i=1

Gi(u, s), (9)

where the Gi are 4-dimensional Gaussians in positions and nor-
mals. They can be represented as triples (ci,xi,Σi) of a scaling
coefficient, center and a 4× 4 covariance matrix:

Gi(x) = ci exp

(
−1

2
(x− xi)

TΣ−1
i (x− xi)

)
, (10)

where x = (u, s)T is a 4D column vector. The constant ci should
be chosen such that the integral of Gi equals the area of the normal
map it represents, e.g. 1/4 of a texel’s area, when using 4 elements
per texel. Again, we can evaluate the P-NDF efficiently:

DP(s) =

∫
R2

Gp(u)N (u, s) du ≈
m∑
i=1

∫
R2

Gp(u)Gi(u, s) du,

(11)
where the latter integrand collapses to a 2D Gaussian, leading to a
closed form solution. Please refer to the Appendix for details.

Like in flatland, we can create the Gaussian mixture by distributing
seed points in texture space, and turning each seed point into either
a flat or curved element, as detailed below.

Flat 4D elements. To convert a 2D normal map into flat elements,
we define si = n(ui), δu = u − ui and δs = s − si. Extending
the flatland idea to a 4D Gaussian is straightforward:

Gi(u, s) = ci exp

(
−‖δu‖

2

2σ2
h

)
exp

(
−‖δs‖

2

2σ2
r

)
. (12)

This covariance matrix can be easily seen to be diagonal: Σ−1
i =

diag(σ2
h, σ

2
h, σ

2
r , σ

2
r)−1.

As an aside, a mixture representing a collection of flat elements (as
in metallic paint) does not necessarily need to be sampled from an
underlying normal map. It can also be created directly: we can
use Poisson sampling [Dunbar and Humphreys 2006] to distribute
seed Gaussians, and assign to each a random constant normal (e.g.
drawn from the Beckmann distribution). This is used for our metal-
lic paint flakes approximation.

Curved 4D elements. Here we are approximating the normal func-
tion n(u) as linear: n(u) ≈ si + Jδu, where J is the Jacobian of
n at ui. The Gaussian then becomes:

Gi(u, s) = ci exp

(
−‖δu‖

2

2σ2
h

)
exp

(
−‖δs− Jδu‖

2

2σ2
r

)
. (13)

(a) sampling (b) evaluation (c) combined

Figure 4: Our material model can be used inside a standard
BRDF sampling/evaluation framework with multiple importance
sampling. BRDF sampling alone (left) captures the reflection of
the light through the flat areas of the map, but is suboptimal for
rendering the scratches. Light sampling (middle), using our fast
P-NDF evaluation under the hood, captures illumination from the
high-intensity parts of the HDR light texture onto the scratches. The
combined result (c) has the benefits of both estimators.

By expanding ‖δs−Jδu‖2, we find that the 4×4 inverse covariance
matrix of this Gaussian can be written (using block notation) as:

Σ−1
i =

1

σ2
h

(
I 0
0 0

)
+

1

σ2
r

(
JTJ −JT

−J I

)
. (14)

5.2 Importance sampling

The above sections dealt withP-NDF evaluation, which is the more
challenging part, but for integration in Monte Carlo rendering, we
also need to be able to sample P-NDFs on a given footprint P .

We could sample the underlying normal map from which the Gaus-
sian mixture is generated, and perturb the sampled normal by the
intrinsic roughness. This is the same approach we use for generat-
ing a ground truth P-NDF. An alternative way is to sample from
the Gaussian mixture directly, picking an element proportional to
its contribution to the footprint, then picking a normal from that
element. The advantage of the first is speed and a simple imple-
mentation. However, it only works for mixtures that have been
constructed from a normal map, which need not be true in gen-
eral (our metallic flakes in the top of Figure 8 are such an example).
Furthermore, the latter method samples a distribution that matches
our evaluation exactly, instead of just approximately. Therefore, we
use the latter option in our results.

Having the ability to evaluate and sample the P-NDF enables us to
fully integrate the algorithm into a multiple importance-sampling
framework [Veach 1997], and support various sources of illumina-
tion: environment maps and area lights, including ones with HDR
emission textures. In theory, the method of Yan et al. [2014] can
also be integrated into an MIS framework, but their P-NDF eval-
uation is so much slower than sampling that this would have lim-
ited practicality. Figure 4 shows a scratched surface rendered under
a textured area light. We separate the two estimators (sampling
and evaluation); the components include the weights, so that the
sum of the separated images is the combined image. The sepa-
ration we observe supports natural intuition: the reflection of the
light through the flat parts of the scratched map is easy to render by
BRDF sampling (a), but shading the scratches requires sampling the
high-intensity spots on the lightsource and evaluating the P-BRDF
and thus the P-NDF in that direction (b). The combined image (c)
has the benefits of both.

5.3 Acceleration hierarchy

The number m of 4D Gaussian elements in our mixture will be in
the millions: a typical sampling step h is about half texel to one
texel, which for a 20482 normal map will produce 16 million ele-
ments. Clearly, only a tiny number of these Gaussians will have a
non-negligible contribution to a given query footprint Gp(u) and a
given query half-vector s. This problem is identical to one faced
by Jakob et al. [2014] and Yan et al. [2014], except the primitives
they are bounding are point reflectors and triangles, respectively.
They address this issue by 4D bounding-volume hierarchies over
the (u, v, s, t)-space, and we follow a similar approach with some
improvements.

A straightforward approach would be to create a 4D bounding box
for each Gaussian element (treating their contribution as negligible
beyond some distance, e.g. using a 3σ rule), and build a hierar-
chy on these bounding boxes in a top-down manner, using median
splits. A P-NDF evaluation query in this hierarchy is given by a
rectangle in (u, v)-space, bounding the footprint Gaussian Gp(u),
and a point in (s, t) space, specifying the half-vector of interest.
The contributing Gaussians can be found by a top-down traversal,
pruning bounding boxes with no intersection with the query.

We found this natural approach works, but its performance can be
enhanced by two additional ideas. First, we can trade off storage
for performance: instead of having a single hierarchy, we subdivide
(s, t)-space into a few hundred cells (sub-domains), and build a
much smaller hierarchy per cell. Our query is point-wise in (s, t),
so each query can be immediately answered by a single one of these
smaller sub-hierarchies, and can therefore be faster. Of course, this
is at the expense of extra storage, since an element will commonly
occur in multiple sub-hierarchies.

An additional speedup can be achieved by stopping the build pro-
cess earlier (at about 5 Gaussians per leaf node), since our closed-
form solution per Gaussian is fast, and at some level becomes less
of a bottleneck than traversal operations.

Finally, since our P-NDF sampling is done using the element ap-
proximation, instead of sampling the underlying normal map, we
need to accelerate the sampling operation. Here we just need to
sample the footprint Gaussian, obtaining a (u, v) pair, and then
quickly find all elements that contribute to this pair. We simply
use a separate 2D hierarchy over the (u, v) domain to answer this
query.

6 Results

We implemented the algorithm in C++. For rendering final images,
we integrated our P-NDF evaluation and sampling code in the Mit-
suba framework [Jakob 2010].

6.1 Correctness and performance

First, we compare the P-NDFs computed using our method to Yan
et al. [2014]; their evaluation is accurate and can be treated as
ground truth. Figure 5 (left images) shows a good match between
our P-NDF evaluation and theirs, while demonstrating a 130×
speedup. One may think that the speed-up is because of overly fine
subdivision used by Yan et al. (32 triangles per texel). However, it
turns out that decreasing the subdivision rate of their method signif-
icantly reduces the quality and is still 12× slower than our method.

In addition to comparing P-NDFs, we also directly compare the
ground truth position-normal distribution N (u, s) to our approx-
imation using Gaussian mixtures. This can be seen in Figure 5
(right images). Since these are 4D distributions, we visualize them

Yan et al. [2014] our result

Figure 6: Rendering comparison to Yan et al. [2014] (with full
quality settings), demonstrating that a close match in the P-NDF
values translates to a close match in renderings. We separate the
specular component of the image and use an identical sampling
pattern for a direct comparison. Top: direct specular component on
a simple curved surface, showing a match down to specific glints.
Bottom: cutlery scene with additional light transport added. We
achieve a speedup of about 32× in rendering the specular compo-
nent.

by slicing along a small segment of a normal map row, and inte-
grating along the t-component of the normal. This shows that our
approximation matches the ground truth well, if the right sampling
step is chosen.

We also compare to Yan et al. [2014] on an actual rendering in
Figure 6. Here, for a direct comparison, we separate the specular
component and use a point light like their method; we also use the
same sampling pattern. We get closely matching results, with a
speedup of 32× in computing the direct specular component (this
is less than in Figure 5, because other operations become important,
notably tracing eye and shadow rays).

6.2 Effect of sampling rate on quality

Of course, a key issue is whether the step size h delivers sufficient
accuracy, and this depends on the specific normal map, and on the
desired intrinsic roughness σr . In our experience, setting h to half
a texel size delivers accurate results for σr = 0.005, for typical
normal maps that do not contain excessive fine noise. We use these
settings in our final image and video results.

Figure 7 shows the result of varying the step size h, setting it to
0.5, 1, and 2 texels. This corresponds to 4, 1, and 0.25 elements per
texel, respectively. With 4 elements per texel, both the image and
the P-NDF visualization show no artifacts. With one element per
texel, some error can be seen in the P-NDF visualization but the
rendering itself is barely degraded. With one element per 4 texels,
the P-NDF image shows obvious overshoot and individual Gaus-

(a) 24 sec (b) 3114 sec (c) 300 sec (d) Ground truth (e) Our approximation
Our method [Yan 2014], 32 ∆/texel [Yan 2014], 2 ∆/texel Slice ofN (u, s) (full 4D) Slice ofN (u, s) (full 4D)

Figure 5: Left 3 images: P-NDF images evaluated in single-threaded C++; the timings are for evaluating the visualizations themselves, not
final renderings. Our method (a) using Gaussian mixtures is about 130× faster than Yan et al. [2014] when the normal map is discretized
using 32 triangles per texel, as used in their paper (b). The match is very good, because our Gaussian mixture fits the position-normal
distribution well. Our method is, moreover, still more than 12× faster than their approach if using only 2 triangles per texel (c), and has
higher quality. Right 2 images: Accuracy of fitting the actual 4D position-normal distribution N (u, s) with our Gaussian mixture. The full
distributions are four-dimensional and cannot be visualized directly. Therefore we slice the space by taking a small segment of a normal
map scanline, and show only the s-component of normals, integrating along the t-component. Note how our approximation is accurate, with
minimal overshoot.

(a) h = 0.5 texel (b) h = 1 texel (c) h = 2 texels

Figure 7: Comparison of different sampling steps h. When setting
h to half a texel (a), i.e. 4 elements per texel, neither the image nor
the P-NDF visualization show approximation artifacts; this setting
is what we use in our final results. When h = 1 texel (b), i.e. one
element per texel, the rendering is only slightly degraded but some
individual Gaussians become visible in the P-NDF visualization
(b). With h = 2 texels (c), i.e. one element per 4 texels, the rendered
highlight starts showing signs of lower contrast, while the P-NDF
image clearly shows overshoot and individual Gaussians.

sians; this causes directional blurring, whose effect on the rendering
is some loss of specular contrast.

6.3 Effect of element sampling rate on quality

Of course, a key issue is whether the step size h delivers sufficient
accuracy, and this depends on the specific normal map, and on the
desired intrinsic roughness σr . In our experience, setting h to half
a texel size delivers accurate results for σr = 0.005, for typical
normal maps that do not contain excessive fine noise. We use these
settings in our final image and video results.

Figure 7 shows the result of varying the step size h, setting it to
0.5, 1, and 2 texels. This corresponds to 4, 1, and 0.25 elements
per texel, respectively. With 4 elements per texel, both the image

and the P-NDF visualization are accurate. With one element per
texel, some error can be seen in the P-NDF visualization but the
rendering itself is barely degraded. With one element per 4 texels,
the P-NDF image shows obvious overshoot and individual Gaus-
sians; this causes directional blurring, whose effect on the rendering
is some loss of specular contrast.

6.4 Final renderings

We also illustrate our method’s capabilities on final image render-
ings, shown in Figure 1 and 8. Results of this kind would not be
easily achievable by the method of Jakob et al. [2014] (due to lack
of support for smooth explicit normal maps), or Yan et al. [2014]
(due to lack of support for high-frequency environment map and
area lighting). Please make sure to watch the temporal versions of
these results in the included video.

Kettle. This scene (Figure 1) demonstrates a glinty scratched stain-
less steel material similar to one shown previously by Yan et al.
[2014]. However, note that our rendering is lit by area and environ-
ment lighting without multiple passes or other special handling. In
fact, our performance is only 1.4× slower than the same scene ren-
dered with a traditional microfacet BRDF with no glinty behavior
(2.65 vs. 1.88 min).

Car door. This scene is shown in Figure 8, top. The material com-
bines two different glinty effects. A top coating is modeled by a
scratched normal map, represented using curved elements. The bot-
tom layer of metallic flakes embedded in the paint under it is repre-
sented using flat elements and has been created directly by Poisson
sampling, without the need for a normal map. Lighting is from an
environment map combined with a point light.

Wood floor and leather sofa. This scene is shown in Figure 8,
bottom. It shows a leather sofa on a wood floor. It is demonstrat-
ing an additional useful feature of combining a macro-scale bump
map (handled using the standard approach of shading frame per-
turbation) with a micro-scale normal map handled using our P-
BRDF approach, similar to [Zirr and Kaplanyan 2016]. This lets
our method render materials that have interesting structure at mul-
tiple scales, which would require immensely large normal maps to
represent using a naive single-map approach.

Time and storage. All images are rendered at 1280 × 720, with
1024 samples per pixel (1600 for leather sofa). These sampling

rates were used to achieve low Monte Carlo noise in the videos;
good still images can be produced with fewer samples. The timings
on a 36-thread Amazon EC2 machine (c4.8xlarge) were 2.6 min
(kettle), 6.8 min (car door) and 7.6 min (leather sofa).

The storage requirements depend on normal map size and sampling
rate. Our results use a 20482 texture and 4 elements per texel, which
requires 720M to store the Gaussians and an additional 400M for
the acceleration hierarchy. If using 1 element per texel (which may
well be sufficient for most applications), the costs would be 180M
and 100M respectively. The normal map itself would take 32M (in
floating point precision).

7 Conclusion and future work

We presented an algorithm for efficient glint rendering on highly
complex specular surfaces. We represent a surface as a position-
normal distribution. We approximate this 4D distribution as a mix-
ture of Gaussian elements. Combined with a Gaussian query for a
given surface footprint and half-vector, this formulation admits an
efficient closed-form solution, which can be accelerated using a 4D
bounding box hierarchy. Our method is fast enough to be treated
as a standard BRDF in a typical Monte Carlo path-tracer, along
with the benefits of supporting multiple importance sampling, envi-
ronment maps, and area lights (including ones with HDR emission
textures). We believe our method will enable high-quality specular
microstructure rendering to be integrated in practical systems.

As future work, we would like to consider surfaces whose normals
are very rugged, or which are not even differentiable in the tradi-
tional sense, but Gaussian mixture approximations to their behavior
should still exist. Adaptively distributing elements based on curva-
ture may further reduce the number of elements needed. We are also
interested in extending the framework to handle multi-resolution
representations and refractive interfaces.

Acknowledgements

This work was supported in part by NSF grant 1451828, an Au-
todesk BUILD Grant, Intel, and the UC San Diego Center for Vi-
sual Computing.

References

DONG, Z., WALTER, B., MARSCHNER, S., AND GREENBERG,
D. P. 2015. Predicting appearance from measured microgeom-
etry of metal surfaces. ACM Trans. Graph. 35, 1.

DUNBAR, D., AND HUMPHREYS, G. 2006. A spatial data struc-
ture for fast poisson-disk sample generation. ACM Trans. Graph.
25, 3.

DUPUY, J., HEITZ, E., IEHL, J.-C., POULIN, P., NEYRET, F.,
AND OSTROMOUKHOV, V. 2013. Linear Efficient Antialiased
Displacement and Reflectance Mapping. ACM Trans. Graph. 32,
6.

HAN, C., SUN, B., RAMAMOORTHI, R., AND GRINSPUN, E.
2007. Frequency domain normal map filtering. ACM Trans.
Graph. 26, 3.

HEITZ, E. 2014. Understanding the masking-shadowing func-
tion in microfacet-based BRDFs. Journal of Computer Graphics
Techniques (JCGT) 3, 2, 48–107.

IGEHY, H. 1999. Tracing ray differentials. SIGGRAPH 1999.

JAKOB, W., REGG, C., AND JAROSZ, W. 2011. Progres-
sive expectation–maximization for hierarchical volumetric pho-
ton mapping. Computer Graphics Forum (Proceedings of EGSR
2011) 30, 4.

JAKOB, W., HAŠAN, M., YAN, L.-Q., LAWRENCE, J., RA-
MAMOORTHI, R., AND MARSCHNER, S. 2014. Discrete
stochastic microfacet models. ACM Trans. Graph. 33, 4.

JAKOB, W., 2010. Mitsuba renderer. http://www.mitsuba-
renderer.org.

OLANO, M., AND BAKER, D. 2010. Lean mapping. ACM, I3D
2010, 181–188.

TOKSVIG, M. 2005. Mipmapping normal maps. Journal of Graph-
ics Tools 10, 3, 65–71.

TSAI, Y.-T., AND SHIH, Z.-C. 2006. All-frequency precomputed
radiance transfer using spherical radial basis functions and clus-
tered tensor approximation. ACM Trans. Graph. 25, 3.

VEACH, E. 1997. Robust Monte Carlo Methods for Light Transport
Simulation. PhD thesis, Stanford University.

VERBEEK, J., NUNNINK, J., AND VLASSIS, N. 2006. Acceler-
ated EM-based clustering of large data sets. Data Mining and
Knowledge Discovery 13, 3, 291–307.

XU, K., SUN, W.-L., DONG, Z., ZHAO, D.-Y., WU, R.-D., AND
HU, S.-M. 2013. Anisotropic spherical gaussians. ACM Trans.
Graph. 32, 6.

YAN, L.-Q., HAŠAN, M., JAKOB, W., LAWRENCE, J.,
MARSCHNER, S., AND RAMAMOORTHI, R. 2014. Render-
ing glints on high-resolution normal-mapped specular surfaces.
ACM Trans. Graph. 33, 4.

ZIRR, T., AND KAPLANYAN, A. S. 2016. Real-time rendering of
procedural multiscale materials. ACM, I3D 2016, 139–148.

Appendix

To compute Equation 11, we need to find the integral I:

I =

∫
R2

Gp(u)Gi(u, s) du.

The following three steps are required: 1) Turn the 4D Gaussian
Gi(u, s) into a 2D Gaussian by fixing s. 2) Analytically compute
the product of the resulting 2D Gaussians. 3) Analytically integrate
the final 2D Gaussian. Below we describe these three steps in more
detail.

2D slice of a 4D Gaussian. Without loss of generality, we
define this problem as rewriting g = G(x; c,0,Σ) into g =
G(u; c′,u0,Σ

′), where x = (u, s) is a 4D column vector, and
s is a 2D column vector that is fixed. Note that, here we explicitly
write a multivariate Gaussian G(x; c, µ,Σ) with its scaling coeffi-
cient c, center µ and covariance matrix Σ. (Note: in practice it is
usually better to store inverse covariance matrices.)

Since Σ is symmetric, Σ−1 is also symmetric. We first represent
Σ−1 using 2× 2 blocks

Σ−1 =

(
A B
BT C

)
, (15)

Then the 4D Gaussian can be written as

g = c · exp

(
−1

2

(
uTAu + 2sTBTu + sTCs

))
. (16)

Figure 8: Final image renderings using our method. Insets are zooms of image itself (not re-rendered at high resolution). Top: car paint
(scratched coating with embedded metallic flakes). Both effects use our method; the scratches use curved elements and the metallic paint
uses flat elements. Bottom: leather sofa on a wooden floor; both materials use a combination of a macro-level standard normal map, and a
micro-level map handled using our technique.

Our goal is to write g as a 2D Gaussian in u:

g = c′ · exp

(
−1

2
(u− u0)T Σ′−1(u− u0)

)
. (17)

Expanding Equation 17 and comparing terms inside the exponential
with Equation 16, we immediately have

Σ′−1 = A, u0 = −A−1Bs, c′ = c·exp

(
−1

2
(sTCs− uT

0 Au0)

)
.

(18)

Product of two multivariate Gaussians. Given two multivariate
Gaussians G(x; c1, µ1,Σ1) and G(x; c2, µ2,Σ2), their product is
another multivariate Gaussian G(x; c, µ,Σ), where

Σ−1 = Σ−1
1 + Σ−1

2 , µ = Σ(Σ−1
1 µ1 + Σ−1

2 µ2). (19)

To find the scaling coefficient c, we just evaluate the original prod-
uct at the new mean:

c = G(µ; c1, µ1,Σ1) ·G(µ; c2, µ2,Σ2). (20)

Integral of a multivariate Gaussian. Integrating a multivariate
Gaussian over Rn results in∫

Rn

G(x; c, µ,Σ) dx = c · (2π)n/2|Σ|1/2. (21)

