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Fig. 1. Our method is capable of rendering detailed specular microstructure like Yan et al. [2016], but with much smaller storage requirements, and without
any repetition artifacts. The leather material is represented using two normal maps: a standard macro-level map, and a microstructure map, synthesized
on-the-fly using our method from a small 512× 512 example patch. Bottom: zoomed-in images rendered at higher resolution. For Yan et al. we use a 10𝐾 × 10𝐾

normal map as input. The storage of our method is 35.0 MB, while the previous method requires 30.84 GB to handle a similar level of detail without repetition.
For comparison, we also show the rendering using naive path tracing (similar time as our method), where only a fraction of the glints has been found. This
fraction would be different in each run, thus the naive approach is unsuitable for animations.

Rendering glinty details from specular microstructure enhances the level of

realism, but previous methods require heavy storage for the high-resolution

height field or normal map and associated acceleration structures. In this

paper, we aim at dynamically generating theoretically infinitemicrostructure,

preventing obvious tiling artifacts, while achieving constant storage cost.

Unlike traditional texture synthesis, our method supports arbitrary point and

range queries, and is essentially generating themicrostructure implicitly. Our

method fits the widely used microfacet rendering framework with multiple
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importance sampling (MIS), replacing the commonly used microfacet normal

distribution functions (NDFs) like GGX by a detailed local solution, with a

small amount of runtime performance overhead.
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1 INTRODUCTION
Microstructure rendering of glinty details [Yan et al. 2014] has

brought a new level of realism to rendering specular highlights,

a core effect in computer graphics. This method and subsequent

work uses high-resolution normal maps to explicitly define every

microfacet normal. However, very large normal maps are required to

cover enough surface area without obvious repetition. For example,

Yan et al. [2018] used a resolution of one micron per texel, which
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requires a 10𝐾 × 10𝐾 normal map to cover just one square centime-

ter. Worse, hierarchical acceleration structures over these normal

maps are needed for efficient pruning of non-contributing normals,

making the storage problem even more severe. Designing normal

maps of that size, which moreover need to allow for seamless tiling,

requires additional tedious effort. These are key issues reducing the

practicality of the prior solutions.

Although texture synthesis methods are ubiquitous, few of them

are suitable for the microstructure rendering task. Earlier image

quilting techniques [Efros and Freeman 2001; Efros and Leung 1999;

Wei and Levoy 2000] and recent neural texture synthesis meth-

ods [Gatys et al. 2015; Jetchev et al. 2016; Zhou et al. 2018] are

synthesizing an image starting from a core example image. The

problem is that, if we would like to query the synthesized image

say at index (100𝐾, 100𝐾), the method has to actually synthesize

the image all the way up to that point, which is a clear violation

of our constant storage need. A dynamic point query (giving the

exact value anywhere on the synthesized image in constant time) is

needed instead.

On the other hand, procedural noise methods, such as Perlin

noise [Perlin 1985], Gabor noise [Lagae et al. 2009] and texton

noise [Galerne et al. 2017], use a few parameters to control the

appearance of a non-repeating noise function over an infinitely

large space. By-example noise methods [Galerne et al. 2012; Gilet

et al. 2012; Heitz and Neyret 2018] offer more artist controllability

by providing an example texture and blending patches from it at

different querying positions. These methods require no additional

storage, and support on-the-fly point queries. However, for mi-

crostructure rendering, we need not only a normal map, but also the

corresponding acceleration method for pruning non-contributing

regions. Unfortunately, none of these methods currently support

min-max queries in an arbitrary range. Such a range query capability
(returning the range of normals in any region on the synthesized im-

age, again without actually generating it) is a necessary component

of the solution to our problem.

We present a method that implicitly generates the normal map

along with a range query capability, so that it can directly fit into

the microstructure rendering framework of Yan et al. [2016], but

with much lower storage requirements. Our method builds upon

by-example noise methods to maximize artist controllability, and

generates normal maps by blending patches from input examples.

We support dynamic point queries and range queries on the implicit

normal map generated using any by-example method, as long as the

blending operation is monotonically increasing (as will be defined

in Sec. 4.5). With our method, we are able to render microstructure

with non-repetitive patterns, with constant storage cost and a small

performance overhead over previous methods.

2 RELATED WORK
In this section, we organize the related work into two basic cat-

egories. We first briefly review previous work on microstructure

rendering and capture, then introduce related work on texture syn-

thesis and general procedural appearance.

Microstructure rendering. Surface reflectance in computer gra-

phics is typically described using microfacet theory [Torrance and

Sparrow 1967], which uses smooth analytic functions such as Beck-

mann [Beckmann and Spizzichino 1987] and GGX [Walter et al.

2007] to model the distribution of surface normals. More recently,

Yan et al. [2014] introduced the idea of using patch-local normal

distribution functions (P-NDFs) to accurately compute the spatially

and directionally varying appearance from explicit specular mi-

crostructure such as bumps, brushes, scratches and metallic flakes.

The microgeometry is defined using extremely high resolution nor-

mal maps. Yan et al. [2016] proposed a position-normal distribution

method to accelerate computation, which was later extended to

handle wave optics effects [Yan et al. 2018]. All these methods share

a common problem with storage cost: the microstructures have to

be defined at resolutions of 1 − 10 microns per texel, which either

requires very large textures (and associated acceleration structures)

or leads to tiling artifacts.

Since explicit microstructure is costly to store, a series of methods

were designed to model specific effects. Jakob et al. [2014] introduce

a procedural BRDF that produces glitter effects from implicit mirror

flake distributions without explicitly storing the underlying mi-

crostructure, but is not extensible to other kinds of microgeometry,

such as brushes and scratches. Raymond et al. [2016] model surfaces

as the mixture of a base surface and a collection of 1D scratches,

later extended by Werner et al. [2017] for wave optics effects and

by Velinov et al. [2018] for real-time performance; these methods

work well for scratches but do not support other appearances. The

method of Zirr and Kaplanyan [2016] dynamically adds micro-level

details to a predefined macro-scale BRDF, but is focused on real-

time performance, not on accurate simulation of the appearance of

a given microgeometry.

Detailed appearance measurement. Several approaches mea-

sure real-world samples and use the measured data to render, either

directly or indirectly. Dong et al. [2015] used an interferometry

device to acquire the microstructure of brushed metal, but they

still use statistical reflectance models to fit the measured data for

rendering. Other methods [Graham et al. 2013; Nagano et al. 2015;

Nam et al. 2016] aim at measuring accurate heightfields; these could

be used with glint rendering methods, but seamless extension of

the data across larger surface areas remains a problem, which could

be addressed by our method.

Texture synthesis.We wish to generate non-repeating appear-

ance, which is also the goal of texture synthesis. Texture synthesis

methods can be categorized into three different kinds. The first kind

is by expansion: starting from a small texture, they dynamically

“grow” a new larger texture. Representative work of this kind ranges

from the classic image quilting methods [Efros and Freeman 2001;

Efros and Leung 1999; Wei and Levoy 2000] to modern solutions

using Generative Adversarial Networks (GANs) [Jetchev et al. 2016;

Zhou et al. 2018]. These methods, however, are not applicable to our

problem – to query the value at a specific location on the generated

texture, the texture has to be actually generated from its original po-

sition to the query. This violates our goals of zero dynamic memory

consumption and minimum performance overhead.

The second kind of related texture synthesis work is tiling meth-
ods, such as Wang tiles [Cohen et al. 2003; Wang 1961]. These meth-

ods first create small tiles from the input texture. These tiles are

designed to allow seamless stitching to others, and are thus used
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Fig. 2. Top left: Flatland visualization of a position-normal distribution, fitted
using Gaussian elements. Each element corresponds to a single texel and its
normal. The slope of the element depends on the normal map Jacobian, its
horizontal extent matches the texel size, and the vertical thickness is due to
intrinsic roughness. Others: Different levels of min-max hierarchy over the
normal map bound the sets of normals within spatial ranges.

as building blocks to generate larger textures. The tiling methods

can support point queries; however, since the number of tiles is

usually limited due to the difficulty of satisfying the seamless tiling

property, repeated tiles are often visible as artifacts.

The third kind is blending methods, also known as by-example

noise methods. They assume that any point on the resulting texture

is blended from several patches from the input texture (example).

Different blending methods of the example patches are possible,

from simple linear blending (prone to “ghosting” artifacts), to more

advanced variance preserving [Yu et al. 2011] and histogram preserv-

ing [Heitz and Neyret 2018] methods. These methods are procedural

and we demonstrate that they can be adapted to our needs, specifi-

cally by designing a suitable point and range query for normals and

their Jacobians. Our method does not depend on a specific blend-

ing method, and we will show different appearances in Sec. 6 for

different choices.

Other procedural appearance. Many efforts have focused on

designing procedural noise functions, such as Perlin noise [Perlin

1985] and Gabor noise [Lagae et al. 2009], which give non-repeating

values over the entire 2D or 3D space. The noise can be later thresh-

olded and post processed in other ways to produce appearance

variations that mimic terrain, rust, marble, etc. The noise functions

often provide the functionality of point query (the value at any po-

sition) and approximate range average query (approximate average

value in a given range) for anti-aliasing, but do not support range

min-max query (exact minimum and maximum values in a given

range), which is a crucial property needed by our method (Sec. 4.3).

3 BACKGROUND

3.1 Rendering details from microstructure
Our method builds upon the framework of microstructure rendering

by Yan et al. [2016], where the microstructure is defined using a

high resolution normal map. The normal map is a continuous, dif-

ferentiable function that returns a 2D normal n(u) = (𝑛𝑥 , 𝑛𝑦) (drop-
ping the implicit 𝑧-coordinate) for any given 2D u = (𝑢, 𝑣). A uv-

parameterization on geometric primitives is required to map the nor-

mal maps to surfaces. Removing this assumption (so that our method

applies to any geometries without need for uv-parameterizations)

would be an interesting future work direction.

During rendering, a spatial footprint P (i.e. coverage on the tex-

ture) can be approximated by the renderer as a Gaussian𝐺P ; this
footprint can be as large as the pixel projection onto the surface, but

is typically smaller (leaving some work to pixel multi-sampling). To

evaluate the surface BRDF for the footprint P, we need to query the
distribution of the surface normals within the footprint, i.e. the patch

normal distribution function (P-NDF). To do that, for every position
within P, we check whether its normal is close enough to a query

direction s, where the closeness is defined using another Gaussian

𝐺𝑟 specifying an “intrinsic roughness” of the microstructure. The

query can be written formally as

𝐷P (s) =
∫

𝐺P (u)N (u, s) du, (1)

where N(u, s) = 𝐺𝑟 (n(u) − s) is a 4D function of u and s called

position-normal distribution, where u represents the texture coordi-

nate (surface position), and s represents the normal. Fig. 2 illustrates

the position-normal distribution in a simplified flatland case (1D po-

sition, 1D normal). Using this definition, the resulting 𝐷P becomes

a replacement of the smooth NDF in the classic microfacet model.

Since the 4D position-normal distributionN(u, s) is complicated,

Yan et al.[2016] approximate it with a mixture of 𝑘 Gaussian el-

ements in 4D, such that N(u, s) ≈ ∑𝑘
𝑖=1

𝐺𝑖 (u, s). Each Gaussian

element is defined as

𝐺𝑖 (u, s) = 𝑐𝑖 exp

(
−1

2

(x − x𝑖 )𝑇Σ−1

𝑖 (x − x𝑖 )
)
, (2)

where 𝑐𝑖 is a constant for normalization, x = (u, s)𝑇 is a 4D column

vector, and Σ is the covariance matrix computed from the Jacobian

of the normal n(u).
The query of the P-NDF at s thus becomes

𝐷P (s) ≈
𝑘∑
𝑖=1

∫
𝐺P (u)𝐺𝑖 (u, s) du, (3)

where each term of the sum has been simplified to calculating the

product integral of two 2D Gaussians (since the two dimensions of

s are given as a query and are constant with respect to integration),

which results in an analytical solution.

In theory, Gaussians have infinite support, so every term in the

above sum contributes a non-zero quantity. In practice, though, we

can truncate the Gaussians, thus introducing small but perceptually

negligible error. In the following, we assume truncation at 3 standard

deviations. Thus any Gaussian footprint query can be bounded by a

square query.

As shown by Yan et al. [2016], converting each texel of a well

sampled normal map to a single Gaussian element typically gives

good results in practice. Therefore, the number of Gaussian elements

𝑘 is usually in the millions. To avoid calculating every Gaussian
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element’s contribution to every query, Yan et al. [2014] build a min-

max hierarchy over the normalmap. The hierarchy is a tree structure,

where each node stores the range of normals in its child nodes.

With the hierarchy, a group of Gaussian elements can be pruned

together if the bounding box of the normals is far from the query s,
meaning its contribution is negligible, given the Gaussian truncation

approach mentioned above. The idea was later extended [Yan et al.

2016] to a 4D acceleration structure over both positions and normals,

which is essentially multiple hierarchies for the Gaussian elements

contributing to certain ranges of normals.

3.2 Procedural by-example noise
The key idea of by-example noise generation is to create a new

image patch by blending multiple patches, picked up from different

places on a given example. To make this process procedural, at any

place on the synthesized noise, we need to know which patches are

selected to blend. This is usually done by partitioning the infinite

planar domain into regular regions (triangles, quads, etc.), where

each region is associated with a unique random seed that is used

to pick random patches from the example. Within each region, the

blending weights vary linearly. We will describe these weights along

with our choice of regions in more detail in Sec. 4.2.

During the noise generation, differences emerge in different choices

of patch blending methods. Here, we introduce three representative

methods: linear blending, variance preserving blending [Yu et al.

2011], and histogram preserving blending [Heitz and Neyret 2018].

Linear blending is themost straightforward. It is a simpleweighted

average of all 𝐾 inputs:

𝐼𝑙 =

𝐾∑
𝑖=1

𝑤𝑖 𝐼𝑖 , (4)

where𝑤𝑖 is the weight of the 𝑖-th input 𝐼𝑖 at a specific position.

Variance preserving blending builds on top of the linear blending:

𝐼𝑣 = (𝐼𝑙 − 𝐼 )/𝑊 + 𝐼 , (5)

where𝑊 =

√∑𝐾
𝑖=1

𝑤2

𝑖
is the L2-norm of all the weights, and 𝐼 is the

(uniform-weighted) average of all the inputs. Histogram preserving

blending considers an additional operation and its inverse to the

variance preserving blending. That is, it computes a mapping G that

maps the histogram of the example into a 1D Gaussian distribution.

There are three steps: apply themappingG to standardize (transform
into a standard normal distribution) the example, then perform

variance preserving blending, and finally apply the inverse mapping

of G to obtain the blended result. This can be written as

𝐼ℎ = G−1 [G(𝐼 )𝑣] . (6)

Determining which of these blending methods gives the best

visual effects in which scenarios is beyond the scope of our paper.

Our method works with all blending methods, as long as they satisfy

a monotonicity property, as will be analyzed in Sec. 4.3.

4 PROCEDURAL MICROSTRUCTURE RENDERING
In this section, after some definitions, we first describe how to

query the infinite synthesized microstructure at a given point; this

follows previous by-example synthesis methods, with modifications

Example

Target Patch

Example Patch Example Patch

Example Patch
Example Patch

Target

Target Patch

Target PatchTarget Patch

Target Patch

Fig. 3. The target patch (pink square) is the blended result of four different
example patches (squares with different color). Each example patch has a
deterministic random location in the example, which is specified by the
target patch index. Each point in the target patch has one blending weight
(represented as opacity of the small red dot, where higher opacity represents
more weight) for each blending example patch. These blending weights vary
across the target patch.

for querying normals and their Jacobians. Second, we describe our

approach to query the range of normals that occurs within a given

square range of the infinite microstructure; this is a key innovation

over previous work, based on the range minimum query (RMQ) data

structure. Third, we show how to use this range query to isolate

contributing texels within a given footprint.

4.1 Definitions
Before we proceed, we first define the terminology we are going to

use:

• example – the given input normal map (not necessarily

tileable),

• example patch – a square patch from the example,

• target – the infinitely large planar domain on which we

synthesize the microstructure, and

• target patch – a square patch on the target that is formed

by blending several example patches.

We specify our goals formally as:

(1) point query – given a texture coordinate u ∈ [−∞,∞]2,
query the normal map value n(u) and its Jacobian J(u) of the
implicitly synthesized microstructure at a time complexity of

𝑂 (1), and
(2) range query – given a square target patch [u1, u2] (top-left

and bottom right corners), query the interval that tightly

bounds the values within the patch, [nmin

𝑥 , nmax

𝑥 , nmin

𝑦 , nmax

𝑦 ],
also at a time complexity of 𝑂 (1).

In the next subsections, we will introduce the point query and

the range query, then describe how these two operations are used

together for fast P-NDF queries during the rendering process.

4.2 Point query
The point query operation consists of two different parts. First, based

on the point query’s location, it finds the target patch it stays in and

the corresponding example patches. Second, it performs blending

from different points on different example patches. These parts are
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similar to the by-example texture synthesis methods introduced in

Sec. 3, with some modifications.

As Fig. 3 shows, the target is covered by overlapping example

patches. The example patches are squares, and they overlap each

other by half the edge length. Thus, any target patch is the blended

result of four different example patches. The blending weights are

bilinearly interpolated within the patch.

We partition the target into a square grid of target patches. Each

target grid vertex is assigned a random number (seed) computed

by hashing its index (𝑖, 𝑗). This random number is used to locate a

specific example patch. Based on the relative position of the point

query inside the target patch, we immediately know which four

example patches are being blended at this point.

The second step is to get the value n and its Jacobian J at u on

the implicitly synthesized microstructure. It is straightforward to

calculate the blended normal value n. Since we already know the

four positions on the example patches, we can immediately get n by

applying the blending methods using Eqns. 4, 5 and 6 or any other

methods.

We also need to compute the blended Jacobian J. One immediate

way is to perform the same point query of normals at four adjacent

locations, then compute the Jacobian using central finite differences.

However, this method is slower due to multiple queries, and depends

on the fixed step size of the numerical differentiation. Instead, we

use a fast and accurate analytic solution, described in the Appendix.

4.3 Range query
Suppose a pixel footprint P (a square bounding the truncated Gauss-

ian) is given on the microstructure. We would like to perform sub-

division of the pixel footprint to prune areas with non-contributing

normals. Essentially, the pruning scheme needs to answer the ques-

tion: is the queried normal value contained within the interval of

normals of a given patch, i.e. between its minimum and maximum

values?

Our insight is that we do not need to explicitly build any hierar-

chy, as long as we are able to answer the query for minimum and

maximum normal values, given any positional range on the implicit

microstructure. Since any target range is blended from four patches

on the example texture, our range query problem becomes two

sub-problems. First, querying the minimum and maximum values

on the example texture. Second, computing the combined min-max

interval as we blend the four query results from the example.

4.4 Range minimum query
The first task is a classic algorithmic problem known as the Range

Minimum Query (RMQ). In 1D, the RMQ problem can be solved

within 𝑂 (1) runtime and 𝑂 (𝑛 log𝑛) precomputation time and stor-

age, using the sparse-table algorithm [Bender and Farach-Colton

2000]. As Fig. 4 shows, the key idea is to precompute the answers to

all possible range queries of length 2
𝐾
, where 𝐾 is a positive integer.

For a general query from the 𝑖-th element to the 𝑗-th element, i.e.

one with length different from a power of 2, it takes constant time

to find two precomputed range queries, such that (1) one starts at

𝑖 and the other ends at 𝑗 , (2) they are of the same length and (3)

their union covers the entire range [𝑖, 𝑗]. Then the minimum of

query size = 6

query size: (5 x 5)

= min

= min

length = 

length = 

length = 

length = 

Fig. 4. Top: 1D version of RMQ. For an arbitrary 1D query (here, [2, 7],
marked in red), we first find two precomputed range queries ([2, 5] and
[4, 7]) with length 2

2; then the minimum of the query [2, 7] is the mini-
mum of the two precomputed minima. Bottom: 2D version of RMQ. For
an arbitrary 2D query (here, [2, 1] to [6, 3], marked in red rectangle)), we
find four precomputed range queries: [2, 1] to [5, 2] (light purple), [3, 1]
to [6, 2] (light blue), [2, 2] to [5, 3] (light green) and [3, 2] to [6, 3] (light
yellow), with size 2

2 × 2
1. The minimum of the query is the minimum of the

four precomputed minima.

the general query [𝑖, 𝑗] is the minimum of the two precomputed

minima. Note this algorithm gives the exact minimum (not a conser-

vative approximation); the same approach can be used for a range

maximum query.

Extending this 1D algorithm to arbitrary 2D queries is straight-

forward. As illustrated in Fig. 4, we precompute the answers to all

possible square range queries of size 2
𝐾 × 2

𝐾
, where 𝐾 is a pos-

itive integer. For an arbitrary query, we can immediately locate

four precomputed range queries of the same size that cover the

entire query range, each staying in one of the fours corners of the

query range. The minimum of the general query is the minimum of

the four precomputed minima. Then the 2D RMQ problem can be

solved within 𝑂 (1) runtime and 𝑂 (𝑛2
log𝑛) precomputation time

and storage, where 𝑛 × 𝑛 is the resolution of the 2D array.

Note that the precomputed data in our 2D sparse-table algorithm

is different from a mip-map style tree structure. Taking the 1D

case as an example, a precomputed query in a tree structure must

start at multiples of its length. However, the sparse-table algorithm

precomputes for all possible starting points. The difference indicates

why a tree structure only supports range queries within 𝑂 (log𝑛)
time.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: June 2020.



6 • Wang, B. et al

Example

Example Patch

Target Patch

Target Patch

Target

Fig. 5. We perform the range query in the target patch instead of the
footprint. We find the tightest square bounding the pixel’s footprint P, and
start the traversal from the square (blue square).

With these tools, we are able to solve the first sub-problem to

perform a range query within each example patch. We list the pseu-

docode for algorithms that build our optimized 2D sparse-table in

Algorithm 1 and the pseudocode to use it for our range queries in

Algorithm 2 (see the Appendix). The next step is to combine the

four queried min-max intervals into one for the target patch, as the

normals within these intervals on the example patches are blended.

4.5 Blending range queries
The problem of accurately combining the range queries from the

patches being blended still remains. The union of the four queries

may not be a conservative bound, since more advanced blending

methods may not satisfy the convex-hull property; that is, the

blended minimum value could be smaller than any of the input

minima.

Our goal is to correctly bound the blended min-max intervals,

and make them as tight as possible. To achieve this, we find that all

the operations in the by-example noise methods we use, whether

linear or non-linear, aremonotonically increasing with respect to the

values being blended. This property can be easily verified. Elemen-

tary operations used in the methods, such as additions/subtractions

and multiplications/divisions by positive values, as well as linear

operations with positive weights, clearly satisfy the property. The

standardization operation in histogram-preserving blending is es-

sentially equivalent to 1D optimal transport [Monge 1781] (recall

that we blend the 𝑥 and 𝑦 components of normals separately); there-

fore, it is also guaranteed to be monotonically increasing [Bonneel

et al. 2011].

The monotonically increasing property allows us to apply the

same blending method to the endpoints of the min-max intervals

from the four source example locations being blended, producing a

guaranteed conservative bound. For example, if values 𝑥1, · · · , 𝑥4

are bounded from above by 𝑢1, · · · , 𝑢4 respectively, then the blend

of the former will be upper-bounded by the same blend of the latter.

However, one additional issue is that the blending weights them-

selves can vary over the queried range. This means we also need

to bound the range of blending weights over a query region. This

is straightforward to do within the traversal scheme that uses our

range query, which will be introduced in the next subsection. The

sampling evaluation

Fig. 6. Normal distribution function visualizations with binning the im-
portance sampled directions and with per-pixel evaluation provide closely
matching results.

resulting min-max interval of the blended normal is no longer guar-

anteed to be tight, but is always correct (conservatively bounding)

and works efficiently in practice.

4.6 Implicit hierarchy traversal
Given the pixel’s footprint P, we find its overlap with target patch,

and then get the tightest square bounding it, and start the traversal

from the square (see Alg. 3). The square is subdivided into smaller

squares until their content overlaps entirely with the bounding box

(red dash rectangle) of the footprint.

For all these squares, if there are more than one texels, we perform

a range query to get their min-max normal interval. If the half

vector locates in the normal range, we subdivide the square into

four smaller squares and continue the traversal. If the half vector

is not included in the range, then all the texels in the square are

discarded. The traversal continues until there is only one texel in

the square. If the half vector is located in the min-max interval of

the texel, we blend the normals and the Jacobians to get a Gaussian

element. Finally, we gather the contribution from the Gaussian

element.

The min-max interval for the top levels might not be tight in the

beginning. However, as the traversal proceeds until lower levels,

min-max interval becomes more and more accurate, and converges

to the tightest boundary on the finest level. The worst-case time

complexity of the query is the same as in previous work [Yan et al.

2016]: it occurs when none of the texels within the footprint are

pruned and have to perform the point query; however, this situation

is rare.

5 IMPLEMENTATION DETAILS

5.1 Example range precomputation and packing
Given an example range, the minimum and maximum normals

need to be quickly computed. In our implementation, we use a 3D

precomputed table to represent the minimum and maximum normal:

two dimensions represent corner location in the example, and the

third dimension represents the logarithm of query size. The table is

computed recursively, starting from the finest level.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: June 2020.
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To save memory, we further pack four values (two for minimum

normal and two for maximum normal) (the two values are the x

and y components of the normals) into 64 bits. The four values

are normalized into [0, 1], converted into 16-bit integers and then

combined into a 64 bit value. In the end, our precomputed range

query table is compact, about 14 MB for a 512× 512 example texture.

5.2 Footprint coverage and multiple target patches
Each footprint might cover multiple target patches. We bound the

footprint within each covering target patch and generate several

small sub-footprints. We call these sub-footprints footprints, for

simplicity.

5.3 Importance sampling
For a given shading point, we find four normals and Jacobians of

the four texels around it to get four Gaussian elements. By picking

an element proportional to its contribution to the footprint, then

picking a normal from that element, we obtain the sampled direction.

We validate the correctness of our importance sampling in Figure 6.

6 RESULTS AND COMPARISON
We have implemented our algorithm inside the Mitsuba renderer

[Jakob 2010]. We compare against Yan et al. [2016] for quality vali-

dation. All timings in this section are measured on a 2.20GHz Intel

i7 (images cores) with 32 GB of main memory. Unless otherwise

specified, all timings correspond to pictures with 1280 × 720 pixels,

except the Bent Quad scene with 512 × 512. In all of our results, we

use histogram preserving blending [Heitz and Neyret 2018] as the

blending method, except in Figure 10.

In Table 1, we report all the scene settings, computation time and

memory costs for our test scenes. The memory cost in the table

is for histogram preserving blending. The other methods (linear

and variance preserving blending) cost slightly less than histogram

preserving blending.

Chair scene. This scene shows a chair with two leather pillows

(75cm wide), rendered using environment lighting. The leather pil-

lows have a macro-level normal map and detailed microstructure

bumps. The macro map covers 75cm × 75cm. The micro example

normal map with resolution 512 × 512 covers 37.5mm × 37.5mm.

In Yan et al. [2016], we synthesize an equivalent large normal map

(10𝐾 × 10𝐾 ) offline and use it for rendering. Compared to Yan et al.

[2016], our method produces the same results, with only a fraction

(0.11%) of memory cost. Regarding the time cost, our method has a

small overhead (13%) over Yan et al. [2016].

Laptop. This scene shows a laptop with a roughened aluminum

matte finish. It is rendered using a point light and environment

lighting. The laptop is about 30cm wide. The input example 512×512

covers 3mm×3mm. In Yan et al. [2016], we use the same small input

texture and tile it. In Figure 9, we can observe obvious repeating

patterns in the results of Yan et al. [2016]. In Table 1, we report

the memory cost of both methods. Our method costs 35 MB, while

Yan et al. [2016] costs 62 MB for the same (small) normal map, as

our range query tables are slightly more space-efficient than their

hierarchy.

(a) orange plastic, spherical bumps (b) coated al. + blue diffuse, scratches

(c) copper, brushed metal (d) al., isotropic noise

(e) coated al. + red diffuse, metallic flakes (f) brown plastic, leather

Fig. 7. Rendered results of different normal maps on the Bent Quad scene.

In Figure 10, we compare the results of our method with differ-

ent blending methods: linear, variance preserving and histogram

preserving blending. Our method does not rely on any specific blend-

ing method. We observe both variance preserving and histogram

preserving blending provide acceptable quality.

In Figure 11, we compare the histogram preserving blending

method used in our method with Wang tiles on the Laptop scene.

We used the ASTex library for theWang tiles implementation.We set

the tile size as 128× 128 with 16 tiles. The Wang tiles method yields

obvious structured artifacts, due to the replication of a small number

of tiles; the randomized distribution of the tiles is not sufficient to

hide the pattern.

Kettle scene. Figure 8 illustrates a Kettle with brushed metal on

the body under two small area lights and environment lighting. The

kettle is about 30cm high. The input brushed metal normal map

with 512 × 512 resolution covers about 9mm × 9mm. For Yan et

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: June 2020.
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Scene #Tri. Intr. Rough. Spp. Normal map (ours) Normal map (Yan[2016]) Time (min.) Memory (MB)

K Res. Tile Res. Tile Ours Yan[2016] Ours Yan[2016]

Chair 303.0 0.01 1024 512
2

10 10𝐾2
1 3.86 3.42 35.0 31584.0

Laptop 18.4 0.005 1024 512
2

100 512
2

100 6.71 4.38 35.0 62.0

Kettle 175.3 0.005 1024 512
2

32 2𝐾2
8 3.90 3.50 35.0 1119.9

BentQuad 19.6 0.005 1024 1𝐾2
2 1𝐾2

2 1.26 – 148.0 –

Shoe 13.3 0.01 1024 512
2

20 512
2

20 3.43 3.33 35.0 62.0

Table 1. Scene settings, computation time and memory costs for our test scenes. #Tri. is the count of triangles in the scene. Intr. Rough. presents the intrinsic
roughness of the material. Spp. represents sample per pixel for path tracing. Normal map (ours) and Normal map (Yan[2016]) represent the input normal map
setting for our method and Yan et al. [2016]. The memory cost of our method includes the RMQ table cost, precomputed standardization cost and the input
normal map cost.

Ours, 3.90 min, 
mem. cost: 35.0 MB

Yan [2016], 3.50 min
mem. cost: 1.12 GB

Fig. 8. Comparison between our method and Yan et al. [2016] with a tiled
texture on the Kettle Scene. Normal map: brushed metal. The results are
similar, but the memory cost of our method in only a small fraction (about
3%) of theirs.

al. [2016], we used a 2𝐾 ×2𝐾 tillable input texture and tiled it. There

are no visible differences between our results and those of Yan et

al. [2016] (see Figure 8). The memory cost for our method is only a

small fraction (about 3 %) of theirs.

Bent Quad scene. Figures 7 and 12 show a simple scene with a

5cm× 5cm bent quad with a scratched normal map illuminated by a

textured light. The resolution of input isotropic noise normal map is

1𝐾 ×1𝐾 , and covers 2.5cm×2.5cm. In Figure 12 we show the results

with BRDF sampling only, evaluation only and their combination

under the multiple importance sampling framework. We also show

the result with environment lighting in the right image.

In Figure 7, we show the results of Bent Quad with different BRDF

types with different normal maps used as examples.

Shoe scene. This scene shows a shoe with coated metallic flakes

under environment lighting. We found that no existing blending

method works well with flakes. However, we can easily fix this by

using our method without blending (choosing each point from a

single patch); the rest of the framework is unchanged. The blended

normal maps will have visible seams. However, since every flake

has a constant normal, its Jacobian is always zero and does not have

to be re-computed from a normal map. Thus, discontinuities in the

blended normal maps will not introduce any discontinuous artifacts

during rendering. As shown in Figure 13, even though without

blending the method produces boundary artifacts in the synthesized

normal maps, this problem is not visible in the rendering results.

7 DISCUSSION AND LIMITATIONS
Storage overhead breakdown. Figure 14 (left) shows the memory

cost of our method and Yan et al. [2016] over varying resolutions.

The resolution of the example texture in our method is 512×512. The

memory cost of our method stays consistent with varying texture

resolution, while the cost of Yan et al. [2016] increases drastically.

In Figure 14 (right), we show the memory cost of components in

our method and Yan et al. [2016] for a normal map with resolution

2𝐾×2𝐾 . Thememory cost of our method includes three components:

flakes, RMQ precomputed table, normal lookup table and Jacobian

lookup table, while the memory cost of Yan et al. [2016] includes

two components: flakes and hierarchy.

Our proposed method has several limitations. Our method is un-

der the framework of Yan et al. [2016], so it inherits the limitation

of handling only a single reflection, with no multiple scattering

or layering. In addition, our method inherits the limitations of the

by-example blending methods we use: namely, the restriction to

textures with mostly stationary structure, without macroscopic fea-

tures. Finally, our method does not resolve the problem of increasing

computational cost for distant viewing (large footprints), which is

also unsolved in previous work. In this case, the number of contribut-

ing Gaussian elements to be evaluated becomes large, resulting in

expensive queries.

8 CONCLUSION AND FUTURE WORK
We have presented a method that allows rendering of specular glints

from an arbitrarily large, non-repeating synthesized microstructure.

Our method has constant storage cost and a small performance

overhead. By designing point query and range query schemes for

general by-example texture synthesis methods, we are able to dy-

namically and implicitly generate an infinite normal map, together

with the required Jacobians and range queries. We demonstrate

that our method produces plausible and controllable details, sup-

ports inputs from any source, and fits into a Monte Carlo rendering

framework with multiple importance sampling. Our method can

be treated as a standard BRDF, much like the common microfacet
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Ours, 6.71 min Yan et al. [2016], 4.38 min

Fig. 9. Comparison between our method and Yan et al. [2016] with a tiled texture on the Laptop Scene. The repeated pattern is visible in Yan et al. [2016].
Normal map: isotropic noise.

Linear Blending, 8.62 min Variance Preserving Blending,  9.66 min Histogram Preserving Blending, 8.94 min

Fig. 10. Comparison between different blending method (linear, variance preserving and histogram preserving on the Laptop Scene. Normal map: isotropic
noise. Linear blending has artifacts issues. Both variance preserving and histogram preserving blending provide acceptable quality.

Ours (Histogram Preserving Blending) Wang Tiles Blending (Cohen et al. 2003)

Fig. 11. Comparison between our method using histogram preserving blending and Yan et al. [2016] with an offline generated texture (5𝐾 × 5𝐾 with 10 tiles)
using Wang tiles [Cohen et al. 2003] on the Laptop scene. The results with Wang tiles suffer from tile artifacts: despite the randomization provided by Wang
tiling, the repetition of a small number of base tiles is easily visible to the human eye. Part of the blended normal maps of both histogram preserving blending
and Wang tiles are shown at the bottom right.

BRDF [Walter et al. 2007] but replacing the smooth NDF with our

solution.

In the future, it would be interesting to optimize our method

for real-time implementation on GPUs. Extending our method for

rendering with wave optics, or making it work for surfaces without

a uv-parameterization, could also be worthwhile directions.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: June 2020.
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(a) sampling (b) evaluation (c) combined (d) with envmap, 1,26 min

Fig. 12. Our material model can be used inside a standard BRDF sampling/evaluation framework with multiple importance sampling. BRDF sampling alone (a)
captures only a small fraction of scratches. Light sampling (b) captures illumination from the high-intensity parts of the HDR light texture onto the scratches.
The combined result (c) has the benefits of both estimators. (d) shows the result with extra environment lighting.

Ours (with blending), 3.43 min Yan et al. [2016], 3.33 minOurs (without blending), 3.46 min

Fig. 13. Comparison between our method (with blending), our method (without blending) and Yan et al. [2016] with a tiled texture on the Shoe scene. The
normal map depicts metallic flakes as small constant regions. Our method (with blending) has an over-smoothing issue on the metallic flake normal map.
However, using synthesis with no blending fixes this issue: while it produces normal maps with boundary artifacts, it does not visually affect the rendering
results.
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Fig. 14. Left: The memory cost of our method and Yan et al. [2016] over
varying texture resolution. The resolution of the example texture in our
method is 512 × 512. Our method has some overhead, but it its storage
needs are only proportional to the example texture. Even when the target
resolution is just 512 × 512, our method still requires fewer resources than
Yan et al., because our RMQ-based solution needs smaller data structures
than previously used hierarchies. Right: The memory cost of components
in our method and Yan et al. [2016] for resolution 2𝐾 × 2𝐾 . G. is short for
standardization. Pos-nor is short for position-normal.
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A APPENDIX

A.1 Pseudo-code
We present detailed pseudocode of our algorithms in this subsection:

building 2D sparse-table (Algorithm 1), using it for range queries

(Algorithm 2), and performing top-down traversal (Algorithm 3).

Algorithm 1 Precomputation of the RMQ table.

Input:
N(u, s) = 4D position-normal distribution from the example

𝑎 = side length of the example

𝑙 = side length of the target patch

Output: T = Precomputed RMQ table

functionqeryExample(u0, u1)

if u0 .x == u1 .x then
nmin, nmax ← N(u0, s)

else
um ← ⌈(u0 + u1) × 0.5⌉
um−1 ← um − 1

um,0 ← vec2(u0 .x, um .y)
um,1 ← vec2(um−1 .x, u1 .y)
um,2 ← vec2(u𝑚 .x, u0 .y)
um,3 ← vec2(u1 .x, u𝑚−1 .y)
nmin

0
, nmax

0
←qeryExample(u0, um−1)

nmin

1
, nmax

1
←qeryExample(um,0, um,1)

nmin

2
, nmax

2
←qeryExample(um,2, um,3)

nmin

3
, nmax

3
←qeryExample(u𝑚, u1)

nmin ← min(nmin

0
, nmin

1
, nmin

2
, nmin

3
)

nmax ← max(nmax

0
, nmax

1
, nmax

2
, nmax

3
)

𝑘 ← log
2
(u1 .x − u0 .x + 1)

T [𝑘] [u0 .x] [u0 .y] ← packTo64Bit(nmin, nmax
)

end if
return nmin, nmax

end function

function precomputeRMQ

for all 𝑢 < 𝑎 do
for all 𝑣 < 𝑎 do

u0 ← vec2(𝑢, 𝑣)
u1 ← u0 + vec2(𝑙 − 1)
qeryExample(u0, u1)

end for
end for
return T

end function

A.2 Jacobian Blending
We use chain rule to compute the blended Jacobian J. Starting from

the individual Jacobians on the four positions located on example

patches, we keep track of their individual Jacobians for each function

using the chain rule. We consider three different blending methods:

linear, variance preserving and histogram preserving blending.

LinearBlending. Since the normals in linear blending go through

a set of linear operations (see Equation 4), the formula of the blended

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: June 2020.

http://arxiv.org/abs/cs.CV/1508.06576
http://arxiv.org/abs/1611.08207
http://arxiv.org/abs/1611.08207


12 • Wang, B. et al

Algorithm 3 Traversing the implicit hierarchy.

Input:
T = RMQ precomputed table

N(u, s) = 4D position-normal distribution from the example

s0 = the queried half vector

umin = min uv value of a pixel’s footprint P
umax = max uv value of a pixel’s footprint P

Output:
𝐷 = contribution according to the query

function traverseSqare(u0, u1)

𝑁 ← u1 .x − u0 .x

if 𝑁 > 0 then
inside←include(T (u0, u1), s0)

else
inside←include(N(u0, s), s0)

end if
if !inside then

return 0

end if
if 𝑁 == 0 then

𝐷 ← gaussianContribution(u0, s0)
else

𝐷 ← 0

u𝑐
0
[4], u𝑐

1
[4] ← subdivide(u0, u1)

for all 𝑖 < 4 do
𝐷 ← 𝐷 + traverseSqare(u𝑐

0
[𝑖], u𝑐

1
[𝑖])

end for
end if

return 𝐷
end function

function traverse(umin, umax)

// Find the minimum square-sized query.

𝑥 ← umax .x − umin .x

𝑦 ← umax .y − umin .y

u
′
min
← umin

u
′
max
← umin + 2

⌈log
2
(max(𝑥,𝑦)) ⌉

return traverseSqare(u
′
min

, u
′
max

)

end function

Algorithm 2 Querying the RMQ table.

Input:
T = RMQ precomputed table

umin = min uv value of the query

umax = max uv value of the query

Output:
nmin

= min normal of the query

nmax
= max normal of the query

functionqeryRMQ(umin, umax)

𝑘 ← log
2
(umax .x − umin .x + 1)

// Read the precomputed RMQ table

𝑁
packed

← T [𝑘] [umin .x] [umin .y]
nmin, nmax ← unpackFrom64Bit(𝑁𝑝𝑎𝑐𝑘𝑒𝑑 )

return nmin, nmax

end function

Jacobian with chain rule is:

J𝑙 =
∑

𝑤𝑖J𝑛, (7)

where𝑤𝑖 represents the weight of each example during blending,

and J𝑖 is the Jacobian associated with normal n of the 𝑖
th
input.

Variance PreservingBlending. In the variance preserving blend-
ing, extra linear operations are performed (see Equation 5) after

linear blending, resulting in:

J𝑣 = J𝑙/𝑊, (8)

where𝑊 =

√∑𝐾
𝑖=1

𝑤2

𝑖
is the L2-norm of all the weights.

Histogram Preserving Blending. Additional standardization
(G) and inverse standardization (G−1

′
) operations are performed

in histogram preserving blending, which are non-linear operations.

Since these two operations are precomputed in a table, we com-

pute their derivatives along with the precomputed values. During

blending, the Jacobian is then computed as follows:

Jℎ = G−1
′ [G(n)𝑣] ·

[
G
′
(n) ⊗ J

]
𝑣
, (9)

where G−1
′
and G′ represent the inverse standardization and stan-

dardization derivatives, and they should be diagonal matrices, since

we blend the two components of normal, n𝑥 and n𝑦 , separately.

G(n)𝑣 is the variance blended normal (see Equation 8).

[
G′ (n) ⊗ J

]
𝑣

represents performing the standardization operation on the input

Jacobian, which is an element-wise matrix multiplication, and then

followed by a variance preserving operation.
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