
Computational Visual Media

DOI 10.1007/s41095-xxx-xxxx-x Vol. x, No. x, mouth year, xx–xx

Review Article

Recent Advances in Glinty Appearance Rendering

Junqiu Zhu1, Sizhe Zhao1, Yanning Xu1 (�), Xiangxu Meng1, Lu Wang1 and Ling-Qi Yan2

© The Author(s) 2021.

Abstract The interaction between light and materials

is key to physically-based realistic rendering. However,

it is also complex to analyze, especially when the

materials contain a large number of details and

thus exhibit ‘glinty’ visual effects. Recent methods

of producing glinty appearance are expected to be

important in next-generation computer graphics. We

provide here a comprehensive survey on recent glinty

appearance rendering. We start with a definition of

glinty appearance based on microfacet theory, then we

summarize research works in terms of representation

and practical rendering. We have implemented typical

methods using our unified platform and compare them

in terms of visual effects, rendering speed, and memory

consumption. Finally, we briefly discuss limitations

and future research directions. We hope our analysis,

implementations, and comparisons will provide insight

for readers hoping to choose suitable methods for

applications, or carry out research.

Keywords glinty appearance; Monte Carlo methods;

rendering.

1 Introduction

In the real world, many materials exhibit visual

appearances with glinty effects, e.g. car paint under

strong sunlight, and tiny scratches on heavily used

cutlery. These glinty visual appearances are often

complex and unstructured, and they greatly enhance

the richness of the visual world. However, in computer

graphics, the glinty effects in visual appearances are

1 Shandong University, Jinan, Shandong, China. E-mail:
zhujunqiu@mail.sdu.edu.cn, zhaosizhe@mail.sdu.edu.cn,
xyn@sdu.edu.cn(�),mxx@sdu.edu.cn,
luwang hcivr@sdu.edu.cn.

2 University of California, Santa Barbara, USA. E-mail:
lingqi@cs.ucsb.edu.

Manuscript received: 2021-xx-xx; accepted: 20xx-xx-xx.

often ignored, leading to an overly perfect and smooth

appearance (see Fig. 1). In order to improve the

realism of computer-generated imagery (CGI), it is very

important for a photo-realistic renderer to take such

glinty appearance into consideration.

However, glinty appearance rendering is difficult.

In the real world, tiny bumps and dents on the

surfaces of objects can be found everywhere. These

geometric details introduce high-frequency variations

in appearance and cause glinty effects noticeable to

the human eye. Therefore, in order to incorporate

glinty appearance in rendering, one must start from the

causes of such appearance—complex microgeometry

and the way it interacts with light. However,

two difficult problems arise naturally. The first

is how to represent this complex microgeometry

both exhaustively (without overly simplifying or

ignoring any geometry) and compactly (without

introducing significant storage or memory consumption

overheads). The second is how to render such complex

microgeometry efficiently, faithfully bringing out the

glints without prohibitive computation.

Historically, people have used microfacet models

[55] to describe optical properties of surfaces, and

more specifically, bidirectional reflectance distribution

functions (BRDFs). Microfacet theory assumes that

a surface is composed of many microfacets. Each

microfacet causes a perfect mirror-like reflection.

Traditional methods prefilter glinty appearance and

smoothly approximate BRDFs, which results in a

smooth appearance which omits glinty effects. It

is the distribution of the orientations (normals) of

the microfacets that determine appearance. However,

microfacet theory uses a statistical approach (e.g.

using 2D Gaussians) to describe the microfacets’

normal distribution function (NDF). Since statistical

functions are usually smooth and only focus on

overall distributions rather than details, they inevitably

produce smooth appearances lacking glinty reflections.

Recently, various research has been devoted to

1

2 J. Zhu et al.

1

2

3

4

1

23

4

1

23

4

Fig. 1 A complex indoor scene with four kinds of glinty appearance. Left: rendering with traditional microfacet theory. Right:
Rendering using method from [66]. The glinty features on the wooden sofa legs, the leather sofa cushion, the bumpy base of the
ornament and scratched metals dramatically improve the image’s realism.

extending microfacet theory, especially using actual

NDFs, to produce glinty details on surfaces. We call

this line of research glinty appearance rendering. As

noted earlier, the key problems, which we focus on

in this survey, are the representation and rendering

of the complex microgeometry. We provide the

first thorough summary of state-of-the-art glinty

appearance rendering research.

Most related works concern offline methods, so we

focus on offline pipelines, and discuss real-time methods

as an extension to them. We begin by introducing

background knowledge, and overview solutions in

Sec. 2. We then divide the complex glinty appearance

problem into representation and rendering issues,

and discuss commonalities and differences of previous

research work in Secs. 3 and 4. In Sec. 5, we present

our unified platform, which implements typical offline

approaches and use it to compare these approaches in

terms of visual effects, rendering efficiency, and memory

consumption. Finally, we introduce extended works in

Sec. 6, covering wave optics, machine learning and real-

time rendering. We believe our survey will not only

help readers new to this area to quickly understand

the high-level concepts and solutions, but also benefit

experienced researchers in choosing suitable methods

for different application scenarios, and discovering

future research directions in this area. z

2 Background and Overview

In this section, we first introduce the microfacet-

based BRDF, then, we define what glinty appearance

is and analyze deficiencies of näıve rendering methods.

Fig. 2 Microfacet theory. Left: each surface microfacet has a
normal, indicating the direction it faces. Right: in practice,
statistical functions are used to describe the distributions of
the normals of a collection of microfacets (blue lobe); this is
an important term of a microfacet-based BRDF. h is the half
vector of a specific ωi and ωo, used in the BRDF to calculate
the reflectance.

Next, we recap pre-filtering techniques and analyze

their limitations for glinty appearance rendering.

Finally, we overview the glinty appearance methods

that are discussed in detail in the following sections.

2.1 Statistical Appearance Models

In physically-based rendering, the microfacet BRDF

is widely used to model surfaces with many tiny facets

that reflect rays as perfect mirrors (see Fig. 2). The

distribution of microfacet normals is generally defined

by a normal distribution function (NDF) [10]. With the

NDF, we can determine how many microfacets reflect

light from the incident direction ωi to the outgoing

direction ωo, or how many microfacets normals point

exactly along the half vector direction h between the

camera and light directions.

The microfacet BRDF can be defined as:

fr (ωi, ωo) =
F (ωi, ωh)G (ωi, ωo,h)D(h)

4 (n · ωi) (n · ωo)
, (1)

where F is the Fresnel term, G is the shadowing-

2

Recent Advances in Glinty Appearance Rendering 3

Fig. 3 (a, b): Path tracing with random pixel sampling has
little chance to find a valid path because only a tiny minority
of microfacets will contribute to the reflectance. (b, c): Brute
force sampling will consume much more time but may still fail as
the small proportion of contributing microfacets provide a large
amount of energy, and brightness will be greatly reduce if some
are missed. (d): Recent advances in glinty appearance rendering
generate better results in less time. (b–d) are taken from Yan et
al. [65]

masking term, and D is the NDF term. We focus on

the NDF term throughout this survey because it is the

dominant factor in glinty appearance rendering.

The microfacet BRDF [55] is successfully used in

practice. However, traditional methods work by

statistically modeling the aggregate behavior of a

collection of microfacets using a smooth NDF. This

smooth NDF tends to eliminate glint features and result

in smooth appearance (see Fig. 1). Kurt [41] reviews

BRDF measurement and representation methods, and

overviews the microfacet-based model very well. These

methods focus on the näıve microfacet BRDF which

can not effectively render complex glinty appearance.

2.2 Glinty Appearance

2.2.1 What is Glinty Appearance?

Many surfaces in reality have rich, high-frequency

variable reflections under intense light sources.

Random, tiny facets on surfaces, with size from a

few to hundreds of microns, can produce a glinty

appearance. Human eyes are very sensitive to shiny

reflections, under slight changes in lighting or viewing

direction. In this survey, we identify materials that

have microfacets and generate glinty visual effects as

having glinty appearance.

Fig. 4 Pre-filtering methods use a smooth distribution function
to approximating the complex P-NDF.

2.2.2 Difficulties in Glinty Appearance

Rendering

The most straightforward approach to glinty

appearance rendering is the path tracing [33] technique.

However, neither the näıve path tracing approach nor

similar bidirectional approaches [31, 57] can efficiently

process glinty surfaces. The main problem is that

the perfect mirror-like reflection behavior of individual

facets prevents us from sampling the correct facets

and finding valid light paths. As Fig. 3 shows, even

if we spend more time to process more samples, and

introduce a little roughness to make the facets not

so smooth, it is still a challenge to shade glinty

effects properly. Among tens of thousands of discrete

tiny facets, only tens of them might contribute to a

given pixel’s highlight. We need to find them all to

obtain a noise-free image containing glinty features.

Doing so is extremely expensive and quite intractable.

Recently, researchers have focused on these problems

and provided various solutions.

2.3 Solutions: Overview

To solve the glinty appearance rendering problem,

the basic idea is to process a surface patch P seen

through a screen pixel all at once. Some researchers

pre-filter patch P to approximate the contribution over

a surface patch (see Fig. 4). However, these methods

tend to reduce variations and produce smooth results.

To render glinty effects, some researchers take the

actual patch as input and calculate the discrete NDF

over P accurately (see Fig. 6). We briefly consider the

former and discuss the latter in detail.

2.3.1 Pre-filtering Methods

Pre-filtering methods have been widely used for

decades and provide partial solutions to glinty

appearance rendering. These methods evaluate the

3

4 J. Zhu et al.

mixture of 10 anisotropicanisotropic Gaussian

actual NDF isotropic Gaussian

Fig. 5 Approximating the actual P-NDF by an isotropic lobe
([54]), an anisotropic lobe ([45]) or several lobes ([23]) loses the
sharp features that cause glints. Image from Yan et al. [65]

outgoing radiance over a patch P and try to average

the outgoing radiance from P (see Fig. 4). Brusneton et

al. [3] present a thorough overview of such pre-filtering

methods. Here we briefly introduce some typical pre-

filtering methods and explain reasons why they cannot

preserve glinty effects.

One pre-filtering strategy is to store a large number

of pre-computed or measured reflectances for different

viewing and lighting directions, and organize them

according to P covering a coarse mesh. The values can

be stored in a 6D table called a bidirectional texture

function, or BTF [11]. Suykens et al. [50] create

a BTF for Monte-Carlo simulation on a geometric

surface model. Ma et al. [39] enable interactive BTF

rendering by compressing the BTF into a manageable

representation.

Assuming that surface colors, NDF, visibility and

shadow-masking are uncorrelated, another strategy

pre-filters these properties separately; NDF pre-

filtering issues have been studied in many works.

The simplest approach is to pre-filter the NDF as

a single lobe in P. Neyret [43] models the NDF

with an ellipsoid function. Olano and North [45]

model the NDF with a Gaussian-lobe defined by its

mean normal and a covariance matrix. Their method

supports anisotropic highlights efficiently. Heitz et al.

[25] introduce the SGGX function to represent the

spatially varying properties of anisotropic microflakes.

Fig. 6 Rendering glinty appearance needs accurate evaluation
of the P-NDF of the corresponding patch P on the surface which
covers one pixel’s projection.

However, these methods cannot deal with surfaces that

have structured microfacets or ones organized into a

pattern.

Multiple lobe pre-filtering methods provide the

ability to fit a more complex NDF. Fournier [17]

represents the NDF with a sum of Blinn-Phong lobes

[47]. His method supports up to 7 lobes and 28

parameters in his implementations. Tan et al. [51, 52]

extend the approach by using a mixture of isotropic

Gaussian lobes to represent the average NDF. Han et al.

[23] use a convolution method to model the macroscopic

NDF with its decomposition into spherical harmonics

and VMFs. Wu et al. [63] define characteristic

point maps and present a principal component analysis

method to find principal lobes based on their data

structure. They [64] further present an efficient filtering

algorithm to reconstruct bi-scale surfaces that contain

both macro-scale and micro-scale information.

The above pre-filtering methods are helpful for some

kinds of glinty appearance but have limitations in

rendering glinty materials, as the NDF for a glinty

appearance can be too complex to be fitted by several

lobes. Fig. 5 shows the effect of replacing one NDF by

a single lobe or multiple lobes: note the loss of sharp

features.

2.3.2 Glinty Appearance Rendering

Methods

Recently, researchers have taken actual microfacets

as input and accurately describe the microfacets’

distribution (mainly focusing on the NDF) in a surface

patch P, which preserves glinty effects. However,

the distribution can be extremely complex, so the

core problem of glinty appearance rendering is how

to efficiently and accurately evaluate the NDF over

the patch (P-NDF). We consider glinty appearance

rendering methods in terms of representation and

4

Recent Advances in Glinty Appearance Rendering 5

rendering.

To render the glinty appearance, the first step is

represent the actual microstructures. This is because

glinty appearances are generally complex and varied,

and representing them is a prerequisite for rendering

them. Furthermore, the representation determines

the method of evaluation of the NDF, which affects

overall performance and storage. The main issues to be

considered include memory costs, computation costs,

accuracy, and supported material types. In Sec. 3, we

discuss existing representation methods and compare

them in terms of the above factors.

In practice, how to render the glinty appearance

is another challenge. In Sec. 4, we discuss different

evaluation technologies including acceleration data

structures. We also discuss the importance sampling

and multiple scattering which have great impacts on

the final results.

3 Microstructure Representation

In the real world, most shiny surfaces have glinty

appearance, which is noticeable under strong light.

Typical high-frequency materials like bumps, flakes,

scratches, leather grain, dimples etc. contain various

microstructures. Representing such features is not an

easy task. First, the glint features are small and

complex, and representing all details would require

an extremely large amount of storage. Another

difficulty is that we need area-integration methods to

accurately evaluate the P-NDF of each patch, and

the representation must effectively support evaluation.

Different representations have their own advantages

and limitations. In this section, we classify recent

representations as explicit or implicit, and further

discuss each kind in turn.

3.1 Explicit Representation

Explicit representations store the original

microstructure of a surface in various forms. The näıve

form is a normal map. This well-known representation

records surface details in terms of normals instead of

geometry [8]. A high-resolution normal map allows the

recreation of microstructure details. Unfortunately, in

practice, a normal map based representation does not

work well for high-frequency rendering. The reason is

that we can hardly evaluate the P-NDF from normals

that are sampled from the normal map with methods

such as importance sampling.

To support area-integration based P-NDF

evaluation, existing methods represent microstructure

as piece-wise elements E such as discrete triangles,

[YHJ*14] binning

Fig. 7 Triangle representation compared to binning as a
reference. The triangle representation keeps features very well.
From Yan et al. [65]

Gaussian lobes or spherical histograms. Each form has

its own advantages and drawbacks.

Yan et al. [65] discretize the high-resolution

position-normal distribution as a large number of

triangles. Each triangle contains position and normal

information. They then evaluate the P-NDF by

accumulating the contributions of triangles located in

P (see Fig. 7). This representation is very accurate.

However, since integration must be performed for each

triangle element, evaluation is quite expensive.

To simplify evaluation, Yan et al. [66] define

4D Gaussian elements to describe the distribution of

normals in one tiny area. They describe a glinty surface

with a 4D position-normal distribution function, which

is approximated by a mixture of millions of 4D

Gaussians. The method requires a large amount of

memory (1.7–1.9 GB for 2K×2K maps) to organize

the Gaussians, but calculating Gaussians is much faster

than integration over triangles. Many works [5, 59, 68]

use similar elements to represent the microstructure.

Gamboa et al. [19] use a spherical histogram

to represent microstructure. They discretize the

microsurface as a 2D texture histogram. Each texel

stores an element, which is an accumulated spherical

histogram of normals. This method also requires

a large amount of memory (2.3-2.7 GB for 2K×2K

maps). In their implementation, they equally divide the

longitudinal and azimuthal space according to texture

size. At run-time, they introduce a summed area table

(SAT) to compute the P-NDF for an arbitrary range

(see Fig. 9). Atanasov et al. [2] further introduce

inverse bin maps (IBMs) which use constant memory

(36MB) to store the inverses of histograms.

An issue of concern is that, in order to define the

microstructure details producing glinty appearance, we

usually need extremely high-resolution normal maps.

For example, the normal map on the snail’s shell in

Fig. 3 has a resolution of 200K×200K. One suggestion

is to generate the high-resolution microstructure on

5

6 J. Zhu et al.

Wang [59]Zhu [68]

Fig. 8 Texture synthesis methods of Zhu et al. [68] and Wang et al. [59]. For leather, images synthesized by both methods are
seamless and maintain leather features. However, for scratches, Wang’s method produces blurry results.

the fly to reduce the memory cost. The inverse

Fourier transform method [53] can generate tileable

noise-like bumps. Texture synthesis methods can

also turn normal maps into tileable patches, stitch

patches and obtain high-resolution representations.

Texture synthesis methods can be categorized into

three different kinds: expansion [14, 15], blending

[26] and tiling [9, 61]. The first two have been

used for explicit representations. To be clear, even if

synthesis methods generate representations on the fly,

we still consider them to be explicit representations,

as the input normal map is in an explicit form, and

furthermore, the generation rules are general and do

not rely on specific kinds of materials.

The expansion method [14, 15] extends a small

texture into a new larger texture dynamically. Zhu

et al. [68] apply the expansion idea to high-frequency

rendering. They take a small-sized microstructure as

a sample, repeatedly select blocks from the sample

using some generation rules, and stitch the selected

blocks together into a high-resolution microstructure.

For continuity, they additionally generate some new

Gaussian elements to fill seams between the selected

blocks. This method requires only about 1% of the

storage needed by the method of Yan et al. (see Fig. 8).

Blending methods [26] assume that any pixel in

the resulting texture is a blend of several blocks

sampled from the input texture. Wang et al. [59]

apply blending-based texture synthesis in their work.

They take small microstructure samples as input and

generate Gaussian elements on the fly, using constant

storage. However, the glinty effects can be blurred in

some cases, especially for materials with scratches (see

Fig. 8).

Existing synthesis-based methods are effective in

solving memory problems. However, a common

limitation is that they usually fail to keep global

features. For example, when scratches are long,

synthesis-based methods do not keep the global

distribution of scratches.

3.2 Implicit Representation

Some studies try to generate glinty appearance

through parameterized implicitly procedures. By using

an implicit representation, one can generate infinitely

large, non-repeating microstructures on the fly with

little additional storage.

Procedural noise methods [18, 36, 46] use a few

parameters to control the appearance of a noise

function over an infinitely large space. These

methods can generate random patterns controlled by

6

Recent Advances in Glinty Appearance Rendering 7

Tab. 1 Characteristics of representations. Element type: representation form in discrete elements. Storage: run-time memory for
the material taking a 2K×2K normal map as input (or 512×512 for [68] and [59]). Appearance: representable appearance types.
Multi-scale: whether the method supports multi-scale zoomed rendering. Tileable: whether the microstructure repeated when it
is extremely large. Efficiency: element calculation speed, longer being more efficient. One dot: method is unlikely to finish in a
reasonable time. Two dots: method is significantly slower than traditional BRDF methods. Three dots: method is slightly slower
than traditional methods. Four dots: method is almost as fast as the traditional methods. Five dots: method runs in real-time.

Method Element Type Storage Appearance Multi-scale Tileable Efficiency

Explicit

näıve normal map 46.52 MB all types % ! • ◦ ◦ ◦ ◦
[65] triangle 1.5 GB all types % ! • • ◦ ◦ ◦
[66] Gaussian lobe 1.76 GB all types % ! • • • ◦ ◦
[5] Gaussian lobe 2.1 GB all types % ! • • • ◦ ◦
[68] Gaussian lobe 102.0 MB all types ! % • • • ◦ ◦
[59] Gaussian lobe 35.0 MB all types % % • • • ◦ ◦
[19] histogram 2.37 GB all types ! ! • • • • ◦
[2] histogram 36.0 MB all types ! ! • • • ◦ ◦

Implicit
[30] flake N/A glittery % % • • • • ◦
[69] flake N/A glittery ! % • • • • •
[48] scratch N/A scratched surface ! % • • • • ◦

noise, such as bumps. Guo et al. [22] propose

an implicit representation method for procedural

material parameter estimation. They introduce a

Bayesian inference approach using Hamiltonian Monte

Carlo methods to sample the space of plausible

material parameters, and fit procedural models to

a range of materials such as wall plaster, leather,

wood, anisotropic brushed metals and metallic paints.

However, for glinty appearance rendering, we need

not only the microstructure, but also a corresponding

acceleration method to prune non-contributing regions.

Unfortunately, none of these methods currently support

queries in an arbitrary range.

So far, only two kinds of glinty appearances can be

represented implicitly: glittery materials and scratched

materials. Mirror-like flakes cause glittery effects.

Unlike a general microfacet model, a glittery surface

contains a collection of tiny and discrete flakes which

are supposed to be defined using a non-smooth,

spatially varying BRDF. Some methods [13, 16] regard

the discrete flakes as random normals with positions.

Gunther et al. [21] store the normals and positions of

flakes to avoid flickering between frames but requires

much memory to do so. Jakob et al. [30] represent the

glittery material by stochastically generating flakes on

the surface. They assume surfaces to be a collection

of a specific set of randomly oriented facets and use a

random index to store the count of flakes in a specific

area and solid angle. This method supports range

queries on the microstructure. Zirr and Kaplanyan [69]

also model the glittery appearance as a set of implicitly

represented flake elements. They derive a stochastic

bi-scale model based on flake elements and implement

this model in real-time.

For scratches, we need to consider two levels of

microstructure distribution. The first level describes

global scratch trajectories visible to the naked eye,

defined as curves. The second level characterizes the

microstructure profile of a single scratch considered

as an element. Raymond et al. [48] model the

microstructure profile for a single scratch as a multi-

scale spatially varying BRDF. They use noise functions

to generate the scratch distributions, with statistics

determining the orientation and position of the scratch.

For the range query, they adopt a simple idea,

calculating the area occupied by a scratch element in

a pixel. They further use the area and the BRDF of a

single element to evaluate the contribution of a scratch

element. However, their method does not take the cross

section of two elements into consideration.

The above implicit representation methods can

generate infinitely large parameterized microstructures

of non-repeating patterns. However, a common

challenge for such methods is how to efficiently

integrate and evaluate the P-NDF. Another limitation

is that they can only represent a few kinds of glinty

appearances, using specifically designed generation

methods.

We summarize explicit and implicit representation

methods in Tab. 1. Explicit methods can represent

all kinds of glinty appearances but require large

storage and are generally slower than implicit methods.

Implicit methods can represent non-repeating large

microstructures, require less computation and incur

little storage overhead, but so far can only represent

glittery and scratched materials. Some methods [59, 68]

apply texture synthesis methods, which significantly

reduces the storage. These methods can generate non-

7

8 J. Zhu et al.

Fig. 9 Querying a multi-scale NDF histogram for an arbitrary filtering patch P. The method accumulates the multi-scale NDF
histogram and organizes it with a summed area table (below) for efficient querying. Image from Gamboa et al. [19].

(a) (b) (c) (d) (e)

Directional
 Domain

 Spatial
 Domain

Fig. 10 Searching for discrete 4D flakes. (a): Initial state. The number of facets that lie in region A (red), scatter into a solid
angle around ωo (green) and hence point to the blue area are counted. (b–e): Breadth first searching process. Image from Jakob et
al. [30]

Fig. 11 Min-max hierarchy. Top left: Flatland visualization
of a position-normal distribution, fitted with Gaussian elements.
Others: Different levels of min-max hierarchy over the normal
map that bounds the sets of normals within spatial ranges.
Image from Wang et al. [60].

repeating large microstructures, but rendering is still

slow.

4 Rendering Solutions

In this section, we consider how to integrate glinty

appearance representations into the classic Monte Carlo

path tracing pipeline. We discuss the evaluation step in

Sec. 4.1 and importance sampling in Sec. 4.2. Multiple

scattering is also an important part of path tracing,

discussed in Sec. 4.3.

4.1 Evaluation

The P-NDF integral can be defined in a general form

as:

DP(s) =

∫ ∞
−∞

Gp(u)Gr(n(u)− s)du, (2)

where s is a given direction to be queried. Within a

pixel coverage Gp, we visit each microfacet at position

u and use Gr to decide whether its normal n(u) is

close enough to the direction s of the query. r is the

intrinsic surface roughness, used to define the value of

closeness. In this way, we can evaluate the density for

any direction s on P.

In order to compute the integral and evaluate the

P-NDF analytically, researchers use discrete piece-wise

elements to describe the microstructure. There may be

millions of elements in total in query patch Gp(u) but

only a few of them make a non-negligible contribution

to the given query vector s.

The P-NDF can be rewritten in discrete form as:

DP(s) ≈
m∑
i=1

Gp (ui)Ei(u, s), (3)

where m is the number of elements. Ei is the

contribution of the ith element at position u and

direction s. The weighted sum of these elements gives

the desired value.

Evaluation in all methods with an explicit

representation can be described by this equation.

8

Recent Advances in Glinty Appearance Rendering 9

(a) BRDF Sampling (b) Light Sampling (c) Combined

Fig. 12 Multiple importance sampling. (a): BRDF sampling
captures the reflection of the light in flat areas, but is sub
optimal for rendering scratches. (b): Light sampling captures
illumination from high-intensity parts of HDR light texture onto
scratches. (c) Combining them has the benefits of both. From
Yan et al. [66].

Evaluation in methods with an implicitly represented

NDF [30, 48] cannot be simplified by Alg. 3 as the NDF

does not store the correspondence between position and

normal. Raymond et al. [48] directly calculate the ratio

of the scratched area to the patch area P, and evaluate

the NDF according to the ratio, scratch orientation,

and measured BRDF.

Flake high-frequency material methods [30] generate

a sequence of random numbers that represent the

distribution of flakes. They then count particles that

contribute to illumination without actually generating

them. In their stochastic approach, random-flake

approximation replaces the P-NDF evaluation.

In general, an acceleration hierarchies is used.

Figs. 10 and 11 illustrate two typical acceleration

hierarchies for the query.

Yan et al. [1, 65] create a 4D bounding box

for each element and build a min-max structure to

organize these bounding boxes in a top-down manner

(see Fig. 11). Given a rectangle bounding the patch

Gaussian Gp(u) and a cone bounding direction s as

input, the method queries the hierarchy tree by top-

down traversal to find contributing Gaussians.

The evaluation process in [30] is performed on a 4D

search tree as shown in Fig. 10. Each tree node also

contains a 4D bounding box defined as the Cartesian

product of a bounding box in texture space and a

spherical triangle in direction space. Each branch

node is further split both in texture and in direction

space. In texture space, the bounding box is cut

into four equal-sized sub-boxes, and in direction space,

the spherical triangle is cut into four sub-triangles by

inserting vertices at the midpoints of the edges. The

search proceeds alternately in spatial and in directional

domains.

Fig. 13 Multiple scattering in microstructures can have a
strong impact on the overall appearance. Above: rendered
image, (a) without self-scattering, and (b) including self-
scattering effects. Below: schematic diagram showing how light
interacts with the geometry.

4.2 Importance Sampling

Fig. 12 shows a multiple importance sampling

experiment in which a scratched surface is illuminated

with a textured area light. The reflection from flat

parts of the surface can easily be rendered by BRDF

sampling (a), but rendering scratches relies on sampling

and evaluating the P-NDF in the light direction (b). A

combined image (c) has the benefits of both.

We can sample the underlying normal map directly,

or the discrete elements of P-NDF. Yan et al. [65]

take the normal of a random surface point and perturb

the normal by the intrinsic roughness value. This

only works for normal map based representations. Yan

et al. [66] also sample from the discrete Gaussian

elements. They select a Gaussian element proportional

to its contribution to the patch and then pick a normal

from that element. Their sampling method works

well without the input normal maps. Raymond et al.

[48] sample directions around ωi which are randomly

generated within the reflection cone following a 1D

probability distribution function based on the mirror

scratch BRDF. Instead of sampling the actual P-NDF,

Jakob et al. [30] define a smooth density function to

describe the distribution of flakes and use for sampling.

The advantage is that they do not generate all elements

reducing time and space costs. However, the function is

more capable of describing surfaces with discrete flakes.

9

10 J. Zhu et al.

(b) Without multiple scattering(a) With multiple scattering

Fig. 14 Scratched metal rendered with and without multiple
scattering. Left: metal modeled with real geometry yields
stronger contrasts and reflections due to multiple scattering.
Right: the same metal modeled with NDF appears less bright,
since scratches reflect little or none of the incoming radiance
when higher-order bounces are neglected. From Raymond et
al.[48]].

4.3 Multiple Scattering

By multiple scattering, in this survey, we mean self-

scattering between microstructures. Modeling multiple

scattering in glinty appearance rendering is considered

to be an important open problem, since a non-negligible

fraction of the energy leaving the surface occurs due to

paths with multiple reflections. Fig. 13 illustrates the

principle of multiple scattering. Fig. 14 shows how, for

materials with scratches for example, the results will be

less bright if multiple scattering is neglected.

While considering multiple scattering produces

better results (see Figs. 13 and 14), it also requires

much more computation and storage. Only a few

investigations of glinty appearance rendering integrate

multiple scattering into their solutions.

Raymond et al. [48] randomly distribute scratches on

a surface and users can modify the profiles, orientations

and density of the scratches. They simulate multiple-

scattering by pre-computing distributions of scratch

profiles. Their method gives realistic results but only

works for scratched surfaces. Chermain et al. [5] derive

an energy-compensation BRDF to compensate for the

energy lost by single scattering. Their method leverages

a local energy preserving BRDF by faking normal

perturbations. Turquin [56] deduce a compensated P-

BRDF for glinty appearance, and produce noticeably

improved results.

Such methods are results-based, and deriving a

physically-based analytical multiple scattering model is

an open problem in glinty appearance rendering.

5 Experiments and Analysis

In this section, we first define quality criteria

for glinty appearance rendering methods. Then,

we introduce our unified experimental platform that

integrates dozens of recent glinty appearance rendering

methods. We show some methods’ results produced

by the platform and compare them according to our

criteria.

5.1 Quality Criteria

Verifying complex surface rendering quality can be

difficult due to the lack of mathematical criteria and

the subject nature of human perception.

A direct approach to verifying the ‘correctness’ of

rendering results is to render texture-based glinty

appearances with an extremely high number of samples

per pixel (spp) and to consider the image result at

convergence as ‘ground truth’ or reference. Comparing

the rendered results to the reference, we may estimate

the degree of degradation. We render the reference

images by brute force path tracing. How can we

determine whether an image has converged or not? We

can assume that the image converges when there is

no significant change (when the RMSE of two images

is smaller than 0.03) as we increase the number of

samples. The time needed to compute such a converged

image is about 14–20 hours.

Another effective term to model glinty appearance

is NDF. Thus, we adopt the correctness of the NDF

into our quality criteria. Designing a metric suitable

for comparing a model’s NDF to the original normal

distribution is necessary. In practice, we find comparing

a visual comparison of the P-NDF to the reference is

adequate to represent correctness.

In addition to rendering quality, rendering efficiency,

memory consumption, and versatility are also useful

criteria to assess the strengths and weaknesses of

different methods. Energy conservation can be verified

by a white furnace test, but since most existing

techniques are not energy-conserving, we do not discuss

this much further.

A further issue is that researchers and artists should

not simply judge a method as good or bad based on the

quality criteria alone. Instead, they should remember

that different methods are applicable to different

rendering requirements. Implicit rendering methods

[30, 48] are suitable when rendering scenes with

glittery or scratched appearances, due to their good

10

Recent Advances in Glinty Appearance Rendering 11

Fig. 15 Four glinty appearances rendered on the Bent Quad scene: leather, a scratched coating, brushed metal, and bumpy plastic,
using seven different methods on our unified experimental platform; the reference is also shown. Tables to the right of each scene
compare rendering time and correctness of the P-NDF for different methods. The sizes of microstructures are as given in Tab. 1.

11

12 J. Zhu et al.

flakes num
 10^6

flakes num
 10^5

Fig. 16 Fancy shoes with glints rendered using the method
in [30] and 1024 spp. Left: 106 flakes, rendering time = 3.2

minutes. Right: 105 flakes, rendering time = 1.7 minutes.

performance, but they have limited expressiveness. We

need explicit rendering methods for other more complex

scenes. Even so, there are big differences between

different explicit rendering methods. For example,

the method of [66] can accurately render scenes with

complex glinty appearances. If the light sources are

not sharp, it is more efficient to use methods in [12, 19].

When there are many glinty appearances in a scene, the

LOD method of [68] is efficient and storage-saving.

5.2 Unified Experimental Platform

To evaluate methods according to the quality criteria

for glinty appearance rendering technologies defined

above, we built a unified experimental platform based

on the Mitsuba framework [29]. It:

• implements more than a dozen advanced offline

glinty appearance rendering methods,

• provides RMSE and HDR visual difference maps

to compare different rendering results,

• provides NDF visualization and quantitative NDF

statistics,

• provides example scenes (leather shoes, a wooden

ball and a scratched kettle), including geometric

models, scene files, glint features and a converged

reference for comparison,

• collects statistics of memory and rendering time.
Using the platform, researchers can easily compare

their methods with previous work, and artists can

quickly select methods that meet their needs. Our

platform only supports comparison of offline methods.

5.3 Results

In Fig. 15, we compare typical explicit glinty

appearance rendering methods on our unified

experimental platform in terms of rendering effects,

accuracy of P-NDF and rendering time. All timings in

this section were measured on a 2.20 GHz Intel Xeon

with 22 cores and 128 GB of memory. We consider

four glinty appearances: leather, a scratched coating,

brushed metal, and bumpy plastic, on the simple bent

quad geometry, illuminated by an environment map

and four tiny area lights (which can be considered

to be point lights). All timings are for pictures with

1024×1024 pixels.

First, let us observe the rendering results. Compared

to the reference, the traditional microfacet model and

the pre-filtering method [23] fail to render the glinty

effect, while results from methods in [65, 66] are very

close to the reference. Atanasov et al. [2] capture

glint effects, but compared to the reference, their

results differ somewhat in close up. For the texture

synthesis methods, except for slight discontinuities on

the brushed metal, the results of Zhu et al. [68] are

visually identical to the reference; the results of Wang

et al. [59] look blurry for the scratched coating, brushed

metal and the bump plastic scenes.

In terms of rendering speed, the method of [65] is

significantly slower than other methods. Yan et al. [66]

take only about 1.4× as long as standard microfacet

BRDF rendering. [59, 68] represent the microstructure

as Gaussian elements like [66]. Zhu et al. [68]

use a clustering method, so their method is slightly

faster than that of [66]. Wang et al. [59] generate

the Gaussian elements on the fly, so their method is

slower than that of [66]. [2] takes a longer time than

[59] because their methods have higher computational

complexity.

We also compare the correctness of the P-NDF. In

practice, when the RMSE is smaller than 0.01, the

P-NDF can be considered correct. We can observe

that all glinty appearance rendering methods compared

correctly evaluate the P-NDF. Correctness of the P-

NDF is also an essential requirement of a glinty

appearance rendering method.

Fig.16 illustrates rendering results of the method

developed by Jakob et al. [30]. These methods

are efficient and require no additional storage space;

rendering speed is correlated with the number of flakes,

and they only need to store a few parameters.

6 Extensions

So far, we have presented practical methods for

rendering surfaces with glint features accurately and

efficiently, and showed they are able to render credible

results. In theory, using these methods, the rendering

results should exactly match the actual appearance, but

we still require better speed and realism.

Several techniques and applications leverage or

extend the idea of glinty appearance rendering for

broader applications and more realistic rendering. This

12

Recent Advances in Glinty Appearance Rendering 13

Fig. 17 Left to right: a spoon with iridescent scratches, metallic
paint coating a laptop, and a CD with colorful anisotropic
highlights. Above: photographs taken with a smartphone, with
flash. Below: close-ups.

section provides a brief overview of these areas.

6.1 Wave Optics

When we look at actual photographs (see Fig. 17),

we can observe that there may be colored glint features

even when a white light source illuminates the object.

This is an interesting phenomenon, and is not possible

in traditional geometric optics, which only produces

white highlights from a white light source. This

phenomenon is explained by wave optics.

In wave optics, light is described by complex-valued

fields. Scalar diffraction models, such as those proposed

by Harvey-Shack [24, 34] or Kirchhoff [40, 44], can

be used to estimate the reflected field from a rough

surface. For scratches, Werner et al. [62] derive a wave-

optical and analytical shading model based on Harvey-

Shack theory [24], where the surface is represented

as a collection of randomly oriented scratches over a

smooth BRDF. This work is further extended to real-

time by Velinov et al. [58]. For mirror flakes, Guo et

al. [32] extend the stochastic model [30] to take wave-

optical effects due to thin-film interference into account,

reproducing iridescent reflection. Yan et al. [67] present

a solution to derive a wave effect-aware BRDF model

on surfaces described as a discretized height field. The

BRDF model is estimated by simulating diffraction

effects of coherent light over the corresponding area

on the height field, allowing their method to support

arbitrary glint features. While capturing wave effects

accurately, wave optics glinty appearance rendering

methods are about one order of magnitude slower

than those using geometric optics; further acceleration

should be explored.

6.2 Machine Learning Methods

There are some glinty appearance-related studies in

the field of machine learning. They are more concerned

with the representation of details than improving the

actual rendering process. We introduce them in this

section as a complement to previous representation

approaches.

Again, we classify machine learning-based methods

in two categories: one uses an inverse model to provide

an explicit representation, the other uses a procedural

model for an implicit one.

The inverse model basically estimates spatial varying

material parameters (diffuse albedo, roughness and

normal for a microfacet model) from measured data

like images and derives per-pixel BRDFs inversely, as

an SVBRDF. These parameters are stored explicitly

in a texture. Chandraker et al. [4] utilize motion

cues to jointly recover shapes and BRDFs of objects

from images. Hui et al. [27] recover SVBRDFs and

shape from multiple images taken with a fixed view-

point and varying illumination. Riviere et al. [49], Hui

et al. [28], and Li et al. [37] propose SVBRDF recovery

algorithms under a simpler setup consisting of a camera

and a flashlight, as commonly found in mobile devices.

Li et al. [38] improve the approach to handle larger

inputs. Gao et al. [20] present a unified framework for

estimating SVBRDFs.

Generally, the inverse model heavily relies on a

specific reflection model, which, in most cases, is the

microfacet model, and which is not suitable for glinty

appearance rendering as explained in Sec. 2.1. In order

to obtain an SVBRDF at microscale resolution, Nam

et al. [42] propose a microscopic material acquisition

system. They use machine learning to compress the

vast amounts of data. While different reflection models

could be used, this approach cannot handle advanced

complex models like the wave optical one introduced in

Sec. 6.1.

The procedural model learns glint features by fitting

an implicit pattern distribution instead of explicitly

estimating parameters everywhere on the surface. Guo

et al. [22] focus on procedural material parameter

estimation by employing a Bayesian framework and

using an image classification neural network (usually

VGG) as a descriptor. Their procedural material

models generally consist of a microfacet SVBRDF

and an explicitly constructed procedural height field

(usually a noise texture). Kuznetsov et al. [35]

propose a procedural model and use a conditional

generative adversarial network to learn to generate P-

13

14 J. Zhu et al.

NDF for every location with a fixed patch P. Using a

relatively lightweight GAN network, their procedural

model can reproduce a P-NDF close to the ground

truth with lower storage due to its implicit nature,

while supporting traditional geometric optics and wave

optics. Moreover, this serves as a precomputation for

evaluating the P-NDF integral (Alg. 2) and speeds up

evaluation when rendering with wave optics compared

to the method proposed by Yan et al. [67]. However,

their work is limited to a fixed patch size and may

introduce artifacts in the near-field and grazing angles

where the size of P varies dramatically.

6.3 Real-time Rendering

We have mainly discussed offline glinty appearance

rendering methods above. It is not easy to apply offline

glinty appearance models to real-time rendering. The

first reason is that GPU and CPU architectures differ,

so offline acceleration structures cannot be applied to

real-time rendering. The second reason is the small

video memory of the GPU: the storage required for

explicitly represented materials is large.

Current real-time research work mainly deals with

implicitly represented materials. Zirr et al. [69]

propose a stochastic bi-scale microfacet model for real-

time rendering of multi-scale glint features including

discrete flakes and brushed marks. Wang et al.

[59] propose a pre-filtering method for the stochastic

discrete microfacet model to simulate glints under

both environment maps and point light sources in

real-time. Velinov et al. [58] treat scratches under

wave optics. Chermain et al. [7] propose a method

of rendering flakes in real-time. They use mip-map

structures to speed up rendering. They further propose

an anti-aliasing method [6] in real-time. However,

no existing real-time solutions can consistently process

glinty appearances explicitly defined by high-resolution

normal maps, limiting the variety of glinty appearances

in real-time rendering. The limited video memory

available in real-time rendering makes it difficult

to store complete mapping-based glinty appearance

information. Also, texture synthesis methods are

challenging to implement and accelerate reasonably

well in real-time rendering.

7 Conclusions and Future Work

Glinty appearance methods have made promising

steps toward modeling and rendering visual

appearances with real-world complexity. In this survey,

we have discussed recent advances in glinty appearance

rendering by broadly categorizing approaches based on

representation and practical rendering.

Glinty appearances can be represented in explicit

or implicit form, but both explicit and implicit

representation have in common that they take discrete

forms. Explicit representation methods have been

intensively studied because they can represent all

kinds of glinty appearances like bumps, flakes,

scratches, leather patterns and dents. However, a

common problem for explicit representations is that

they require large additional storage to store all

microstructure information. Texture synthesis-based

methods reduce the storage to a certain extent by

generating the large microstructure from small samples.

Implicit representations can represent microstructures

of unlimited size while requiring little additional

storage. As a downside, such methods are not general:

existing implicit representations can only represent

glittery and scratched materials.

For practical rendering, we have distinguished three

sub-problems, evaluation, importance sampling and

multiple scattering. Acceleration hierarchies are used

to quickly prune non-contributing parts to efficiently

evaluate the glinty appearance. During evaluation,

methods with explicit representations are generally

slower than those with implicit representations.

Because the P-NDF is known, all methods can

easily perfectly importance sample the P-NDF.

Sometimes, multiple scattering has non-negligible

effects on glinty appearance. Existing methods

precompute the multiple-scattered BRDF or adopt

energy compensation methods. However, these

methods are experience-based and usually oversimplify

multiple scattering evaluation.

We have also discussed several open problems

and potential future research directions in this area.

The conflict between representation ability, rendering

efficiency and memory is still the core problem in

glinty appearance rendering. Explicitly represented

methods require more storage and longer rendering

time. Implicitly represented methods are not general

and can only represent a few appearance types. One

solution is to deduce a general implicit model which

could represent all types of appearances while incurring

no storage, and efficiently evaluating the P-NDF during

rendering. Although it is far from easy to settle

the range query problem of implicit representation

methods, we believe this to be an area that provides

potential advantages for further practical applications.

Another practical solution is to find a better discrete

element form providing easy calculation in explicitly

represented methods.

14

Recent Advances in Glinty Appearance Rendering 15

Apart from solving existing problems, new problems

are to be found. For example, the glinty appearance

rendering of volumes is a more difficult integral

problem than glinty surface appearance rendering.

Another problem is denoising algorithms. How

can we distinguish glint features from noise? All

these problems and challenges provide new research

opportunities and may stimulate deeper observations

and explorations.

Acknowledgements

This work was partially supported by the

National Key R&D Program of China under grant

No.2020YFB1709200, the National Natural Science

Foundation of China under grant No.61872223 and the

Shandong Provincial Natural Science Foundation of

China under grant No.ZR2020LZH016.

Funding or Conflicts of interests

We declare that we do not have any commercial

or associated interest that represents a conflict of

interest in connection with the work submitted.

References

[1] A. Atanasov and V. Koylazov. A practical

stochastic algorithm for rendering mirror-like

flakes. In ACM SIGGRAPH 2016 Talks,

SIGGRAPH ’16, New York, NY, USA, 2016.

Association for Computing Machinery.
[2] A. Atanasov, A. Wilkie, K. Vladimir, and

J. Krivanek. A Multiscale Microfacet Model

Based on Inverse Bin Mapping. Comput. Graph.

Forum (Proc. Pacific Graphics), 40(7), 2021.
[3] E. Brusneton and F. Neyret. A survey of

nonlinear prefiltering methods for efficient and

accurate surface shading. IEEE Transactions

on Visualization and Computer Graphics,

18(2):242–260, 2011.
[4] M. Chandraker. On shape and material recovery

from motion. In European Conference on

Computer Vision, pages 202–217. Springer,

2014.
[5] X. Chermain, F. Claux, and S. Mérillou. Glint

rendering based on a multiple-scattering patch

brdf. Computer Graphics Forum, 38(4):27–37,

2019.

[6] X. Chermain, S. Lucas, B. Sauvage, J.-M.

Dischler, and C. Dachsbacher. Real-time

geometric glint anti-aliasing with normal map

filtering. Proceedings of the ACM on Computer

Graphics and Interactive Techniques, 4(1):1–16,

2021.
[7] X. Chermain, B. Sauvage, D. Jean-Michel,

and C. Dachsbacher. Procedural Physically-

based BRDF for Real-Time Rendering of

Glints. Comput. Graph. Forum (Proc. Pacific

Graphics), 39(7), 2020.
[8] P. Cignoni, C. Montani, C. Rocchini, and

R. Scopigno. A general method for preserving

attribute values on simplified meshes. In

Proceedings Visualization’98 (Cat. No.

98CB36276), pages 59–66. IEEE, 1998.
[9] M. F. Cohen, J. Shade, S. Hiller, and

O. Deussen. Wang tiles for image and texture

generation. ACM Transactions on Graphics

(TOG), 22(3):287–294, 2003.
[10] R. L. Cook and K. E. Torrance. A

reflectance model for computer graphics. ACM

Transactions on Graphics (TOG), 1(1):7–24,

1982.
[11] K. J. Dana, B. Van Ginneken, S. K. Nayar,

and J. J. Koenderink. Reflectance and texture

of real-world surfaces. ACM Transactions On

Graphics (TOG), 18(1):1–34, 1999.
[12] H. Deng, Y. Liu, B. Wang, J. Yang, L. Ma,

N. Holzschuch, and L.-Q. Yan. Constant-cost

spatio-angular prefiltering of glinty appearance

using tensor decomposition. ACM Transactions

on Graphics (TOG), 41(2):1–17, 2022.
[13] R. Ďurikovič and W. L. Martens. Simulation

of sparkling and depth effect in paints. In

Proceedings of the 19th spring conference on

Computer graphics, pages 193–198, 2003.
[14] A. A. Efros and W. T. Freeman. Image

quilting for texture synthesis and transfer. In

Proceedings of the 28th annual conference on

Computer graphics and interactive techniques,

pages 341–346, 2001.
[15] A. A. Efros and T. K. Leung. Texture synthesis

by non-parametric sampling. In Proceedings of

the seventh IEEE international conference on

computer vision, volume 2, pages 1033–1038.

IEEE, 1999.
[16] S. Ershov, K. Kolchin, and K. Myszkowski.

Rendering pearlescent appearance based

15

16 J. Zhu et al.

on paint-composition modelling. Computer

Graphics Forum, 20(3):227–238, 2001.
[17] A. Fournier. Normal distribution functions and

multiple surfaces. In Graphics Interface ’92

Workshop on Local Illumination, pages 45–52,

Vancouver, BC, Canada, 11 May 1992.
[18] B. Galerne, A. Leclaire, and L. Moisan. Texton

noise. Computer Graphics Forum, 36(8):205–

218, 2017.
[19] L. E. Gamboa, J.-P. Guertin, and

D. Nowrouzezahrai. Scalable appearance

filtering for complex lighting effects. ACM

Transactions on Graphics (TOG), 37(6), Dec.

2018.
[20] D. Gao, X. Li, Y. Dong, P. Peers, K. Xu,

and X. Tong. Deep inverse rendering for high-

resolution svbrdf estimation from an arbitrary

number of images. ACM Transactions on

Graphics (TOG), 38(4):134–1, 2019.
[21] J. Günther, T. Chen, M. Goesele, I. Wald, and

H.-P. Seidel. Efficient acquisition and realistic

rendering of car paint. In Vision, Modeling,

and Visualization, volume 5, pages 487–494.

Akademische Verlagsgesellschaft Aka, 2005.
[22] Y. Guo, M. Hašan, L. Yan, and S. Zhao.

A bayesian inference framework for procedural

material parameter estimation. Computer

Graphics Forum, 39(7):255–266, 2020.
[23] C. Han, B. Sun, R. Ramamoorthi, and

E. Grinspun. Frequency domain normal

map filtering. In ACM SIGGRAPH 2007

Papers, SIGGRAPH ’07, page 28–es, New York,

NY, USA, 2007. Association for Computing

Machinery.
[24] J. E. Harvey. Fourier treatment of near-field

scalar diffraction theory. American Journal of

Physics, 47(11):974–980, 1979.
[25] E. Heitz, J. Dupuy, C. Crassin, and

C. Dachsbacher. The sggx microflake

distribution. ACM Transactions on Graphics

(TOG), 34(4CD):1–11, 2015.
[26] E. Heitz and F. Neyret. High-performance

by-example noise using a histogram-preserving

blending operator. Proceedings of the ACM on

Computer Graphics and Interactive Techniques,

1(2):1–25, 2018.
[27] Z. Hui and A. C. Sankaranarayanan. A

dictionary-based approach for estimating shape

and spatially-varying reflectance. In 2015 IEEE

International Conference on Computational

Photography (ICCP), pages 1–9. IEEE, 2015.
[28] Z. Hui, K. Sunkavalli, J.-Y. Lee, S. Hadap,

J. Wang, and A. C. Sankaranarayanan.

Reflectance capture using univariate sampling of

brdfs. In Proceedings of the IEEE International

Conference on Computer Vision, pages 5362–

5370, 2017.
[29] W. Jakob. Mitsuba renderer, 2010.
[30] W. Jakob, M. Hašan, L.-Q. Yan, J. Lawrence,

R. Ramamoorthi, and S. Marschner.

Discrete stochastic microfacet models. ACM

Transactions on Graphics (TOG), 33(4):1–10,

2014.
[31] H. W. Jensen. Global illumination using photon

maps, volume 22. Springer, 1996.
[32] G. Jie, C. Yanjun, G. Yanwen, and P. Jingui. A

physically-based appearance model for special

effect pigments. Computer Graphics Forum,

37(4):67–76, 2018.
[33] J. T. Kajiya. The rendering equation. In

Proceedings of the 13th annual conference on

Computer graphics and interactive techniques,

pages 143–150, 1986.
[34] A. Krywonos. Predicting surface scatter using

a linear systems formulation of non-paraxial

scalar diffraction. PhD thesis, University of

Central Florida, 2006.
[35] A. Kuznetsov, M. Hasan, Z. Xu, L.-Q. Yan,

B. Walter, N. K. Kalantari, S. Marschner, and

R. Ramamoorthi. Learning generative models

for rendering specular microgeometry. ACM

Transactions on Graphics (TOG), 38(6):225–1,

2019.
[36] A. Lagae, S. Lefebvre, G. Drettakis, and

P. Dutré. Procedural noise using sparse gabor

convolution. ACM Transactions on Graphics

(TOG), 28(3):1–10, 2009.
[37] X. Li, Y. Dong, P. Peers, and X. Tong.

Modeling surface appearance from a single

photograph using self-augmented convolutional

neural networks. ACM Transactions on

Graphics (TOG), 36(4):1–11, 2017.
[38] Z. Li, K. Sunkavalli, and M. Chandraker.

Materials for masses: Svbrdf acquisition with

a single mobile phone image. In Proceedings of

the European Conference on Computer Vision

(ECCV), pages 72–87, 2018.
[39] W.-C. Ma, S.-H. Chao, Y.-T. Tseng, Y.-

16

Recent Advances in Glinty Appearance Rendering 17

Y. Chuang, C.-F. Chang, B.-Y. Chen, and

M. Ouhyoung. Level-of-detail representation

of bidirectional texture functions for real-

time rendering. In Proceedings of the 2005

symposium on Interactive 3D graphics and

games, pages 187–194, 2005.
[40] B. Mityashev. The scattering of electromagnetic

waves from rough surfaces *1p. beckman and

a. spizzichino, oxford — london — new york

— paris. Ussr Computational Mathematics &

Mathematical Physics, 4(6):247–249, 1964.
[41] K. Murat. A survey of bsdf measurements

and representations. Journal of Science and

Engineering, 20(58):87–102, 2018.
[42] G. Nam, J. H. Lee, H. Wu, D. Gutierrez,

and M. H. Kim. Simultaneous acquisition

of microscale reflectance and normals. ACM

Transactions on Graphics (TOG), 35(6):185,

2016.
[43] F. Neyret. Modeling, animating, and rendering

complex scenes using volumetric textures. IEEE

Transactions on Visualization and Computer

Graphics, 4(1):55–70, 1998.
[44] Ogilvy and J. A. Theory of wave scattering

from random rough surfaces. Journal of the

Acoustical Society of America, 90(6):2332, 1991.
[45] M. Olano and D. Baker. Lean mapping.

In Proceedings of the 2010 ACM SIGGRAPH

symposium on Interactive 3D Graphics and

Games, pages 181–188, 2010.
[46] K. Perlin. An image synthesizer. ACM Siggraph

Computer Graphics, 19(3):287–296, 1985.
[47] B. T. Phong. Illumination for computer

generated pictures. Communications of the

ACM, 18(6):311–317, 1975.
[48] B. Raymond, G. Guennebaud, and P. Barla.

Multi-scale rendering of scratched materials

using a structured sv-brdf model. ACM

Transactions on Graphics (TOG), 35(4):1–11,

2016.
[49] J. Riviere, P. Peers, and A. Ghosh. Mobile

surface reflectometry. Computer Graphics

Forum, 35(1):191–202, 2016.
[50] F. Suykens, K. Berge vom, A. Lagae,

and P. Dutré. Interactive rendering with

bidirectional texture functions. Computer

Graphics Forum, 22(3):463–472, 2003.
[51] P. Tan, S. Lin, L. Quan, B. Guo, and

H. Shum. Filtering and rendering of

resolution-dependent reflectance models. IEEE

Transactions on Visualization and Computer

Graphics, 14(2):412–425, 2008.
[52] P. Tan, S. Lin, L. Quan, B. Guo, and H.-

Y. Shum. Multiresolution reflectance filtering.

In Computer Graphics Forum, pages 111–116,

2005.
[53] J. Tessendorf. Simulating ocean water. SIG-

GRAPH’99 Course Note, 01 2001.
[54] M. Toksvig. Mipmapping normal maps. journal

of graphics tools, 10(3):65–71, 2005.
[55] K. E. Torrance and E. M. Sparrow. Theory for

off-specular reflection from roughened surfaces.

Josa, 57(9):1105–1114, 1967.
[56] E. Turquin. Practical multiple

scattering compensation for microfacet

models. URL: https://blog. selfshadow.

com/publications/turquin/ms comp final. pdf,

45, 2019.
[57] E. Veach. Robust Monte Carlo methods for light

transport simulation, volume 1610. Stanford

University PhD thesis, 1997.
[58] Z. Velinov, S. Werner, and M. B. Hullin.

Real-time rendering of wave-optical effects on

scratched surfaces. Computer Graphics Forum,

37(2):123–134, 2018.
[59] B. Wang, H. Deng, and N. Holzschuch. Real-

time glints rendering with pre-filtered discrete

stochastic microfacets. Computer Graphics

Forum, 39(6):144–154, 2020.
[60] B. Wang, M. Haan, N. Holzschuch, and L. Q.

Yan. Example-based microstructure rendering

with constant storage. ACM Transactions on

Graphics (TOG), 2020.
[61] H. Wang. Proving theorems by pattern

recognition—ii. Bell system technical journal,

40(1):1–41, 1961.
[62] S. Werner, Z. Velinov, W. Jakob, and M. B.

Hullin. Scratch iridescence: Wave-optical

rendering of diffractive surface structure. ACM

Transactions on Graphics (TOG), 36(6):1–14,

2017.
[63] H. Wu, J. Dorsey, and H. Rushmeier.

Characteristic point maps. Computer Graphics

Forum, 28(4):1227–1236, 2009.
[64] H. Wu, J. Dorsey, and H. Rushmeier.

Physically-based interactive bi-scale material

design. ACM Transactions on Graphics (TOG),

30(6):1–10, 2011.

17

18 J. Zhu et al.

[65] L.-Q. Yan, M. Hašan, W. Jakob, J. Lawrence,

S. Marschner, and R. Ramamoorthi. Rendering

glints on high-resolution normal-mapped

specular surfaces. ACM Transactions on

Graphics (TOG), 33(4):1–9, 2014.
[66] L.-Q. Yan, M. Hašan, S. Marschner,

and R. Ramamoorthi. Position-normal

distributions for efficient rendering of specular

microstructure. ACM Transactions on Graphics

(TOG), 35(4):1–9, 2016.
[67] L.-Q. Yan, M. Hašan, B. Walter, S. Marschner,

and R. Ramamoorthi. Rendering specular

microgeometry with wave optics. ACM

Transactions on Graphics (TOG), 37(4):1–10,

2018.
[68] J. Zhu, Y. Xu, and L. Wang. A stationary

svbrdf material modeling method based on

discrete microsurface. Computer Graphics

Forum, 38(7):745–754, 2019.
[69] T. Zirr and A. S. Kaplanyan. Real-time

rendering of procedural multiscale materials.

In Proceedings of the 20th ACM SIGGRAPH

Symposium on Interactive 3D Graphics and

Games, pages 139–148, 2016.

Junqiu Zhu is a Ph.D. candidate

at Shandong University, China working

under the supervision of Prof. Xiangxu

Meng. Her research is in physically-

based rendering, realtime ray tracing,

and realistic appearance modeling.

Sizhe Zhao is a master’s degree

student at Shandong University. He

received his bachelor’s degree from the

School of Energy and Power Engineering

at Huazhong University of Science and

Technology in 2021. His research

interest is in computer graphics.

Yanning Xu is an associate professor

in the School of Software, Shandong

University. He received his Ph.D.

degree from Shandong University in

2006. His research interests include

photorealistic rendering and high

performance rendering.

Xiangxu Meng is a professor in

the School of Software, Shandong

University. He obtained his Ph.D.

degree from the Institute of Computing

Technology, Chinese Academy of

Science, in 1998. His research covers

industrial design, product design,

digital media, software services and

other applications, human-computer interaction, computer

graphics theory and methods, virtual reality and virtual

prototyping, grid computing and service computing,

manufacturing of information technology, and other areas

of theoretical research and system development.

Lu Wang is a professor in the School

of Software, Shandong University.

She received her Ph.D. degree from

Shandong University in 2009. Her

research interests include photorealistic

rendering and high performance

rendering.

Ling-Qi Yan is an assistant professor

of computer science at UC Santa

Barbara, co-director of the MIRAGE

Lab, and affiliated faculty in the Four

Eyes Lab. Before that, he received his

doctoral degree from the Department

of Electrical Engineering and Computer

Sciences at UC Berkeley and obtained

his bachelor’s degree in computer science from Tsinghua

University. His research interests include physically-based

rendering, realtime ray tracing, and realistic appearance

modeling.

18

