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Heitz 256 spp (equal samples) Ours 256 spp (equal samples)

Heitz et al.
relMSE 5.4𝑒−3

Ours
relMSE 3.1𝑒−3

Heitz et al.
relMSE 2.7𝑒−3

Ours
relMSE 1.5𝑒−3

Heitz et al.
relMSE 1.5𝑒−2

Ours
relMSE 7.9𝑒−3

Guo et al. 850 spp (equal time) Ours 1024 spp (equal time)

Guo et al.
relMSE 1.7𝑒−3

Ours
relMSE 9.1𝑒−4

Guo et al.
relMSE 1.2𝑒−3

Ours
relMSE 5.3𝑒−4

Guo et al.
relMSE 4.5𝑒−4

Ours
relMSE 1.3𝑒−4

Fig. 1. We demonstrate the effectiveness of our work (BSDF sampling network, together with BSDF evaluation and PDF query networks) on multiple-bounce
microfacet conductors (top) and layered BSDF (bottom). (Top) We compare our method with Heitz et al. [2016] on various materials (roughness and colors)
with equal sampling weight. Our method shows lower noise levels, despite requiring a longer time for network inference. (Bottom) Comparing with Guo et
al. [2018] on several layered materials (different isotropic roughness, index of refraction, attenuation coefficient, and albedo colors) with equal time, our model
achieves both higher performance and less noise level.

Parametric Bidirectional ScatteringDistribution Functions (BSDFs) are perva-
sively used because of their flexibility to represent a large variety of material
appearances by simply tuning the parameters. While efficient evaluation of
parametric BSDFs has been well-studied, high-quality importance sampling
techniques for parametric BSDFs are still scarce. Existing sampling strategies
either heavily rely on approximations, resulting in high variance, or solely
perform sampling on a portion of the whole BSDF slice. Moreover, many of
the sampling approaches are specifically paired with certain types of BSDFs.
In this paper, we seek an efficient and general way for importance sampling
parametric BSDFs. We notice that the nature of importance sampling is
the mapping between a uniform distribution and the target distribution.
Specifically, when BSDF parameters are given, the mapping that performs
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importance sampling on a BSDF slice can be simply recorded as a 2D image
that we name as importance map. Following this observation, we accurately
precompute the importance maps using a mathematical tool named opti-
mal transport. Then we propose a lightweight neural network to efficiently
compress the precomputed importance maps. In this way, we have brought
parametric BSDF important sampling to the precomputation stage, avoiding
heavy runtime computation. Since this process is similar to light baking
where a set of images are precomputed, we name our method importance
baking. Together with a BSDF evaluation network and a PDF (probability
density function) query network, our method enables full multiple impor-
tance sampling (MIS) without any revision to the rendering pipeline. Our
method essentially performs perfect importance sampling. Compared with
previous methods, we demonstrate reduced noise levels on rendering results
with a rich set of appearances, from multiple-bounce microfacet conduc-
tors with anisotropic roughness, to layered materials and Disney principled
materials.

CCS Concepts: • Computing methodologies→ Rendering.
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Additional Key Words and Phrases: physically based rendering, importance
sampling, neural rendering

1 INTRODUCTION
Bidirectional Scattering Distribution Functions (BSDFs) are key
to realistic appearances. Among all BSDFs, parametric BSDFs are
pervasively used because of their flexibility to represent a large
variety of materials’ optical properties using a few parameters.

In the modern Monte Carlo rendering framework, BSDFs needs
not only be evaluated, but also importance sampled. The core of
BSDF importance sampling is to choose an incident direction accord-
ing to a probability density function (PDF) that closely resembles
the 2D BSDF slice jointly determined by BSDF parameters and an
outgoing direction. However, parametric BSDFs barely have perfect
importance sampling strategies. Some BSDFs do not support analyt-
ical sampling, e.g., the Disney Principled BRDFs using Generalized-
Trowbridge-Reitz (GTR) [Burley 2012; McAuley et al. 2012]. Some
solutions tend to sample part of the BSDF slice, e.g., visible normal
distribution functions (VNDFs) [Heitz and d’Eon 2014] without tak-
ing the Fresnel term into account. Some other solutions use random
walk to sample, e.g., position-free layered material [Guo et al. 2018],
resulting in perfect importance sampling in theory but also high
computational cost and variance.
Recently, neural approaches have been proposed to represent

measured/synthetic BRDFs [Fan et al. 2021; Sztrajman et al. 2021;
Zheng et al. 2021], which are mostly tied with compression of BSDFs
and seldomly study the problem of accurate importance sampling.
Recent works that use neural methods for importance sampling do
exist, but few work well with the naturally high-dimensional para-
metric BSDFs, especially those utilizing normalizing flow [Müller
et al. 2019; Xie et al. 2019].
In this work, we focus on accurately solving the importance

sampling problem for general parametric BSDFs. Our insight is
that, importance sampling, regardless of the specific methods (e.g.,
marginalized inverse transform sampling) to achieve it, is in essence
a mapping between a uniform distribution and a target distribution.
Specifically, importance sampling a parametric BSDF slice is a 2D to
2D mapping which can be simply recorded as a 2D image that we
name as importance map. Suppose we can precompute and compress
all the importance maps for all combinations of parameters and
incident directions, we will be able to bring accurate parametric
BSDF importance sampling to the precomputation stage, avoiding
heavy runtime computation.

Therefore, the core of general and accurate BSDF importance sam-
pling is to generate high-quality importance maps. The commonly-
used 2D importance sampling methods, e.g., the marginalized in-
verse transform sampling or hierarchical sample warping [Clarberg
et al. 2005], produce discontinuous importance maps, raising diffi-
culties for both compression and interpolation. To overcome these
issues, we introduce the Optimal Transport (OT) theory to this task,
which is by nature suitable to provide a smooth mapping between
distributions to generate importance maps efficiently. To alleviate
the expensive storage cost of importance maps, we propose a light-
weight neural network for compression and query. Together with a
BSDF evaluation network and a PDF query network, we provide a

complete neural solution for general parametric BSDFs, supporting
full multiple importance sampling (MIS) without any revision to the
rest of the rendering pipeline.
Since the process of computing and compressing importance

maps is similar to light baking, in the sense that a set of images are
precomputed and queried during runtime, we name our method
BSDF importance baking. It essentially performs perfect importance
sampling, and can be used for any general parametric BSDFs, even
those lacking analytic importance sampling solutions. Compared
with previous methods, we demonstrate reduced noise levels on
rendering results with a rich set of appearances, spanning a wide
range of parametric BSDFs from multiple-bounce microfacet con-
ductors with anisotropic roughness, to layered materials and Disney
principled materials.

In summary, our contributions include:
• a novel, accurate and efficient BSDF importance sampling
solution for general parametric BSDFs,

• a new theory that connects optimal transport (OT) and BSDF
importance sampling to compute importance maps, which
maps 2D uniform distribution to 2D BSDF slices.

• an application of lightweight neural networks to compress
precomputed importance maps, as well as optional BSDF eval-
uation and PDF query networks for comparatively complex
BSDFs for a full MIS solution, and

• a database of importance maps that collects parametric BSDF
importance sampling data for public use, including multiple-
bounce microfacet conductors, layered BSDF, as well as Dis-
ney principled materials.

2 RELATED WORK
Parametric BSDFs. Parametric BSDFs represent different materi-

als with explicit parameters. Two major groups of parametric BSDFs
include empirical models (e.g.,[Ashikhmin and Shirley 2001; Phong
1975]) and physically-based models, for example, microfacet mod-
els [Blinn 1977] with different normal distribution functions (NDFs),
including Beckmann [Beckmann and Spizzichino 1963], GGX [Wal-
ter et al. 2007] and Generalized-Trowbridge-Reitz (GTR) [Burley
2012], and their multiple-bounce extensions [Heitz et al. 2016; Wang
et al. 2022; Xie and Hanrahan 2018]. Apart from multiple-bounce
microfacet models, position-free layered BSDFs [Guo et al. 2018]
contain more parameters, such as the number of layers and the
properties of the medium between layers. The parameters can also
be artist-driven. For example, Disney principled materials [Burley
2012; McAuley et al. 2012] are defined by few intuitive parameters,
such as sheen and metallic. In this paper, We focus on providing a
general solution to importance sampling parametric BSDFs.

BSDF Importance Sampling. Under the Monte Carlo rendering
framework, the BSDF sampling strategy is crucial to variance re-
duction. However, sampling all the components within the BSDF
is non-trivial. In the microfacet model, sampling the NDF gives a
good approximation but can produce significant variance when the
outgoing direction is from the grazing angle. Heitz et al. [2017; 2018;
2014] reduced sampling variance by sampling the distribution of
visible normals (VNDF). However, VNDF sampling only works for
NDF that is stretch-invariant. Thus, some NDFs (e.g., GTR) do not
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allow for accurate VNDF sampling and only use an approximation.
Even worse, when considering multiple scattering in the microfacet
model [Heitz et al. 2016], the importance sampling becomes a ran-
domwalk due to the absence of the closed-form formulation, leading
to low performance. BSDF slices can also be approximated by simple
lobes, such as two Gaussians [Fan et al. 2022] or Blinn-Phong mod-
els [Sztrajman et al. 2021], then BSDF importance sampling can be
evaluated by sampling these known models. However, these simple
lobes are unlikely to fit complex BSDFs and result in high vari-
ance, especially BSDFs with multiple lobes. However, our method
computes the actual PDF values, producing less variance. 1

Hierarchical Sample Warping. Clarberg et al. [2005] proposed
an efficient and high-quality hierarchical warping technique that
maps a uniform distribution to a hierarchical distribution. They
applied it to sample environment maps, BSDFs, and their products
on-the-flywithout evaluating the full integral. However, hierarchical
structures break the continuity of distributions and increase the
precomputation difficulty. Additionally, dynamic sampling requires
that all BSDF slices are known and represented as wavelets. It means
that all possible BSDFs need to be tabulated. However, tabulating
all data is impossible for our layered BSDFs, which include ten
dimensions. We will explain this issue in Sec. 3.3.

Sampling Specific Types of BSDFs. Lawrence et al. [2004] reparam-
eterize BRDFs and decompose them into factored representation to
achieve simple and compact importance sampling of analytical and
measured BRDFs. However, the decomposition structure can only
handle simple BSDFs with mild glossiness or a single lobe. Other-
wise, the results are far from accurate. Moreover, the parametric
BSDFs investigated in this paper contain tremendously higher di-
mensions than 4D. Then decomposing these BSDFs becomes entirely
not feasible.
Unlike these methods, our method considers 2D slices of the

entire BSDF and allows perfect importance sampling. Our model
does not require that the BSDF has a closed-form formulation or
contains only one lobe, thus can be used for arbitrary parametric
BSDF models, including multiple scattering models, layered BSDFs,
and Disney principled BSDFs.

Optimal transport in computer graphics. Optimal transport (OT) is
a mathematical framework tomanipulate distributions [Kantorovich
1942; Monge 1781]. Recent works in computer graphics have applied
optimal transport to various fields, such as shape interpolation [Bon-
neel et al. 2016, 2011; Solomon et al. 2015]. OT is capable of providing
good distribution mapping and natural interpolation, but the fact
that OT calculates slowly constrains its computer graphics applica-
tions. Solutions with approximations enable faster OT calculation,
such as Sinkhorn distances [Cuturi 2013], convolutional Wasser-
stein distances [Solomon et al. 2015], geomloss [Feydy et al. 2019],
sliced optimal transport (SOT) [Paulin et al. 2020] and sliced partial
optimal transport (SPOT) [Bonneel and Coeurjolly 2019]. However,
they are still prohibitively slow in rendering, because computational
1Note that BSDF is a 3-channel value, but PDF is a single-channel value. In this case,
BSDF sampling cannot be perfect since PDF cannot always be the same with R, G and
B values. Therefore, given some PDF values (for example, grayscale) and performing
importance sampling accordingly, it should be considered the optimal solution for
BSDF importance sampling.

resources have already been significantly diluted by the massive
number of shading computations running in parallel. To avoid exten-
sive runtime distribution mapping computation, we take advantage
of the smooth mapping acquired using OT while entirely steering
away from its disadvantage of slow computation by applying it only
in the precomputation stage.

Neural network for BSDF representation. Neural networks (NN)
have been recently used for BRDF representation on measured mate-
rials by representing one spatially-varying BRDF (SVBRDF) or one
Bidirectional Texture Function (BTF) per network [Kuznetsov et al.
2021; Rainer et al. 2019], all BRDFs within a unified network [Hu
et al. 2020; Rainer et al. 2020; Zheng et al. 2021], or each BRDF
as a standalone decoder network [Sztrajman et al. 2021]. Besides
compressing the measured BRDFs, Sztrajman et al. [Sztrajman et al.
2021] also support importance sampling by mapping a measured
BRDF to an approximate parametric BRDF, but the differences be-
tween them result in imperfect importance sampling. Zheng et al.
[2021] applied two-layer NICE [Dinh et al. 2014] to sample mea-
sured BRDFs. Xie et al. [2019] proposed to use a RealNVP [Dinh
et al. 2016] network to learn multiple scattering equivalent NDFs
in the slope space, enabling importance sampling. However, their
method cannot support the high-dimensional parameter space for
parametric BSDFs (e.g., spatially-varying Fresnel and anisotropic
roughness) because of the notoriously bulky structure of normaliz-
ing flow structures and is considered too slow [Müller et al. 2019]
for practical use.

Our method focuses on importance sampling general parametric
BSDFs. By completely decoupling the computation of the impor-
tance maps to the precomputation stage, we only require using a
lightweight neural network to perform compression. Furthermore,
since our importance maps are generally smooth thanks to opti-
mal transport, they are naturally suitable for a neural network to
compress.

3 BACKGROUND AND ANALYSIS

3.1 Parametric BSDF Rendering
Parametric BSDFs. Parametric BSDFs are explicitly controlled by

material property parameters, such as roughness, refractive index,
attenuation coefficient, and etc. For example, single-bounce Smith
microfacet BRDFs can be analytically written as:

𝑓𝑠 (𝝎𝑖 ,𝝎𝑜 ) =
𝐹 (𝝎𝑖 )𝐺 (𝝎𝑖 ,𝝎𝑜 )𝐷 (𝝎ℎ)

4|𝝎𝑖 · n| |𝝎𝑜 · n| , (1)

where 𝐹 is the Fresnel term, often approximated with a Schlick
reflectance 𝑅0 and an incident direction 𝝎𝑖 . 𝐺 is the shadowing-
masking term accounting for self-occlusion, and 𝐷 is the normal
distribution function (NDF), parameterized on the half vector 𝝎ℎ =
𝝎𝑖+𝝎𝑜

|𝝎𝑖+𝝎𝑜 | , as well as roughness 𝛼𝑥 and 𝛼𝑦 . Given these material
parameters and an outgoing direction 𝜔𝑜 , 2D BSDF slices can be
easily generated where each pixel records the BSDF radiance value
of an incident direction 𝜔𝑖 .

For multiple-bounce Smith microfacet BSDFs where the light may
bounce multiple times before exiting the surface as shown in Fig. 2,
there is still no analytical expression. Both the BSDF evaluation
and importance sampling need heavy random walk simulations.
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(a) Multiple-bounce Microfacet BSDF (b) Two-layer Position-free Layered BSDF
(c) Disney Principled BRDF

Fig. 2. Several parametric BSDF models investigated in our paper. Note that the incident direction 𝜔𝑖 points towards light sources, and the outgoing direction
𝜔𝑜 points towards the camera.

In this work, we mainly focus on multiple-bounce BSDFs rather
than single-bounce BSDFs, since the former are more challenging.
Without loss of generality, we focus on GGX NDFs and describe
conductors in the main text.
We also study layered BSDFs [Guo et al. 2018], as illustrated in

Fig. 2. The configuration for layered BRDFs includes a top layer
using a rough dielectric (with roughness 𝛼 and refractive index 𝜂), a
bottom layer using a diffuse BRDF and a homogeneous participating
media (with attenuation coefficient 𝜎𝑇 and albedo (a𝑅, a𝐺 , a𝐵)) in
the middle. Also note that there are no constraints about the number
of layers or the types of BSDFs in each layer in our method. We
merely initiate from a simple layered BSDF model to prove the
generalization of our method.

Additionally, we study the Disney principled BSDF [Burley 2012;
McAuley et al. 2012]. This artists-friendly model was summarized to
be few zero to one intuitive parameters, such as metallic, roughness,
specular, anisotropic, sheen, and etc. In this paper, we mainly focus
on manipulating metallic m and roughness 𝛼 values also shown in
Fig. 2.

Monte Carlo (MC) integration and importance sampling. The MC
method provides an unbiased estimator to any definite integral in
the domain Ω with an arbitrary integrand 𝑓 (𝑥)∫

Ω
𝑓 (𝑥) d𝑥 ≈ 1

𝑁

𝑛∑︁
𝑘=1

𝑓 (𝑋𝑘 )
𝑝 (𝑋𝑘 )

𝑋𝑘 ∼ 𝑝 (𝑥) . (2)

The MC estimator approximates the integral by drawing samples ac-
cording to a probability density function (PDF) 𝑝 (𝑥). The 𝑓 (𝑋𝑘 )/𝑝 (𝑋𝑘 )
is known as the sampling weight. To minimize the estimation vari-
ance, importance sampling is desired – the closer between the “shapes”
of 𝑓 (𝑥) and 𝑝 (𝑥), the lower variance does the MC estimator have.

BSDF importance sampling. MC integration is the core of the
modern rendering pipeline, solving the rendering equation at each
shading point:

𝐿(𝝎𝑜 ) =
∫

𝐿(𝝎𝑖 ) 𝑓𝑠 (𝝎𝑖 ,𝝎𝑜 )⟨𝝎𝑖 , n⟩ d𝝎𝑖 . (3)

Given the BSDF parameters 𝜖 and the viewing direction 𝝎𝑜 , the
BSDF becomes a 2D slice, and BSDF importance sampling seeks on
a good PDF similar to this 2D BSDF slice, together with a sampling
technique that generates samples according to this PDF.
Though BSDF importance sampling can be easily calculated if

the whole BSDF values at all dimensions are known, it would be

Fig. 3. A visualization of the process to generate an importance map. We
start from generating sample points (𝜉 (0)

𝑖
, 𝜉

(1)
𝑖

) on a uniform grid in the
unit square [0, 1]2 (left). The importance sampling process takes a 2D
sample (𝜉 (0)

𝑖
, 𝜉

(1)
𝑖

) , and maps it to position (𝑢𝑖 , 𝑣𝑖 ) on a 2D BSDF slice
(middle). This mapping can be stored as an image (right), where the position
of each pixel is (𝜉 (0)

𝑖
, 𝜉

(1)
𝑖

) , with its color set as (𝑟 = 𝑢𝑖 , 𝑔 = 𝑣𝑖 , 𝑏 = 0) .

extraordinarily difficult for parametric BSDFs because of storage
constraints. At the same time, the efficiency of BSDF importance
sampling is crucial, since it will be evaluated at every ray bounce
for every sample ray from the camera. Massive amount of heavy
BSDF importance sampling calculation will dramatically slow down
the rendering calculation. Therefore, we propose to separate BSDF
importance sampling calculation into the precomputation and com-
pression of sampling data, as well as efficient runtime value lookup.

3.2 BSDF Importance Baking
In this section, we analyze the essence of BSDF importance sam-
pling, and present insight and motivation for our importance baking
scheme.

We start with two issues from current BSDF importance sampling
solutions.

(1) Not all parametric BSDFs can be analytically sampled, such
as multiple-bounce microfacet BSDFs. This includes certain
difficult-to-sample NDFs such as GTR, certain sampling meth-
ods such as visible NDF (VNDF) sampling only working with
specific NDFs, as well as multiple-bounce BSDFs in general.

(2) Even analytic sampling methods are not perfect. In order to
achieve the best quality, BSDF sampling requires a reasonable
pdf 𝑝 (𝑥) close to 𝑓𝑠 ⟨𝝎𝑖 , n⟩, but most analytical methods only
sample the VNDF (ignoring the Fresnel term) or even just
NDF 𝐷 (ignoring everything else).
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To deal with these issues and achieve perfect importance sam-
pling, we propose our understanding in the essence of the sam-
pling process – drawing samples according to a specific PDF is
actually mapping from a uniform distribution to that PDF, viz.,
𝑓 : (𝜉 (0) , 𝜉 (1) ) ↦→ (𝑢, 𝑣) (in 2D). As an example, we visualize such a
mapping acquired on a 2D BSDF slice in Fig. 3. In this visualization,
we assume the pixels represent a uniform grid on the unit square
[0, 1]2, and each pixel 𝑖 at position (𝜉 (0)

𝑖
, 𝜉

(1)
𝑖

) stores its mapped
position (𝑢𝑖 , 𝑣𝑖 ) as red and green. In this way, we are able to generate
an image for any 2D mapping, which we name the importance map.
With this understanding, we immediately come up with the fol-

lowing insights.
(1) For a 2D BSDF slice, it is not crucial whether it can be sam-

pled analytically or not because analytic sampling only cor-
responds to a quick lookup on the importance map. Instead,
being able to acquire and query a high-quality importance
map is the actual key to perfect importance sampling. For-
tunately, we demonstrate that the importance map can be
precomputed with the help of optimal transport (Sec. 4.1).

(2) Suppose one importance map can be obtained from a 2D
BSDF slice defined with BSDF parameters 𝜖 and the outgo-
ing direction 𝝎𝑜 . In order for the full parametric BSDF to be
importance sampled, we have to collect all importance maps
of all combinations of 𝜖 and 𝝎𝑜 . This requires heavy storage,
and therefore compression is needed. Fortunately, we demon-
strate that compression is not only possible but also efficient
with the help of a lightweight neural network (Sec. 4.2).

Since we propose to precompute and compress the importance
maps, the entire process is similar to the concept of light baking in
real-time rendering. Therefore, we name it BSDF importance baking.

3.3 Existing Importance Sampling Strategies Analysis
Importance sampling estimates the properties of a distribution,
which takes discrete values from a different function to reconstruct
a new function that displays similarities with the target distribution.
Usually from an easy-to-implement distribution, e.g., 𝑈 [0, 1]𝑑 to
an arbitrarily complex function. Importance sampling is not spe-
cial, and it just requires that the target distribution is a normalized
(constantly scaled) version of the target function.

Fig. 4. In the 2D marginalized inverse transform sampling, two random vari-
ables are used to firstly choose a row and then choose a column, forming a
sampled location at the target distribution. Therefore, this sampling strategy
acts as a mapping from the uniform distribution to the target distribution.

Fig. 5. The hierarchical sample warping strategy performs sampling by
hierarchically choosing one of the quarters with its probability (i.e., the
sample distribution in the target). However, this strategy can not guarantee
continuity between each quarter. For example, two adjacent samples (red
circles) in the target distribution are mapped from two samples at a distance,
leading to the discontinuities in the binning result, as shown in Fig. 6.

In 1D, a typically used method is called the marginalized inverse
transform sampling. It generates sample numbers using uniform
random number 𝜉 ∼ 𝑈 [0, 1] between 0 and 1 for any probabil-
ity distribution given its cumulative distribution function (CDF).
Comparing 𝜉 and CDF values will map the random number to a
certain value within the distribution domain. For discrete 2D situa-
tions, marginalized inverse transform sampling can be fulfilled by
using two uniform random variables (𝜉0, 𝜉1) ∼ 𝑈 [0, 1]2 as shown
in Fig. 4. By calculating the CDF of all elements in one dimension
(eg. all columns) and the overall CDF of the other dimension (eg.
all rows), each pair of (𝜉0, 𝜉1) can be used to attain a pair of 2D
sample (𝑢𝑖 , 𝑣𝑖 ) on the target distribution similar to 1D situation.
The mapping can be written as a function 𝑓 of elements between
distributions 𝑓 : (𝜉0, 𝜉1) ↦→ (𝑢𝑖 , 𝑣𝑖 ).
Another typical sampling strategy is hierarchical sample warp-

ing [Clarberg et al. 2005], which constructs levels of sample point
mapping from coarse to detail between uniform distributed samples
and target distribution, as shown in Fig. 5. It efficiently generates
high-quality sample mapping without evaluating the whole target
distribution. However, we observe that hierarchical sample warping
allows two neighboring samples on the target to be mapped from
two far-away samples in the uniform distribution (see Fig. 5).
In Fig. 6, we compare different sampling strategies by showing

their importance maps, as well as the sampling binning results by
applying bilinear interpolation using each importance map. Both
marginalized inverse transform sampling and hierarchical sample
warping show discontinuous importance maps, leading to an in-
correct filamentous connections or grid artifacts in the binning
results.
In summary, the existing solutions can be exploited for impor-

tance sampling, but they generate discontinuous importance maps,
which raises difficulties for precomputation, compression, and in-
terpolation. Therefore, we seek for a better solution to generate
importance maps.

4 OUR METHOD

4.1 Optimal Transport for Precomputed Importance
In this subsection, we focus on attaining the importance maps. We
start from an important fact that is often ignored. That is, potential
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(a) Input (b) Marginalized Inverse Transform (c) Hierarchical Sample Warping (d) Optimal Transform

Fig. 6. Let the input lotus image (a) be the target distribution. We use three importance sampling strategies to generate the importance map and then
interpolate and reconstruct images from the importance map via binning. Here, binning means sampling a location from the importance map using the same
uniform sample sequence and accumulating it into the corresponding pixel, while applying bilinear interpolation, to reconstruct the images. Both marginalized
inverse transform sampling and hierarchical sample warping generate importance maps with severe color discontinuity and high-frequency color variation,
which leads to incorrect filamentous connections or grid artifacts in the binning result and raises difficulties for compression and further interpolation. On the
contrary, the importance map by optimal transport has a smoother transition and lower frequency, allowing easier compression.

mappings that produce the same importance sampled PDF are not
unique. Consider a toy example of sampling a truncated, and nor-
malized 1D Gaussian defined on [0, 1] shown on the right. Suppose
we uniformly subdivide [0, 1] into four segments A, B, C and D,
each integrates to a probability of 0.1, 0.4, 0.4 and 0.1. Then we
subdivide the uniform [0, 1] into four

segments with lengths 0.1, 0.4,
0.4 and 0.1, and name them 1, 2, 3
and 4, respectively. Then the map-
ping 1 ↦→ 𝐴, 2 ↦→ 𝐵, 3 ↦→ 𝐶 ,
4 ↦→ 𝐷 is a valid mapping that
importance samples the Gaussian,
but the mapping 1 ↦→ 𝐴, 2 ↦→ 𝐶

and 3 ↦→ 𝐵, 4 ↦→ 𝐷 is also perfect
importance sampling.
Moreover, from this example, one can immediately tell which

sampling strategy is better: the first one is much smoother, and
the second one suffers from discontinuity. This conclusion is never
trivial because it directly proves that one pervasively used solution
to obtain the importance maps – the marginalized inverse trans-
form sampling, a.k.a. row-column sampling – is not suitable for
generating good importance maps (Fig. 6). This is because a small
perturbation in 𝜉0 may result in a different row with a different 1D
distribution, then even for similar 𝜉1, the resulting column can be
far away.
Therefore, we prefer a strategy that provides smooth mapping

that a small perturbation makes the mapped sample move mod-
erately nearby. To satisfy this requirement, we refer to optimal
transport (OT) – specifically, discrete optimal transport from the
Lagrangian view [Feydy et al. 2019], which is able to find an optimal
one-to-one mapping between two point distributions with the same
number of points. In our case, this is to map from the unit square to
the 2D BSDF slice for each combination of BSDF parameters 𝜖 and
outgoing directions 𝝎𝑜 .

To conduct optimal transport, we first discretize both distributions
into ordered point sets

𝜶 = ∪𝑛𝑖=1𝛿
(
𝜉
(0)
𝑖

, 𝜉
(1)
𝑖

)
, 𝜷 = ∪𝑛𝑗=1𝛿

(
𝑢 𝑗 , 𝑣 𝑗

)
, (4)

where 𝑛 is the total number of points, and the 𝛿 (·) is Dirac delta
impulse at different positions. We weigh each point the same, which

immediately indicates that it is the local densities of those points
that represent the values of the original continuous distributions. In
other words, the continuous-to-discrete conversion itself is exactly
importance sampling. We manually convert the unit square into a
regular grid 𝜶 (pixels) and use row-column sampling to convert the
2D BSDF slice into 𝜷 .
Then we conduct optimal transport, giving a 1-to-1 correspon-

dence between any two point distributions 𝜶 and 𝜷 , minimizing
the Euclidean distance between them:

argmin𝜓

𝑛∑︁
𝑖=1

∥𝜶 (𝑖) − 𝜷 (𝜓 (𝑖))∥, (5)

where𝜓 is a permutation of the sequence 1, 2, . . . , 𝑛, computed by
the optimal transport process. After this, we record the positions
of each 𝜷 (𝜓 (𝑖)) into each pixel’s red and green channel, which
completes the computation of an importance map.

Note that during the conversion of 𝜷 , we used row-column sam-
pling. However, this is in essence different from using that to find
the mapping – we only use row-column sampling to discretize an
image into points, and the mapping is found by optimal transport.
More conversion tools can be explored in the research area of image
stippling [Kim et al. 2008].
Also, note specifically that we focus on the black box usage of

optimal transport as a general mathematical tool. However, we
do not intend to compare or improve specific optimal transport
solvers. We also do not extend further discussion on specific ac-
curate/approximate distance metrics (e.g., earth mover’s distance,
Wasserstein distance, Kullback–Leibler divergence, Sinkhorn dis-
tance, etc.). In Sec. 5.1, we provide our choices for implementation.

In summary, for each of the three kinds of BSDFs and each possi-
ble combinations of parameters, we compute the BSDF slices, and
calculate OT mapping to attain importance maps. With all these cal-
culations, we have a database of importance maps and BSDF slices.
Details of the whole generation process can be found in Sec. 5.1.

4.2 Lightweight Neural Networks for Importance Baking
Now that the OT already provides a reliable sampling scheme with
these computed importance maps, then we should focus on data stor-
age and compression. We introduce a lightweight neural network
for compression and storage because networks provide a higher
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𝛼𝑥 0.04, 𝛼𝑦 0.02 𝛼𝑥 0.029, 𝛼𝑦 0.41 𝛼𝑥 0.54, 𝛼𝑦 0.46 𝛼𝑥 0.26, 𝛼𝑦 0.43

(a) Multiple-bounce Microfacet BSDF

𝛼 0.19, 𝜂 1.41 𝛼 0.0197, 𝜂 1.345 𝛼 0.014, 𝜂 1.23 𝛼 0.0656, 𝜂 1.527

(b) Layered BSDF

Fig. 7. We visualize BSDF slices (top row) and their corresponding sampling weight slices (bottom row). (a) For multiple-bounce microfacet BSDFs, no matter
what the BSDF looks like, the sampling weight is a low-frequency function whether the roughness values are low or high, or the BSDF is isotropic or anisotropic.
Therefore, we can output sampling weight in the BSDF sampling network without increasing its complexity. Note that the noise of the sampling weight comes
from the original BSDF slice. (b) For layered materials, the situation becomes more complex. In the two-layer model we are studying, the reflection on the top
dielectric surface creates a white highlight circle. Therefore, the sampling weight images of layered BSDF are not in uniform color. However, the sampling
weight slices at the bottom row still show that the sampling weights are relatively low-frequency values.

compression rate and better expressiveness than traditional meth-
ods.
Before we proceed, we would like to note, as one could already

tell immediately, the difference between our method and the nor-
malizing flow methods. We treat the neural network as a general
compression tool to save the data we have already computed for
importance sampling. This is in essence different to letting neural
networks figure out how to perform importance sampling. There-
fore, our solution makes it much easier for networks to “learn” the
sample mapping, and dramatically reduces the complexity of our
networks, resulting in significantly better results and performance.
We will also discuss more on the differences between our method
and normalizing flow in Sec. 4.3.

We start with a few design principles from a series of observations.
(1) We notice a significant amount of similarities between the

importance maps when the BSDF parameters and incident
directions change. The smooth change of these importance
maps inspire us to use a neural network to compress them.

Fig. 8. The structure of our BSDF importance sampling network. The net-
work takes the following as inputs: material parameters 𝜖 , outgoing ray
direction 𝜔𝑜 and a pair of uniformly distributed random numbers 𝜉0 and
𝜉1. Then we process the inputs with a positional encoding, feed to an MLP
(six layers of 64/128 hidden units), and finally output the sampled direction
𝜔𝑖 and the sampling weight. Note that we increase the MLP size from 64 to
128 for layered BSDFs, since the sampling weight slices are more complex
than other BSDFs as shown in Fig. 7. More details are shown in Sec.5.2.

(2) As mentioned in Sec. 2, since runtime performance is crucial
to core rendering, the highest level design of our neural net-
work is to keep it as lightweight as possible, thus allowing
for fast inference during rendering.

(3) During BSDF importance sampling, only one incident direc-
tion needs to be sampled at a time. Therefore, the importance
map should be point queried instead of being output on the
whole. This also further reduces the complexity of our neural
network.

(4) For Monte Carlo estimation, the BSDF sampling process is
expected to output not only an incident direction but also its
sampling weight, which is the BSDF value divided by the PDF
value. For multiple-bounce microfacet materials and Disney
principled materials, the sampling weight is a 3-channel value
and is close to constant since we design our PDFs to have
the same shapes with the BSDF slices converted to grayscale.
For layered materials, the sampling weight data are more
complex but still relatively low-frequency. Fig. 7 shows more
details about sampling weight data.

Based on these design principles, we propose a lightweight neural
network for our BSDF importance sampling.

BSDF Sampling Network. Aside from the BSDF parameters 𝜖 and
the outgoing direction 𝝎𝑜 , our importance sampling network takes
two random numbers and outputs the sampled incident direction
together with its sampling weight:

I(𝜖,𝝎𝑜 , 𝜉0, 𝜉1) = (𝝎𝑖 , sw𝑅, sw𝐺 , sw𝐵), (6)

where sw is the 3-channel samplingweight. The network structure is
shown in Fig. 8. Note that since we have full control of the sampling
process, the training data, especially the sampling weight to our
BSDF importance sampling network, is guaranteed to be correct
(unbiased), albeit some noise can remain. Therefore, the source of
bias in our results can only originate from the learning process of
the network itself, as will be analyzed in the next subsection.
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GT ours GT ours

GT ours GT ours

GT ours GT ours

GT ours GT ours

Fig. 9. We visualize pairs of importance maps and their corresponding
binning results (overexposed to better visualize the difference) for different
materials, including multiple-bounce microfacet conductor materials (top
row), layeredmaterials (middle tow) andDisney principledmaterials (bottom
row), learned by our BSDF sampling network. By comparing with the ground
truth, our model can accurately learn the importance maps and reproduce
the BSDF lobes for various parametric BSDFs.

To validate the functionality of our BSDF sampling network, we
compare the importance maps and the binning results between
the ground truth and our network’s prediction, as shown in Fig. 9.
Thanks to our use of optimal transport that results in smooth im-
portance maps, our network is able to learn to compress them well.

So far, our solution to general parametric BSDF importance sam-
pling has already completed. However, modern rendering pipeline
usually supports multiple importance sampling (MIS). In the MIS
framework, a renderer should implement not only BSDF sampling,
but also BSDF evaluation (returning the BSDF value given the inci-
dent and outgoing directions) and PDF query (returning the PDF
value similarly). For some BSDFs, these two tasks can be elegantly
computed in closed form, e.g., the Disney Principled BSDFs. But for
some other BSDFs, it is still difficult to evaluate the BSDF values,
e.g., the layered BSDFs.
Therefore, for completeness, we also compress the BSDFs and

PDFs, using separate neural networks.

BSDF evaluation network. For BSDF evaluation, our evaluation
network E takes an additional incident direction 𝝎𝑖 and outputs
the BSDF value as a 3-channel RGB value:

E(𝜖,𝝎𝑜 ,𝝎𝑖 ) = 𝑓𝑠 (𝝎𝑜 ,𝝎𝑖 )⟨𝝎𝑖 , n⟩. (7)

Note again that the BSDF evaluation network is optional and
should only be used when there is no analytical BSDF evaluation
scheme. We choose the simple network structure because it fulfills
our need already, producing correct BSDF values, as validated in
Fig. 1 and Fig. 15. We are aware of other existing neural BSDF/BTF
compression methods [Fan et al. 2022; Rainer et al. 2020, 2019; Sztra-
jman et al. 2021; Zheng et al. 2021]. And we also believe that their
success can further strengthen our importance sampling scheme
when combined together, replacing our simple evaluation network.
But we do not extend analysis on them any further, since BSDF
evaluation is not our main contribution.

PDF query network. Our PDF query network P has a very similar
definition compared to the BSDF evaluation network. It also takes
in the combinations of BSDF parameters as well as the incident
directions and returns the PDF value of sampling that direction

Fig. 10. The structure of our BSDF evaluation and PDF query networks.
These two networks take material parameters 𝜖 , outgoing direction 𝜔𝑜 ,
and incident direction 𝜔𝑖 as inputs and output the BSDF value or PDF,
respectively. More details are shown in Sec. 5.2.

under solid angle measurement:

P(𝜖,𝝎𝑜 ,𝝎𝑖 ) = PDF (𝑓𝑠 (𝝎𝑜 ,𝝎𝑖 )⟨𝝎𝑖 , n⟩) , (8)

For readers unfamiliar with rendering, we make a special note
here that our PDF query networks only serve as providing the PDF
values for the computation of MIS weights (not sampling weights).
A physically correct PDF is certainly welcomed – as it will reduce
the variance of the MIS combined results. However, even completely
wrong PDFs in this step only leads to higher variance rather than
any bias. We elaborate on this more in the next section with a simple
but convincing experiment.
Our BSDF evaluation and PDF query networks share a similar

lightweight structure, as illustrated in Fig. 10. Note specifically that
the emphasis on lightweight neural network design in core ren-
dering [Fan et al. 2022; Zhu et al. 2022] is different from that in
deep learning. We use neural networks only as a general tool for
efficiently compressing and querying high-dimensional data.

4.3 Properties and analysis
Source of Bias. Bias is not desired, but there is no guarantee that

neural networks produce fully unbiased results. In our case, the
BSDF sampling network learns the sampling weight values, which is
equivalent to 𝑓𝑠 ⟨𝝎𝑖 ,n⟩

PDF . However, this PDF is the correct PDF (rather
than the output of our PDF query network) as part of the unbiased
training data. And it will not be exposed to any other stages but
only together as the sampling weight. Therefore, the only source
of bias originates from the learning process of the network itself,
and is on sampling weight only, which is usually low frequency and
easy to learn as shown in Fig. 7.
For our PDF query network, we do not include any sum-to-one

(and other normalization) constraints. As mentioned earlier, this is
because the PDF used in MIS can be any value, and the resulting MIS
weights may even be negative [Kondapaneni et al. 2019]. To further
prove this statement, we show the MIS rendering results using a
ball status scene with negative uniform MIS PDF, tenth power PDF,
and cos-weighted PDF as reference in Fig. 11.

Relationship to other BSDF sampling methods. Our neural BSDF
importance sampling solution has significant differences from other
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A B C

Fig. 11. Rendered results of a ball status scene with a diffuse BSDF using
different MIS PDFs: (a) -10, (b) tenth power of cos-weighted hemisphere
PDF value, and (c) cos-weighted hemisphere PDF treated as the ground
truth. All results are rendered with 16,384 samples for convergence. These
three results are identical, which confirms that the MIS PDF value does
not require any sum to one constraint, and the choice of MIS PDF does not
introduce any bias.

neural BSDF methods. For example, Fan et al. [2022] sample differ-
ent layered BRDF parameters by learning a Gaussian lobe and a
Lambertian lobe. Similarly, Sztrajman et al. [2021] apply a shallow
network to learn the mapping between autoencoded BRDFs and
parameters of fitted analytical Blinn-Phong importance sampling
parameters. Though Sztrajman et al. [2021] also use a neural net-
work to calculate BRDF importance sampling, their network only
provides fitting parameters to the analytical Blinn-Phong model.

Therefore, the core of these importance sampling methods is still
the analytical model fitting of BSDF slices. The insight of these
strategies relies on a rough prior knowledge of the shape of the
BSDF slices.When the prior breaks, the efficiency of samplingwill be
abysmal. For example, the Blinn-Phong importance sampling model
serves as a good sample function for BSDFs with isotropic single
specular lobe. However, anisotropic materials or complex multiple-
lobematerials cannot be accurately described with only one specular
highlight. We show the Blinn-Phong importance sampling fitting
results of anisotropic multiple-bounce microfacet BSDF in Fig. 12
for validation.
We have differentiated our approach against normalizing flow-

based importance sampling methods at the beginning of Sec. 4.2,
and more comparisons can be found in Fig. 13. For other sampling
methods, such as Dupuy et al. [2018], they perform targeted design
for specific kind of BSDFs. We consider them too far from our
general parametric BSDF sampling, and do not extend the further
discussion.

5 IMPLEMENTATION DETAILS

5.1 Data Generation
BSDF slice generation. We use an AMD 64-core 3995WX CPU

machine for training data generation. The material parameters 𝜖
are sampled uniformly in their own space except the roughness is
sampled in squared space. For outgoing directions, we sample them
uniformly in square root of the polar angle to emphasize the grazing
angle cases. Each pair of (𝜖,𝝎𝑜𝑥 ,𝝎𝑜𝑦) will be used for generating
a 2D BSDF slice with a resolution of 128×128, where each pixel

BSDF slice Fitting Neural

Fig. 12. Binning result comparison between the fitted analytical Blinn-
Phong model (middle) and our neural solution (right) on an anisotropic
multiple-bounce microfacet BSDF slice. Our solution shows a better match
than the fitted Blinn-Phong model to the reference BSDF slice.

represents an incoming direction (𝝎𝑖𝑥 ,𝝎𝑖𝑦) and stores the three-
channel 𝑓𝑠 ⟨𝝎𝑖 , n⟩ value. In our experiments, we generate 32,768
slices for our training on each material.

The dataset for all the networks are generated from these 2D BSDF
slices. These 2D BSDF slices can be directly used as training data for
BSDF evaluation networks. For the PDF query network’s dataset,
we calculate the luminance of three-channel BSDFs to get single-
channel data and then get the PDF by normalizing the luminance
with the summed solid angle measurement. Finally, for the BSDF
sampling network, we reparameterize the PDF from the hemisphere
to a unit disk and then perform marginalized inverse transform
sampling on the unit disk. This ensures that we are sampling on a
correct distribution domain. The importance sampled sample points
function as the target distributions of OT. Additionally, we also
store the three-channel 𝑓𝑠 ⟨𝝎𝑖 ,n⟩

PDF values as the sampling weight. Note
that the sampling and PDF calculation are all based on solid angle-
measured BSDF radiance values, and there is no parameter space
transformation. Therefore, there is no need for Jacobian calculation.
In summary, all training data originate from BSDF evaluation.

Optimal transport. In the next step, we use Geomloss [Feydy
et al. 2019] to provide an initial mapping state, and then we use
SOT [Paulin et al. 2020] for further optimization. We choose to use
two OT solutions because combining two methods will combine
the advantages and avoid the limitations of these two methods.
SOT computes swiftly, but we notice apparent crevices on BSDF
slices even after tens of thousands of iterations, especially for small
roughness situations. The networks can grasp these crevices and
produce incorrect dark areas in the rendering results. Geomloss
runs slower than SOT, but it provides an outstanding initial state
for SOT to optimize further. Note again, Geomloss and SOT are just
ways of giving the mapping for the next learning step of our method.
Other specific implementations of OT are all available choices.

5.2 Network and Training Details
Our networks are trained on a server with an Intel 16-core i9-7960X
CPU and a NVIDIA 3090, and then the weights are saved into binary
files for each kind of parametric BSDFs for renderer integration.

Input Encoding. Input encoding has been proved to provide sharper
and more accurate results in several works [Mildenhall et al. 2020;
Müller et al. 2021]. Therefore, we adopt the input encoding for our
query parameters similar to [Müller et al. 2021]. The frequency
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Material Parameter(Symbol) Encoding Method

Multiple
Bounce
Material

Roughness (𝛼 ∈ R2) freq(𝛼) ∈ R2×4
R0 (𝑎 ∈ R3) freq(𝑎) ∈ R3×4

Camera Dir (𝜔𝑜 ∈ R2) freq(𝜔𝑜 ) ∈ R2×12
Light Dir (𝜔𝑖 ∈ R2) freq(𝜔𝑖 ) ∈ R2×12

Sample Input (𝜉 ∈ R2) freq(𝜉) ∈ R2×12

Layered
Material

Refractive Index (𝜂 ∈ R) ob(𝜂) ∈ R4
Roughness (𝛼 ∈ R) ob (nl(1 − 𝑒−𝛼 )) ∈ R4

Attenuation Coeff (𝜎𝑇 ∈ R) ob(𝜎𝑇 ) ∈ R5
Albedo (𝑎 ∈ R3) id(𝑎) ∈ R3

Camera Dir (𝜔𝑜 ∈ R2) ob(𝜔𝑜 ) ∈ R2×12
Light Dir (𝜔𝑖 ∈ R2) ob(𝜔𝑖 ) ∈ R2×12

Sample Input (𝜉 ∈ R2) ob(𝜉) ∈ R2×12

Disney
Material

Metallic (𝑚 ∈ R) ob(𝑚) ∈ R8
Roughness (𝛼 ∈ R) ob (nl(1 − 𝑒−𝛼 )) ∈ R8

Camera Dir (𝜔𝑜 ∈ R2) ob(𝜔𝑜 ) ∈ R2×12
Light Dir (𝜔𝑖 ∈ R2) ob(𝜔𝑖 ) ∈ R2×12

Sample Input (𝜉 ∈ R2) ob(𝜉) ∈ R2×12

Table 1. Parameters Encoding. For encoding method, freq(·) means fre-
quency encoding [Mildenhall et al. 2020] with both sine and cosine func-
tions, ob(·) means one-blob encoding [Müller et al. 2019], id(·) stands for
identity function, and nl(·) means normalize the value’s range to [0, 1].

encoding consists of 2𝑘 sine and cosine functions, with 𝑘 different
frequencies from 20 to 2𝑘−1, and the one blob encoding [Müller
et al. 2019] has 𝑙 bins for the discrete Gaussian values of the encoded
numbers. Details of each encoding for different types of materials
are shown in Table 1.

Loss functions. For BSDF evaluation networks, in order to capture
both highlight area’s intensity and non-highlight area’s color, we
use symmetric mean absolute percentage error (SMAPE) on BSDF
values to optimize the networks as following:

Leval =
∥pred − gt∥1

sg(∥pred∥1) + sg(∥gt∥1) + 𝜀

where 𝜀 is set to 0.01 and sg(·) means there is no gradient back
propagation here.
For PDF query networks, the predicted values are transformed

into log space and then we apply ℓ1 loss as follows:

Lpdf = ∥log(1 + pred) − log(1 + gt)∥1 .

For BSDF sampling network, we directly apply ℓ1 loss on network
output, i.e. the incident direction. Additionally, to reduce the number
of queries for networks in rendering, our network also returns the
sampling weight. It is a low-frequency function (its visualization
is shown in Fig. 7) that is averaged from the corresponding three-
channel BSDFs. We use ℓ1 loss for the sampling weight outputs in
log space. Thus, the full loss of our sample network shows below:

Lsample =
𝜔 − 𝜔gt


1 + 𝜆

log(1 + ŝw) − log(1 + swgt)

1 ,

where 𝜔 indicates the predicted incident direction, and the ŝw is
predicted sampling weight which is a 3 channel value. 𝜔gt and swgt
are the corresponding ground truth of them. We set 𝜆 to 0.4 in our
training.

Training details. We use the ADAM [Kingma and Ba 2014] opti-
mizer with default parameters and cosine annealing scheduler to
optimize our BSDF sampling networks, and Ranger [Wright 2019]
optimizer to optimize the BSDF evaluation and PDF query networks.
The batch size of training is set to 1048576 and learning rate is
set to 0.0001. Each networks are trained with 500 epochs in total.
It takes about 48 hours to train BSDF sampling networks on each
material, and 12 hours to train BSDF evaluation networks and PDF
query networks separately on each material.

5.3 Renderer Integration
We integrate our network in Mitsuba renderer [Jakob 2010] with
minimum revisions to only BSDF classes. The network inferences
are integrated with C++ and Mitsuba using Eigen [Guennebaud
et al. 2010]. The fully-connected layers are interpreted as matrix
multiplications implemented in three different classes. Inside neural
BSDF classes, the evaluation, sample, and PDF functions will only
need to call the network inference functions with corresponding
parameters. At render time, the ray directions 𝝎𝑖 and 𝝎𝑜 for each
shading point, as well as BSDF parameters 𝜖 serve as inputs of both
BSDF evaluation and PDF query networks. The BSDF sampling
network requires BSDF parameters 𝜖 , outgoing direction 𝝎𝑜 and
a pair of random numbers (𝜉0, 𝜉1). Then the sampling network
returns an incident direction 𝝎𝑖 together with the sampling weight.
In this case, we do not need to refer to the BSDF evaluation and PDF
query networks inside the sample function again. Using sampling
weight relieves us from performing three network inferences and
thus optimize the calculation efficiency. At the same time, it further
decreases the bias brought about by the differences between BSDF
sampling and PDF query networks. In sum, we have not made any
revisions to the integrator. All the modifications we have made are
only inside a neural BSDF class.

6 RESULTS AND COMPARISON
We integrate our network in Mitsuba renderer [Jakob 2010], and net-
work inferences are integrated using C++ and Eigen [Guennebaud
et al. 2010]. All the rendering performance is measured on an In-
tel 8-core i9-9900K machine. Now we only perform CPU network
inference.

In this section, we validate our results on multiple-bounce rough
conductors with the GGX NDF, position-free layered BSDFs, and
Disney principled materials. Also, we use relative mean square error
(relMSE) to measure the difference with the ground truth. Since our
method and the other methods might converge to different ground
truths, we use their own converged results as the ground truth (GT).

6.1 Multiple-bounce Microfacet BRDFs
For multiple-bounce microfacet conductors, we compare our render-
ing results with Heitz et al. [2016] and use their method to generate
all ground truth (GT) results. We start with comparing the efficiency
and qualities of BSDF sampling only rendering results between our
neural network and RealNVP used by Xie et al. [2019]. We also
perform comparisons for low-roughness conductors, as well as MIS
rendering results.
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Heitz et al. 2048 spp
3.99 mins
relMSE 8.6𝑒−3
A

Ours 256 spp
46.74 s
relMSE 8.6𝑒−3
B

Xie et al. 256 spp
1.37 mins
relMSE 0.13
C

Xie et al. 4096 spp
21.57 mins
relMSE 8.2𝑒−2
D

GT
Fig. 13. We perform equal quality comparisons between (A) Heitz et
al. [2016] and (B) our method (BSDF sampling network) on an anisotropic
multiple-bounce microfacet conductor BSDF. Also, we perform equal-spp
comparisons between (B) our method and (C) Xie et al. [2019]. Our method
achieves less noise with better performance, while (D) Xie et al. [2019] pro-
duce a noisy result with 16 times samples. Our method achieves the correct
appearance and with less amount of time.

Heitz et al. 256 spp, 48.76s Ours 256 spp, 1.27 mins

Heitz et al. Ours Heitz et al.Heitz et al. Ours
Fig. 14. Comparison between our method (BSDF sampling network) and
Heitz et al. [2016] on low-roughness (𝛼 = 0.01) multiple-bounce microfacet
conductor BSDFs with equal sampling rate. Our method shows correct
highlights, while preserving a lower noise level than Heitz et al. [2016].

Vase scene. In Fig. 13, we show an anisotropic conductor vase with
𝛼𝑥 = 0.3 and 𝛼𝑦 = 0.1 under an environment light, considering
direct lighting only. We use our BSDF sampling network trained
on the multiple-bounce dataset and compare it against Heitz et

Ours full neural MIS 1.24 mins
relMSE 3.5𝑒−3

GT

Heitz et al. 41.12 s
relMSE 9.5𝑒−3

Ours sample, GT eval/PDF, 1.11 mins
relMSE 4.9𝑒−3

Fig. 15. Comparison between our method (BSDF sampling network + GT
evaluation and PDF), our method (three networks), Heitz et al. [2016] and
the ground truth rendered with 256 spp. The roughness is set as 0.3. By
introducing our BSDF sampling network only, our model is already able to
produce results with lower variance, while the other components (evaluation
and PDF query network) further reduce the noise level, at the cost of a longer
time.

al. [2016] and Xie et al. [2019]. For fairness, we set the hidden
dimension of the RealNVP network by Xie et al. [2019] as 32, keeping
a similar parameter size as ours, and train their model at the same
time as ours. Since their model only provides the sampled direction
and its PDF, we call the GT evaluation function and divide it by
their PDF as the sampling weights. For all the methods, we perform
BSDF sampling only. Our method use less time to achieve equal
quality than Heitz et al. [2016]. At the same time, the result by Xie
et al. [2019] has higher variance with 2× time cost.

Low roughness teapot scene. BRDF sampling is also tricky for
multiple-bounce microfacet conductors with low roughness, due to
the high frequency of the BRDF lobes. To show the effectiveness of
our BSDF sampling network on such cases, we compare our method
against Heitz et al. [2016] on the teapot scene (with 𝛼 = 0.01) with
equal-spp in Fig. 14. In this comparison, we perform BSDF sampling
only. Our result preserves the correct highlights and shows much
less variance than Heitz et al. [2016], with only 0.5× extra cost.
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Guo et al. 256 spp, 8.4 mins Ours 256 spp, 5.12 mins GT

Guo et al.
relMSE 1.6𝑒−2

Ours
relMSE 4.9𝑒−3

Guo et al.
relMSE 4.2𝑒−3

Ours
relMSE 1.3𝑒−3

Guo et al.
relMSE 6.6𝑒−3

Ours
relMSE 1.5𝑒−4

Guo et al.
relMSE 3.7𝑒−3

Ours
relMSE 8.4𝑒−4

Fig. 16. Equal-spp comparison between our model (BSDF sampling network) and Guo et al. [2018] on a layered material. Our method not only shows less
variance but also has higher efficiency. The layered material consists of a dense media in the middle, leading to an expensive random walk for Guo et al. [2018].

Ginkgo ornament scene. Besides the BSDF sampling network, we
also introduce BSDF evaluation and PDF query networks, which
are essential for complex BSDFs with heavy evaluations, like the
multiple-bounce Smith microfacet BSDFs. Our full solution enables
MIS for Monte Carlo rendering. In Fig. 15, we compare our methods
(sample network only and full solution), and Heitz et al. [2016]. For
our method (sample network only), we use the BSDF evaluation and
PDF from Heitz et al. [2016] to enable MIS. By comparison, we find
that our full solution outperforms the others in terms of rendering
quality, with only a slight time overhead.

Conductor Kitchen Shelf. In Fig. 1 (top), we compare our full solu-
tion (three networks) with Heitz et al. [2016] on a variety of objects
with different colors and roughness lit by an area light. The rough-
ness of the four objects (from left to right) are set as 𝛼 = 0.2, 𝛼 = 0.6,
𝛼 = 0.03 and 𝛼𝑥 = 0.08 and 𝛼𝑦 = 0.3, covering from low roughness
to high roughness, from isotropic to anisotropic materials. By com-
parison, our result shows higher quality than Heitz et al. [2016] both
visually and quantitatively. However, the time cost of our method is
about 2× slower, due to the network inference. Since our current
network inference is a simple CPU implementation, we believe that
further optimization can decrease our time cost significantly.

6.2 Position-free Layered BSDFs
In this section, we demonstrate effectiveness of our model on layered
materials by comparing with Guo et al. [2018] and use this method
to generate ground truth (GT). Again, we only show results on two-
layer BSDFs for simplicity, and more layers can be handled in the
same way.

Layered Shoes. In Fig. 16, we compare our BSDF sampling model
(trained on layered materials) with Guo et al. [2018] with equal
spp on a Shoe scene lit by an environment map. The shoes have a
dielectric material with roughness 𝛼 = 0.08 and refractive index
𝜂 = 1.5 as the top layer, a diffuse with color as the substrate, together
with a medium (𝜎𝑇 = 0.8). Both methods perform BSDF sampling
only, without MIS. With an equal sampling rate, the result by Guo

et al. [2018] is much noisier while having a much longer time than
ours. The expensive time cost of Guo et al. [2018] is due to the
random walk in the dense medium.

Layered Kitchen Shelf. Then, we validate our full solution (three
networks) on layered BSDFs, by comparing against Guo et al. [2018]
with equal time in Fig. 1 (bottom). In this scene, we show several
objects, with different roughness 𝛼 , refractive index 𝜂, attenuation
coefficient 𝜎𝑇 , and albedo color lit by an environment map, consid-
ering both direct lighting and indirect lighting. Both methods use
MIS to render this scene. To achieve equal time, we use 1024 spp
for our method and 850 spp for Guo et al. [2018]. Our result has a
lower variance and higher computational efficiency than theirs.

6.3 Disney Principled BSDFs
Next, we show some results on Disney Principled BSDFs. We choose
to vary two parameters metallic and roughness while fixing the
remaining parameters. As a comparison, we implement full Disney
principled model in Mitsuba renderer to generate ground truth (GT)
results. In Fig. 17, we show an equal-spp comparison between our
model (BSDF sampling model) and Disney principled BSDF on the
coffee cup scene with varying parameters (metallic and roughness),
lit by an environment map. Both our model and Disney principled
BSDF use BSDF sampling only. Under all these settings, our method
achieves less noise level than Disney Principled BSDFs, especially
for materials with low metallic and roughness, at the cost of a longer
rendering time (1.5×) due to the network inference. It proves our
method provides a better BSDF importance sampling strategy than
Disney Principled BSDFs.

7 DISCUSSION AND LIMITATIONS
Unified representation of BSDF evaluation and sampling. In our

BSDF evaluation network, when the BSDF parameters are specified,
one outgoing direction 𝝎𝑜 will produce a corresponding 2D BSDF
slice, where each pixel is a BSDF value. This BSDF slice is queried
using the 2D incident direction 𝝎𝑖 . Similarly, given the BSDF param-
eters and an outgoing direction, a 2D importance map is established,
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Disney principled 512 spp, 2.03 mins Ours 512 spp, 3.10 mins GT

Disney principled
relMSE 6.1𝑒−2

Ours
relMSE 5.7𝑒−2

Disney principled
relMSE 1.5𝑒−2

Ours
relMSE 1.4𝑒−2

Disney principled
relMSE 6.4𝑒−2

Ours
relMSE 4.4𝑒−2

Disney principled
relMSE 9.5𝑒−3

Ours
relMSE 6.2𝑒−3

Fig. 17. Equal-spp comparison between our model (BSDF sampling network) and Disney Principled BSDF on a broad range of materials, with metallicm,
varies from 0.1, 0.3, 0.5, 0.7, to 0.9, and roughness 𝛼 varies from 0.15, 0.35, 0.65, to 0.85. Our method shows a lower noise level than Disney Principled BSDFs,
proving that our method provides a better BSDF importance sampling strategy than theirs.

where a pixel represents the mapped sample position and the sam-
pling weight. This importance map is queried with a 2D random
number (𝜉0, 𝜉1). With this similarity identified, we have the evi-
dence to claim that BSDF evaluation and sampling (and PDF query)
are in essence very similar. Therefore, training a neural network for
sampling should not be more complex than training for evaluation.
This observation also shows that prohibitively expensive neural
network structures, such as RealNVP and NICE, can be avoided.

Non-parametric/measured BSDFs. Intuitively, non-parametric BS-
DFs are often large data blocks. However, they are in fact of much
lower dimensions than the parametric BSDFs. For example, a mea-
sured bidirectional texture function (BTF) has amuch lower-dimensional
parameter space (6D) than any of our examples (see Table. 1). Be-
sides, in our work, we focus on BSDF importance sampling rather
than BSDF evaluation, and we have already analyzed commonly
used sampling schemes for measured BSDFs, such as fitting and
normalizing flow.

Performance. Our results correctly reconstruct the parametric
BSDFs’ appearance with comparatively less noise, but the perfor-
mance influence cannot be neglected even though our networks are
small. Since we simply use inline CPU integration to fully integrate
our neural networks into the renderer with minimum revision to

Heitz et al. Ours Disney principled Ours

Fig. 18. Failure case. Our method introduces bias at grazing angles for
highly specular materials. For example, the edges of the teapot and the
coffee cup have an apparent black border.

the rendering pipeline, the inference of our neural networks is far
from optimized. There are many ways to further improve inference
efficiency, such as using a GPU inference framework, e.g., TensorRT,
and/or devoting to considerable engineering optimization [Müller
et al. 2021].

Bias. Neural network prediction will inevitably introduce bias
even though the original training data are unbiased. Strict applica-
tions such as white furnace test will expose the bias issue imme-
diately. Our method does have visible bias, as show in Fig. 18, but
we do not see apparent problems in these results from our practical
applications. Nevertheless, we believe it is still meaningful to study
other methods that enable unbiased importance map compression.

8 CONCLUSION AND FUTURE WORK
We have introduced BSDF importance baking, a lightweight neural
solution to perform perfect importance sampling of parametric BS-
DFs. We start from the observation that the mapping that performs
importance sampling on a BSDF slice can be simply recorded as a 2D
importance map. Following this observation, we propose to use opti-
mal transport to precompute the importance maps accurately; then,
we use a lightweight neural network to compress them efficiently.
Together with an optional BSDF evaluation network and PDF query
network, our method enables full multiple importance sampling
(MIS) without any revision to the rendering pipeline. Compared
with previous methods, we demonstrate reduced noise levels on ren-
dering results with a rich set of appearances, including conductors
with anisotropic roughness, layered BSDF, and Disney principled
materials.

We believe that we have brought about novel contributions: our
method is the first to utilize optimal transport in rendering applica-
tions that are not affected by its heavy computation during runtime;
and our method is the first complete neural alternative with the
potential to fully replace parametric BSDFs with MIS.
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In the future, an immediate research direction is to improve the
quality of our lightweight neural networks and further improve
their performance. Sampling other forms of appearance representa-
tion could also be interesting, for example, using our importance
baking scheme to investigate the sampling problem of 4D light fields
data or 5D neural radiance fields (NeRF) data. Apart from neural
compression, other data compression strategies could be explored
as well, until a more efficient or unbiased method is found.
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