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Abstract

Distribution effects such as diffuse global illumination, soft shadows and depth of field, are most accurately rendered using
Monte Carlo ray or path tracing. However, physically accurate algorithms can take hours to converge to a noise-free image. A
recent body of work has begun to bridge this gap, showing that both individual and multiple effects can be achieved accurately
and efficiently. These methods use sparse sampling, GPU raytracers, and adaptive filtering for reconstruction. They are based
on a Fourier analysis, which models distribution effects as a wedge in the frequency domain. The wedge can be approximated
as a single large axis-aligned filter, which is fast but retains a large area outside the wedge, and therefore requires a higher
sampling rate; or a tighter sheared filter, which is slow to compute. The state-of-the-art fast sheared filtering method combines
low sampling rate and efficient filtering, but has been demonstrated for individual distribution effects only, and is limited by
high-dimensional data storage and processing.
We present a novel filter for efficient rendering of combined effects, involving soft shadows and depth of field, with global
(diffuse indirect) illumination. We approximate the wedge spectrum with multiple axis-aligned filters, marrying the speed of
axis-aligned filtering with an even more accurate (compact and tighter) representation than sheared filtering. We demonstrate
rendering of single effects at comparable sampling and frame-rates to fast sheared filtering. Our main practical contribution
is in rendering multiple distribution effects, which have not even been demonstrated accurately with sheared filtering. For this
case, we present an average speedup of 6× compared with previous axis-aligned filtering methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Color, shading, shadowing, and texture

1. Introduction

Distribution effects like diffuse global illumination, depth of field,
and soft shadows, are crucial for physically-based interactive ren-
dering. Simulating them accurately involves Monte Carlo ray or
path-tracing, but this can require thousands of samples per pixel and
hours of computation for convergence. In this paper, we develop
one of the first practical methods for ray-traced near-interactive (at
1-2s per frame) rendering of multiple distribution effects (Fig. 2).

Background: We leverage a recent body of work on sparse sam-
pling and reconstruction, which exploits the coherence between
pixels, and in other dimensions [ZJL∗15]. Specifically, [ETH∗09]
noted that distribution effects like motion blur lead to a wedge
in the frequency domain, for which we can design adaptive 4D
sheared filters; they later extended this to soft shadows and spher-
ical harmonic occlusion [EDR11, EHDR11]. A sheared filter cap-
tures the wedge spectrum tightly, leading to a decrease in the re-
quired sampling rate by orders of magnitude. However, reconstruc-
tion with sheared filtering can be slow (minutes to hours) and mem-
ory intensive, requiring storage of all high-dimensional samples,

Figure 1: 2D filters for (a) axis-aligned filtering (AAF), (b) fast
sheared filtering (FSF), and (c) our new multiple axis-aligned fil-
tering (MAAF) with 5 filters. MAAF has the tightest fit (including in
our practical implementation, which uses Gaussian filters), while
enabling the simplicity and efficiency of single-pass axis-aligned
filtering. In all cases, we seek to approximate the wedge Fourier
spectrum bounded by slopes smin and smax, with bandwidth Ω

max
y .

and an irregular search at each pixel within the footprint of the 4D
sheared filter. Thus, early papers demonstrated only offline usage.

Hence, an alternate body of work was developed for interactive
rendering, based on axis-aligned filtering [MWR12, MWRD13].
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Figure 2: Conference room scene with defocus blur, soft shadows and global illumination, rendered with our Multiple Axis-Aligned Filters
(MAAF) in 2.3s at 32 samples per pixel. Our method applies 6D MAAF, which consists of 25 component filters in total, to noisy Monte
Carlo input from GPU raytracing in OptiX, removing most of the noise, and is considerably higher-quality than equal time axis-aligned
filtering AAF (ET) [MYRD14]. (Readers are encouraged to view the images in the electronic PDF to observe the noise in insets in this
and subsequent figures.) Equal quality axis-aligned filtering AAF (EQ) requires significantly more samples, and is slower for raytracing
due to adaptive sampling and incoherent rays. Adaptive polynomial rendering (APR) involves significant additional offline computation but
still has blurring artifacts and is only of comparable quality as our method. (Note that our APR implementation is on the CPU, but we
scale the reported times to match GPU timings reported in the original paper). In this example, our MAAF method is more than 7× faster
than [MYRD14] for equal quality, and is visually close to ground truth. Note that multiple distribution effects cannot even be accurately
combined with fast sheared filtering [YMRD15].

Here, axis-aligned refers to the higher dimensions rather than the
image plane (light for soft shadows, lens for depth of field, or in-
cident angle for global illumination). A single axis-aligned filter
does not tightly bound the wedge-shape of the frequency spec-
trum, and includes a large region not in the wedge. While sampling
rates are reduced compared to basic Monte Carlo sampling, they
are much higher than sheared filtering. However, the simple nature
of the axis aligned filter makes it very easy and efficient to imple-
ment. It is also naturally separable in pixel-light, pixel-lens space,
requiring minimal storage and reducing to simple image filtering,
thus enabling interactive rendering with a GPU raytracer (we use
NVIDIA’s OptiX) with minimal filtering overhead. Closest to our
work, [MYRD14] use factored axis-aligned filters to combine dis-
tribution effects; in our paper, we demonstrate an average speedup
of about 6× for equal quality (Fig. 2).

Most recently, [YMRD15] developed a fast sheared-filtering
method, factoring the 4D sheared filter into four 1D filters, and
dramatically reducing the computational complexity of sheared fil-
tering. This enabled a significant reduction in sample count for
individual distribution effects, compared to axis-aligned filtering,
with a 4× speedup in rendering time. However, the method is com-
plicated, requiring a multi-stage algorithm with significant high-
dimensional storage overhead and processing, which can limit the
technique to low sample counts in applications. It was also demon-
strated in practice only for single effects (only soft shadows, or
depth of field, or indirect illumination). [YMRD15] do propose an
approximation for multiple effects in their appendix, but it essen-
tially reduces to filtering each effect one by one, assuming the mul-
tiple effects are unrelated; this can cause errors and overblur.

Motivation: The process of sampling results in replicated spectra
in the Fourier domain, as shown in Fig. 3. To avoid aliasing, our re-
construction filter must be able to isolate the central replica. Even
if the replicas themselves don’t overlap, a larger-than-necessary re-
construction filter may still lead to aliasing, and therefore to higher
sampling rates to avoid aliasing. The ideal compact filter would
therefore bound the double-wedge Fourier spectrum exactly. How-
ever, this does not lead to a simple filter in the spatial domain, and
creates a highly irregular reconstruction problem. Therefore, cur-
rent filters are tradeoffs between compactness and simplicity.

Axis-Aligned filtering (AAF) is aimed at simplicity, reducing to
image-space filtering. However, as seen in Figs. 1a and 3a, there is
more empty space outside the double wedge than within it. Sheared
filtering is more compact/tighter (Figs. 1b and 3b). However, the
double-wedge has two triangular-shaped regions, which cover only
half the area of the sheared parallelogram filter. Moreover, the
sheared 4D filter can be difficult to implement even with FSF, and
involves high-dimensional storage and processing. Our goal is to
design a filter that is (1) More compact in the Fourier domain than
either AAF or FSF, and (2) Simple in the primal domain, to enable
easy implementation and fast filtering.

Insights and Contributions: We develop a simple approach us-
ing multiple axis-aligned filters (MAAF), shown for simplicity for
a flatland or 2D wedge in Fig. 1 (our results use full 4D or higher-
dimensional filters, obtained as products of these 2D filters). Our
MAAF method in Fig. 1(c) covers the wedge accurately with a
small number of axis-aligned filters (shown as boxes here; we use
gaussians in practice). We obtain greater accuracy and compactness
than axis-aligned filtering (AAF) or (fast) sheared filtering (FSF)
(see analysis in Sec. 5). Moreover, each of the axis-aligned filters in
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Figure 3: Showing replicas from sampling, and how large empty
space in axis-aligned filtering leads to a higher sampling rate.
Sheared filtering and our multiple axis-aligned filter method lead
to much tighter packing of replicas, and lower sampling rates.

MAAF can be implemented very simply as image-space filtering,
and the entire multiple filter algorithm is implemented in a single
pass in graphics hardware. While overhead for MAAF grows with
the number of filters, it is still less than the cost of GPU raytracing.

Since we bound the wedge filter tightly, our performance is com-
parable to fast sheared filtering for single effects like soft shadows.
Crucially, we show how our method can be extended to multiple
distribution effects. In this case, we demonstrate speedups of up to
7× over AAF [MYRD14]. Our main contributions are:
Multiple Axis-Aligned Filters (MAAF): Our key insight is the
development of multiple axis-aligned filters (MAAF). Section 4 in-
troduces the mathematical formulation of MAAF in the 2D Fourier
domain, and shows how a pair of component filters can be written
as two separable filters in the primal domain.
Analysis: In Sec. 5, we analyze MAAF for 2D wedge spectra,
comparing to FSF and AAF. We consider both the coverage, or
ratio in the area of the Fourier wedge spectra to the full filter, and
accuracy of the filter within the wedge. We show that MAAF pro-
vides both better coverage and better accuracy.
Algorithms: In Sec. 6, we develop algorithms to use MAAF. We
show how to multiply two 2D spectra together to get a full 4D
MAAF. Finally, we show how to extend the algorithm to higher-
dimensional 6D filters, as needed for multiple distribution effects.
Practical Results: Our results are presented in Fig. 2 and Sec. 7,
demonstrating one of the first practical approaches for rendering
accurate multiple distribution effects within a couple of seconds.

2. Previous Work

There is a long history of adaptive sampling, image filtering
and denoising, going back to seminal work by [Mit91, Guo98].
[ZJL∗15] classifies algorithms into a-priori methods [ETH∗09]
and a-posteriori techniques [HJW∗08,ODR09]. Ours is an a-priori
approach, relying on prior theoretical knowledge of the shape of
the frequency spectrum, with parameters based on an initial sparse
sampling pass. Our method leverages many seminal results on
frequency domain and Fourier analysis for the wedge spectra of
common distribution effects [CCST00, DHS∗05], and also relates
to algorithms derived from them [SSD∗09, BSS∗13]. While mea-
sured spectra shown in these papers are scene-dependent, the dou-
ble wedge shape is a tight bound in all but the most contrived
cases [EHDR11].

We build most directly on axis-aligned filtering [MYRD14]
and fast sheared filtering [YMRD15]. Besides FSF, a few meth-
ods employ similar ideas for more limited effects like defo-
cus blur [VMCS15], and combinations of defocus and motion

blur [CM14, MVH∗14]. Those methods are less general, assum-
ing a partition of the scene into multiple layers, each of which is
treated with a fixed filter.

A-posteriori methods make limited initial assumptions about the
form of the image signals, filtering after the fact, and can handle
general visual effects. However, they are intended for much slower
offline rendering (recent approaches like [MGYM15] or [BEJM15]
develop fast filtering methods, but are still not intended for near-
interactive applications, or make approximations for multiple ef-
fects). Earlier work in the area includes random parameter fil-
tering [SD12], statistical approaches like SURE [LWC12], non-
local means [RKZ12], ray histograms [DMBM14], weighted lo-
cal regression [MMMG16], and machine learning for denois-
ing [KBS15]. These methods do not exploit the Fourier structure
of the light field and typically require higher sampling rates, with a
more complex offline reconstruction method.

Many approximate real-time techniques have been proposed for
specific distribution effects. Soft shadow maps for area sources
are a popular method [GBP07]. Other methods include [AM03,
LAA∗05]. All of these methods make tradeoffs in accuracy for
speed [JHH∗09]. For depth of field, simple post-processing al-
gorithms have been known for decades [PC81]; some recent ap-
proaches are [YWY10, LH13]. A variety of real-time global illu-
mination methods have been studied and used in interactive appli-
cations like games; a recent survey is [RDGK12]. These methods
all make approximations, which can produce aliasing and artifacts,
in exchange for high performance. In contrast, our method is based
on Monte Carlo ray or path tracing, providing accurate physically-
based results efficiently.

3. Background

We first consider single distribution effects like soft shadows in flat-
land, and introduce the 2D wedge spectrum (illustrated in Fig. 4).
Our notation is based on [MYRD14, YMRD15]. A simplified ver-
sion of the rendering problem for soft shadows can be written as,

h̄(x) =
∫ L

−L
f (x,y)I(y)dy, (1)

where h̄(x) is the image intensity, f (x,y) is the (usually binary) visi-
bility function between pixel x and light source location y (Fig. 4b),
and I(y) is the intensity of the light. We use a bar on h̄(x) since this
result will be noisy with a few samples, and we will eventually filter
to obtain final intensity h(x). [MWR12] assume a gaussian function
for I(y), with L = 2σy, where 2L is the length of the light source,
and σy is the standard deviation of I. For simplicity, we have ne-
glected BRDF effects and cosine terms, which are usually taken
out of the integral in previous work.

Fourier Spectrum: For a planar (linear in flatland) occluder, the
Fourier spectrum of f is a single line in 2D, with slope s = d1/d2−
1 [EHDR11]. Here, d1 is the distance from the light to the receiver
and d2 is the distance from light to occluder. For multiple occluders
at different depths, most of the energy lies within a double wedge,
bounded by slopes smin and smax (Fig. 4c). Note that this double-
wedge spectrum is filtered by the light spectrum along the Ωy axis,
with a maximum bandwidth of Ω

max
y = 2/σy = 4/L. The resulting

canonical double-wedge spectrum is shown in Fig. 1.
A sequence of papers has shown that a similar shape applies for

most distribution effects, including motion blur, depth of field, and
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Figure 4: Numerical simulation of a flatland scene for soft shad-
ows (a) Scene setup, similar to Fig. 7 in [EHDR11]. (b) Graph of
occlusion function. (c) Fourier spectrum. Notice higher energy in
the center of the double wedge, and falloff further from the origin.

diffuse indirect illumination. For depth of field, L in equation 1 is
replaced by the lens aperture A, and the slope s is determined by the
circle of confusion, and given formally by s=V (F/z−1)/S, where
V is the half-width of the image in pixels, F is the focal distance,
S is the size of the focal plane, and z is the depth of the object. For
diffuse global illumination, [MWRD13] derives Ω

max
y ≈ 2.8, with

s = z for a single reflector at depth z. We do not explicitly consider
specularities in this paper, and show results only for diffuse objects.
However, as in [MWRD13] slightly glossy reflectors and receivers
can usually work in practice.
Axis-Aligned and Sheared Filters: Mathematically, the axis-
aligned filter (Fig. 1a) corresponding to equation 1, is

W (Ωx,Ωy) = G
(

Ωx;
Ω

max
y

smin

)
G(Ωy;Ω

max
y ), (2)

where W (Ωx,Ωy) is the axis-aligned filter in the Fourier domain,
written in terms of gaussians G along Ωx and Ωy respectively. The
second argument to G is the bandwidth or standard deviation. Band-
width Ω

max
y is just the maximum light frequency, while the band-

width along Ωx is scaled to account for shearing by minimum slope
smin. The dimensions can thus be treated separately, and the y di-
mension is just the standard integration against the light source.
Therefore, we can simply define an image-space filter for spatially-
varying convolution with final image h(x) (note that β is propor-
tional to the inverse width of Fourier filter, smin/Ω

max
y ),

h(x) =
∫

x′
h̄(x′)w(x− x′)dx′ w(u) = g(u;β). (3)

To distinguish notations, we use lowercase letters g and w for pri-
mal domain gaussians and the filter, respectively.

For sheared filtering, the filter is a parallelogram,

W (Ωx,Ωy) = G
(

Ωx−
Ωy

savg
;Ω

max
y (s−1

min− s−1
max)

)
G(Ωy;Ω

max
y ), (4)

where savg is the harmonic mean of slopes smin and smax. The shear-
ing couples Ωx and Ωy in the first gaussian. The spatial domain
form is also a parallelogram, sheared in the orthogonal direction,

h(x) =
∫ ∫

f (x′,y′)w(x′,y′;x,y)dx′ dy′

w(x′,y′;x,y) = g(x′− x;βx)g(y′−η(x− x′);βy), (5)

where the shear η and standard deviations βx and βy relate to the
slopes smin and smax, as well as the bandwidth Ω

max
y [YMRD15],

The precise relations are not critical for this paper.
Rendering: For interactive rendering, we use physically-accurate
Monte Carlo raytracing, with NVIDIA’s Optix raytracer on a GPU

to determine the function f (x,y) and compute the integral in equa-
tion 1. However, this may require hundreds or thousands of sam-
ples per pixel to converge. Instead, we use a very sparse set of rays
(typically 4-9) at each pixel. This result is then convolved (filtered)
with a spatially-varying filter, based on the frequency analysis of
the function f (x,y) discussed above. In practice, smin and smax are
also esimated during ray-tracing, and filtering is done in the primal
spatial (not Fourier) domain, as in previous work.

Axis-aligned filters (Fig. 1a) reduce to image filtering (spatially-
varying convolution) of the noisy h̄(x), per equation 3. For sheared
filters (Fig. 1b), the FSF algorithm [YMRD15] can be applied to
equation 5. We show that our MAAF method (Fig. 1c) is more ef-
ficient than either approach. In summary, we differ from previous
work in using a more accurate filter, that tightly bounds the Fourier
spectrum of f , enabling a higher-quality, more efficient algorithm.

To handle a real three-dimensional scene instead of a flatland
scene, we will extend the current 2D spectrum to 4D. The extension
to 4D is a simple product of 2D filters; this, along with the multiple
effect case, will be addressed later in the paper in Sec. 6.

4. Multiple Axis-Aligned Filtering

We introduce a mathematical formulation for 2D Multiple Axis-
Aligned filters (MAAF); we will consider the extension to 4D filters
as a product of 2D components in Sec. 6. Even though the Fourier
filters are offset from the origin, we show how a separable filter can
be derived in the primal domain. Thereafter, Sec. 5 analyzes the
coverage and accuracy of MAAF, compared to AAF and FSF.
Insight—Covering the Spectrum: We cover the double
wedge spectrum using a series of multiple axis-aligned filters
(Figs. 1(c), 5(a)). For simplicity, one can think of MAAF as a num-
ber of boxes (we typically use 5); each “box” will in practice be an
axis-aligned gaussian filter. The filters are arranged symmetrically;
for each “box” except the central one, there is always another
box/filter symmetric to it about the origin, denoted as a pair.
The central filter is symmetric to itself, and considered a special
pair. The technique of approximating anisotropic filters by several
isotropic filters is similar to [MPFJ99] for anisotropic texture
map filtering and [SBN15] for anisotropic spherical function
decomposition.

Numerically, MAAF accuracy (compactness) increases with the
number of component filters, approaching the double wedge itself,
as shown in Fig. 5. However, we have to consider each filter’s con-
tribution individually, so the filtering complexity is linear in the
number of pairs in 2D, and even quadratic in 4D. To balance effi-
ciency and compactness, we usually choose 3 to 7 filters for MAAF.
If the number of pairs is N (including the central filter), there are
2N−1 total filters, which partition the vertical extent of the double
wedge 2Ω

max
y equally into 2N−1 segments.

Fourier Domain Formula for MAAF: Starting at the origin (cen-
tral filter), and moving outward, we label each component filter
with numbers p = 0, ±1, ±2, . . . , ±(N−1) and center (Cp

x ,C
p
y ),

Cp
y = Ω

max
y

(
2p

2N−1

)
. (6)

The extent in the Ωx axis is chosen to bound the wedge as com-
pactly as possible, as shown in Figs. 1(c) and 5(a). Specifically,

Cp
x =

1
2

Ω
max
y sgnp

(
1

smax

2 | p | −1
2N−1

+
1

smin

2 | p |+1
2N−1

)
, (7)
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(a) (b) 3 components (c) 5 components (d) 7 components (e) 25 components

Figure 5: Progressively more compact and accurate approximations of the double wedge with more component filters in MAAF. Insets show
a schematic with a number of box filters; we actually use weighted gaussians for the filters. (a) is a schematic with 5 filters typically used.

where sgnp is 0,±1 depending on whether p is zero, positive or neg-

ative. Note the expected symmetry, (C−p
x ,C−p

y ) = (−Cp
x ,−Cp

y ).

We also need the filter widths (σp
x ,σ

p
y ), which correspond to the

extent of the filters in Figs. 1(c), 5,

σ
p
y =

Ωmax
y

2N−1
σ

p
x =

1
2

Ω
max
y

(
1

smin

2 | p | +1
2N−1

−
1

smax

2 | p | −1
2N−1

)
. (8)

Note that σ
0
x needs to be modified for p = 0, and is simply a stan-

dard axis-aligned filter, σ
0
x =

(
Ω

max
y /smin

)
/(2N−1).

Finally, we can write the expression for the Fourier domain
MAAF as a sum over the component gaussian filters,

W (Ωx,Ωy) =
N−1

∑
p=−(N−1)

µp G (Ωx−Cp
x ;σ

p
x )G

(
Ωy−Cp

y ;σ
p
y
)
, (9)

where µp is a weight, which attenuates the component filters further
away from the origin. This accounts for the usually lower contribu-
tion at the ends of the wedge spectrum. As shown in Fig. 4, there
is usually higher energy at the center of the double wedge and less
at the ends. In effect, µp gives lower importance to filters with high
| p |. We use a gaussian over the entire double wedge,

µp = G
(

Cp
x ;

Ω
max
y

smin

)
·G(Cp

y ;Ω
max
y ). (10)

Discussion: Equation 9 is similar to the axis-aligned filter in equa-
tion 2, except we sum over filters, with each filter offset, and with
standard deviations set to tightly bound the wedge spectrum. There
is also some implicit similarity to the sheared filter form in equa-
tion 4, since the centers (Cp

x ,C
p
y ) lie close to a sheared line with

slope savg to match the wedge shape. We seek to combine bene-
fits of axis-aligned and sheared filtering to provide an even more
compact filter.

We have also tried other arrangement schemes of MAAF com-
ponent filters, including optimizing for better placement and size
of component filters, and empirically fitting placement and size
using data-driven approaches. But, we did not observe significant
improvement over our current simple approach. Moreover, these
methods may potentially affect our interactive performance due to
their overhead. Therefore, it is simplest to compute the filter pa-
rameters in the straight-forward, uniform way.

So far, we have considered only the Fourier domain. However,
final filtering must be performed in the primal domain, as in prior
work. While each component filter in equation 9 is separable along
the Ωx and Ωy axes, the offsets make it unclear there is a corre-
spondingly simple and separable form in the primal domain along
x and y. We address this next, deriving a simple primal filter.

Pairwise Filtering in the Primal Domain: We seek to obtain the
primal domain filter by inverse Fourier transforming equation 9,
which can be done separately for each component filter. By the
Fourier shift theorem, with j =

√
−1,

F−1 [G(Ωx−Cx)G(Ωy−Cy)] = e jCxxe jCyyF−1 [G(Ωx)G(Ωy)] .
(11)

For notational simplicity, we omit the standard deviations for now,
as well as the superscript p, denoting the filter number. Note that
the weight µp carries over directly to the primal domain.

Equation 11 is not practical to apply directly, since the exponen-
tial terms introduce imaginary parts. (In fact, it can only be applied
to the central filter where C0

x = C0
y = 0, which is a standard axis-

aligned filter.) However, when a pair of symmetric filters is trans-
formed together, the imaginary parts cancel as follows,

F−1 [G(Ωx−Cx)G(Ωy−Cy)]+F−1 [G(Ωx +Cx)G(Ωy +Cy)]

= (e j(Cxx+Cyy)+ e− j(Cxx+Cyy))F−1 [G(Ωx)G(Ωy)]

= 2cos(Cxx+Cyy)g(x)g(y). (12)

Note that the primal domain gaussians have widths proportional to
the inverse of the Fourier domain versions, i.e., σ

−1
x and σ

−1
y .

The above expression is not yet separable, as required for primal
domain axis-aligned filtering. To achieve this, we further expand
the cosine term, collecting x and y terms separately as

2cos(Cxx+Cyy)g(x)g(y)

= 2cos(Cxx)cos(Cyy)g(x)g(y)−2sin(Cxx)sin(Cyy)g(x)g(y)

= 2 [cos(Cxx)g(x)] · [cos(Cyy)g(y)]−
2 [sin(Cxx)g(x)] · [sin(Cyy)g(y)] . (13)

Equation 13 indicates that a pair of filters in the Fourier domain
transforms into two separable filters in the primal domain. This
enables filtering much like standard AAF, and storage is signifi-
cantly lower than FSF. Given a pixel in x, for each sample in y,
we just need to pre-accumulate its corresponding cos(Cyy)g(y) and
sin(Cyy)g(y) terms during the sampling process, instead of storing
them individually in FSF. The only difference from standard AAF
are the multiplicative sine and cosine weights. Subsequent filtering
in x works directly in the image domain, like AAF.

In general, we consider N pairs, for a total of 2N − 1 filters,
which are summed up in the primal domain. While the computa-
tional complexity of filtering does grow with N, all corresponding
filters in the primal domain can be summed together in a single
pass, without the need for additional storage. Given the very low
overhead in axis-aligned filtering, MAAF also involves acceptable
overheads.
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5. Analysis
We now compare MAAF with axis-aligned and sheared filters, as
well as to the theoretically optimal double-wedge spectrum bound.
While we use the labels AAF, FSF as before, note that these results
are independent of any algorithm, looking at the intrinsic properties
of how well the various filters fit the 2D double-wedge spectrum in
the Fourier domain. As such, this is also a valuable baseline analy-
sis for any future filter development techniques.

Filter Metrics: We assume the function to be approximated is
the (completely filled) double wedge, denoted as T , with support
supp(T ). The most compact filter is simply the double wedge,
1 over supp(T ) and 0 outside. We evaluate each of our filters
W (Ωx,Ωy) in terms of standard signal-processing notions of accu-
racy α and coverage γ [Pra07]. We define accuracy simply by sub-
tracting normalized error, i.e., the standard L2 difference between
the double wedge and the filter within its support, normalized by
the area of the double wedge,

α = 1−

√√√√ ∫∫
supp(T) (W (Ωx,Ωy)−1)2 dΩx dΩy∫∫

supp(T) dΩx dΩy
, (14)

where we set T (Ωx,Ωy) = 1 within its support, and the square root
coresponds to considering the RMS error. Also note that if we de-
fine filters W using box functions instead of gaussians, they fully
cover the support of the wedge for AAF, FSF and MAAF, so α = 1.
However, gaussians introduce some error, which we measure.

We define the coverage as the ratio between the area of the filter
within the wedge spectrum, and the total area of the filter. Coverage
of 1.0 (100%) is ideal with lower values indicating wasted space in
the filter outside the double wedge,

γ =

∫∫
supp(T) ‖W (Ωx,Ωy) ‖ dΩx dΩy∫∫
‖W (Ωx,Ωy) ‖ dΩx dΩy

. (15)

Analytic coverage for box/parallelogram filters: Analytic forms
for α,γ are easier to derive when the filters are (unweighted) boxes
or parallelograms, rather than gaussians. In these cases, α = 1 by
construction, while the coverage varies. From simple geometry, the
area of the double wedge is simply

(
Ω

max
y
)2
(

s−1
min− s−1

max

)
. The

area of the simple axis-aligned filter is 4
(
Ω

max
y /smin

)2. Similarly,
a sheared filter is simply a tight parallelogram instead of a wedge
(triangle) with net area 2

(
Ω

max
y
)2
(

s−1
min− s−1

max

)
and coverage is

γAAF =
smin

4

(
1− smin

smax

)
γFSF =

1
2
. (16)

It can readily be seen that AAF has poor coverage, with significant
wasted space. In fact, γ reduces to 0 if smin = smax, in which case the
wedge itself degenerates to a single line, but a larger axis-aligned
box must still be used. Note however, that FSF also has coverage
of only 50%, and is twice as large as necessary.

For MAAF, we need to compute the area of the filter, or sum
of box filters. The area of filter p (assumed a rectangular box) is
given by 4σ

p
x σ

p
y , multiplying the widths in equation 8, and the total

MAAF area sums over all boxes. After some algebraic rearrange-

Average Coverage Rate (#components)
AAF FSF MAAF (3) MAAF (5)
0.097 0.5 0.197 0.275

MAAF (7) MAAF (25) MAAF (75) MAAF (125)
0.401 0.677 0.876 0.943

Table 1: Coverage computation for AAF, FSF, and MAAF. This ta-
ble shows box/parallelogram filters for simplicity. Note that cover-
age converges to 1 with more filters in MAAF.

Shape Coverage Rate (#components)
smin smax AAF FSF MAAF (3) MAAF (5) MAAF (7)

Average 0.088 0.199 0.173 0.256 0.316
0.5 0.8 0.079 0.168 0.122 0.174 0.218
1.5 2.0 0.047 0.134 0.090 0.156 0.210
0.7 2.2 0.172 0.216 0.245 0.315 0.383

Shape Accuracy (#components)
smin smax AAF FSF MAAF (3) MAAF (5) MAAF (7)

Average 0.662 0.731 0.748 0.799 0.827
0.5 0.8 0.585 0.826 0.833 0.903 0.933
1.5 2.0 0.639 0.686 0.761 0.811 0.842
0.7 2.2 0.616 0.742 0.734 0.793 0.824

Table 2: Accuracy and coverage for different filtering methods,
with gaussian filters as used in practical implementations. With a
small number of filters, MAAF outperforms AAF and FSF.

ments,

N−1

∑
p=−(N−1)

4σ
p
x σ

p
y = 4

(
Ω

max
y

2N−1

)2

× (17)

(
1

(smin)2 +2
N−1

∑
p=1

[
p
(

1
smin
− 1

smax

)
+

1
savg

])
.

After some simplifications, the coverage is then derived as,

γMAAF =

 N(N−1)(
N− 1

2

)2 +

(
1

(smin)2 +
2(N−1)

savg

)
(

1
smin
− 1

smax

)(
N− 1

2

)2


−1

. (18)

It is helpful to consider the limits of the expression above. When
N = 1, we have only the central filter, and this reduces to axis-
aligned filtering. Indeed, γMAAF simplifies to γAAF for N = 1. On
the other hand, for large N, the first term dominates and we have
that γMAAF→ 1, approximating the double wedge accurately.

In Table 1, we compare coverages of AAF, FSF, and MAAF with
increasing numbers of component filters. The results are averaged
over many different slopes of smin and smax. Conceptually, we are
simulating many different instances of Fig. 4. Specifically, for all
the simulations in this section, we randomly generate 50 sets of
double wedge spectra with 0 < smin < smax < 10. This range is
similar to those in real scenes. We compute the results for each set,
and average over all 50 sets. From Table 1, coverage for MAAF
with a small number of filters is comparable to FSF. However, as
the number of filters increases, MAAF coverage approaches 1.

Numerical evaluation for Gaussian filters: We now consider the
weighted gaussian filters we actually use, per equation 9, and nu-
merically evaluate accuracy and coverage. Table 2 provides results
for AAF, FSF and MAAF (all using gaussian filters as in practical
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Figure 6: Graph showing increasing coverage and accuracy of
MAAF as the number of component filters is increased.

Figure 7: Constructing 4D MAAF filters from 2D filters along or-
thogonal dimensions, using different colors to distinguish different
components. (a) 5 components in (Ωx1 ,Ωy1). (b) 5 components in
(Ωx2 ,Ωy2). (c) When multiplied in the frequency domain to cover
the 4D spectrum, these result in 25 filters in 4D.

implementations). We consider both the average over 50 randomly
generated wedges as above, as well as results for 3 representative
values of smin and smax. We show MAAF with 3,5,7 filters (we usu-
ally use 5 filters, shown in bold). MAAF with only 5 gaussian filters
is more accurate than either FSF or AAF, and has higher coverage
than either. Note that the coverage rates for both FSF and MAAF
are lower than for the box case, since we are using gaussians. Fi-
nally, Fig. 6 shows how MAAF accuracy and coverage increase
with increasing numbers of filters. Note that the MAAF coverage
rate and accuracy do not converge to 1 in this case, owing to the
tails of the gaussians. However, MAAF still performs significantly
better than FSF or AAF. As seen in Figs. 2, 6, a small number of
5-7 filters suffice for superior coverage/accuracy.

6. Algorithms

We now describe our algorithm for rendering with MAAF. In
Sec. 6.1, we consider single distribution effects, explaining the
method in flatland with 2D spectra, then discussing the extension to
3D and 4D spectra. In Sec. 6.2, we discuss the extension to combin-
ing multiple distribution effects, which is our main practical contri-
bution. Results with multiple effects are presented in Sec. 7.

6.1. Single Effects
Basic 2D Algorithm: As in previous work, we first use a real-time
GPU raytracer (NVIDIA’s OptiX 3.9) to compute a sparse sampling
of f (x,y) in equation 1 for each pixel x. Typically we use 4-9 strat-
ified samples per pixel to enable interactive performance. At this
time, we also determine the parameters of the wedge spectrum smin
and smax. The maximum filter bandwidth Ω

max
y is known from the

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)

Figure 8: Schematic of accumulating contributions for each com-
ponent filter. (i, j) means hi

c+hi
s for (x1,y1) and h j

c+h j
s for (x2,y2);

we also color-code based on the schematic in Fig. 7. Note that the
center (0,0) produces a highly overblurred result, and the outer
filters contribute high frequency details. The outermost filters con-
tribute less due to lower importance.

size of the light for soft shadows, or aperture for depth of field, and
uses a fixed value for diffuse/glossy receivers for indirect global il-
lumination. (Similar ideas apply to motion blur, but OptiX does not
easily support ray-tracing motion-blur). Our goal is to compute the
final image h(x) =

∫∫
f (x′,y)w(x′,y;x)dx′ dy similar to equation 5,

where

w(x′,y;x) = g(x− x′;
1

σ0
x
)g(y;

1
σ0

y
) (19)

+ 2
N−1

∑
p=1

cos(Cp
x (x− x′)+Cp

y y)g(x− x′;
1

σ
p
x
)g(y;

1
σ

p
y
)

is our MAAF filtering in primal domain.
We now set parameters for the MAAF, determining the Fourier

domain centers (Cp
x ,C

p
y ) and bandwidths (σ

p
x ,σ

p
y ) of the compo-

nent filters as per equations 7 and 8. We then use equation 13 to de-
compose each cosine term and accumulate the values at each pixel
in the primal (spatial) domain,

hp
c (x) =

∫
f (x,y)cos

(
Cp

y y
)

g
(

y;
1

σ
p
y

)
dy

hp
s (x) =

∫
f (x,y)sin

(
Cp

y y
)

g
(

y;
1

σ
p
y

)
dy, (20)

where the gaussian g uses the inverse Fourier-domain bandwidth,
and the integrals are done by standard Monte Carlo summation over
the sparse samples in y, only including an additional sine or cosine
weight. Note that since we consider filter pairs, we only need to
use p ≥ 0. No new ray-tracing needs to be done, beyond comput-
ing f (x,y). The final image can be computed by filtering as per
equation 3, summing over the component filters,

h(x) =
∫

x′
h0

c(x
′)g
(

x− x′;
1

σ0
x

)
dx′ (21)

+ 2
N−1

∑
p=1

∫
x′

hp
c (x
′)cos

(
Cp

x (x− x′)
)

g
(

x− x′;
1

σ
p
x

)
dx′

− 2
N−1

∑
p=1

∫
x′

hp
s (x
′) sin

(
Cp

x (x− x′)
)

g
(

x− x′;
1

σ
p
x

)
dx′.

We are still doing spatially-varying convolutions, only weighting
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Soft Shadows, MAAF
9 spp, 0.10s

MC Input
9 spp, 0.07s

AAF (ET)
12 spp, 0.10s

AAF (EQ)
35 spp, 0.33s

APR
13 spp, 26.0s

MAAF
9 spp, 0.10s

FSF
9 spp, 0.10s

Ground Truth
1K spp, 10.9s

Figure 9: Soft shadows rendered with 25 total 4D filters for MAAF (5 filters for each 2D subspace) at 9 samples per pixel, also compared to
AAF and FSF. Our method is about 3× faster than AAF, and comparable to FSF for single distribution effects.

the gaussian filter with appropriate sines and cosines. This can still
be accumulated in a single pass in graphics hardware, with time
complexity proportional to N. Note that each component filter in-
volves cost only comparable to standard axis-aligned filtering.

Extension to 3D with 4D Filters: The extension to 3D is straight-
forward, and we handle the full 4D spectrum ( f (x,y) now becomes
f (x1,x2,y1,y2) since pixels and lights are both 2D quantities). As
in previous work, we can consider the 4D filtering as a product of
two orthogonal 2D subspaces, in each of which we can use our
2D filters. The product of these 2D subspaces forms the 4D space.
Hence, 4D MAAF filters are constructed by combining (taking the
product of) 2D filters along orthogonal dimensions, as shown in
Fig. 7. The number of 4D filters does grow as the square of the
number of 2D filters, but overhead for filtering is still low. Figure 8
visualizes the contribution of each hp

c and hp
s .

Example: Figure 9 shows a simple example with soft shadows,
also comparing the performance of MAAF, AAF and FSF (simi-
lar results hold for depth of field and global illumination). We also
compare with the offline APR (Adaptive Polynomial Rendering) al-
gorithm [MMMG16]. We achieve interactive performance of about
10fps in this case with only 9 samples per pixel, a factor of about
4× fewer than what is needed for equal quality AAF. While we
need to consider 52 = 25 filters for the 4D spectrum, the filter-
ing overhead is still typically only 5− 8% of the total time, which
is dominated by GPU raytracing cost. For single distribution ef-
fects, our performance is similar in practice to fast sheared filtering
(FSF). Both methods use low sample counts (9spp in this exam-
ple), and overhead is only a fraction of total cost, so their GPU
raytracing and overall costs are almost identical. We do have some
theoretical benefits, even with only a small number of filters, as
shown in Fig. 6. Moreover, we do not need to store or process high-
dimensional data, unlike FSF. Our major practical contribution is in
rendering multiple distribution effects, discussed in Sec. 6.2, which
has not been demonstrated accurately with FSF.

We evaluate the benefits of increasing the number of component
MAAF filters in Fig. 10. Using only 3 filters in 2D (9 total filters
for 4D MAAF) leads to shadows being too hard, due to insuffi-
cient sampling rate (since coverage/accuracy is less for 3 filters).
Increasing the number of MAAF filters does help, but 5-7 filters
in 2D (25 or 49 4D MAAF filters) is already very close to ground
truth. Therefore, we use 5 MAAF filters in 2D (and a total of 25) in
all of our practical results.

(a) MAAF (3) (b) MAAF (5) (c) MAAF (7) (d) Ground Truth

Figure 10: Soft shadows (Fig. 9) rendered with 3, 5 and 7 filters
for each 2D subspace (9, 25, 49 total 4D filters for MAAF). Using
3 component filters is inaccurate (shadows too hard) due to the
insufficient sampling rate, while 5 filters is already accurate.

6.2. Multiple Distribution Effects
We now extend our method to handle multiple distribution effects at
the same time. Specifically, we handle soft shadows, diffuse global
illumination and depth of field effects together. We follow the no-
tations in [MYRD14], using x for pixel positions, u for positions
on the lens, and y for soft shadows or global illumination (as in
previous work, we handle direct and indirect effects separately).
Similar to equation 19, our goal is to compute the final image
h(x) =

∫∫∫
f (x′,y,u)w(x′,y,u;x)dx′ dydu, where

w(x′,y,u;x) = g(x− x′;
1

σ0
x
)g(y;

1
σ0

y
)g(u;

1
σ0

u
) (22)

+2
N−1

∑
p=1

cos(Cp
x (x− x′)+Cp

y y+Cp
u u)g(x− x′;

1
σ

p
x
)g(y;

1
σ

p
y
)g(u;

1
σ

p
u
)

is our 3D MAAF filtering in primal domain.
It is shown in [MYRD14] that the spectrum of f (x,y,u) is a

3D wedge when x, y and u are in flatland, and 6D in the three-
dimensional real world. Following the development in the previous
subsection, we first consider the flatland case, deriving an extension
of 2D MAAF to 3D MAAF, using the same number of 3D “boxes”
instead of 2D boxes. We then construct the full 6D spectrum as
combinations (products) of these 3D boxes from two orthogonal
3D subspaces. This is just like the single effect case, with the same
number of total filters and complexity as in Sec. 6.1. Therefore, we
only discuss the flatland case with a 3D wedge spectrum below.

The 3D wedge projects to a 2D wedge on both (Ωx,Ωy) and
(Ωx,Ωu) planes, as shown in Fig. 11. This allows us to design
multiple axis-aligned 3D filters to tightly pack the 3D spectrum,
as described below. Similar to 2D wedge spectra, we typically
use 5 “boxes”, which in practice are now 3D gaussian filters in
(Ωx,Ωy,Ωu). The practical implementation only requires a simple
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Figure 11: Constructing MAAF for multiple distribution effects.
(a) Illustration of 3D spectrum derived in flatland. (b) Partition
along Ωy first, getting the corresponding Ωx partition. (c) Use Ωx
partition to get Ωu partition.

modification to equation 20 to also include u,

hp
c (x)=

∫∫
f (x,y,u)cos

(
Cp

y y+Cp
u u
)
g
(

y;
1

σ
p
y

)
g
(

u;
1

σ
p
u

)
dydu

hp
s (x)=

∫∫
f (x,y,u)sin

(
Cp

y y+Cp
u u
)
g
(

y;
1

σ
p
y

)
g
(

u;
1

σ
p
u

)
dydu. (23)

Note that we now also integrate over u with a gaussian filter in u
as well. However, this poses no further issues, since the GPU ray-
tracer simply samples u and y for each sample. We still only need
to accumulate the same hp

c (x) and hp
s (x) terms as before, and do not

need to store any additional information. Only the arguments to the
sines and cosines need to be modified to also consider u. Finally,
the actual image-space filtering in equation 21 remains unchanged.

The only remaining question is to determine the centers and
bandwidths for the 3D MAAF filters. As shown in Fig. 11(b),
we first uniformly partition along the Ωy axis within the range
[−Ω

max
y ,Ωmax

y ] based on the number of component filters. This is
the same as introduced in Sec. 4. Therefore, Cp

y and σ
p
y (as well as

Cp
x and σ

p
x for equation 21) are the same as in Secs. 4, 6.1.

Based on the projected 2D wedge on the (Ωx,Ωy) plane, we im-
mediately know the x range each component covers (Fig. 11(c)).
Then, we keep the x ranges, and use them to partition u accord-
ingly, so that the components cover both u and y tightly. The re-
sulting center and bandwidth for Ωu are (analogous to equations 7
and 8),

Cp
u =

1
2

Ω
max
y sgnp

(
su

min

su
max

2 | p | −1
2N−1

+
su

max

sy
min

2 | p | +1
2N−1

)
σ

p
u =

1
2

Ω
max
y

(
su

max

sy
min

2 | p | +1
2N−1

−
su

min

sy
max

2 | p | −1
2N−1

)
. (24)

Superscripts u and y for su and sy denote slopes on those wedges.
Without loss of generality, we can assume su

max > su
min > 0.

We have also explored a simple optimization. Since both 2D
spectra over (Ωx,Ωy) and (Ωx,Ωu) planes give a maximum band-
width Ω

max
x over x, we choose the smaller one. So, before we start

partitioning, we first update the corresponding Ω
max
y or Ω

max
u using

Ω
max
x . This allows us to pack the spectrum even more compactly.

Discussion: As noted above, the extension from single to multi-
ple distribution effects is straightforward in MAAF, since it shares
many of the characteristics of axis-aligned filters. Moreover, we
can consider the product of orthogonal 3D MAAF filters to ob-
tain the full 6D MAAF, just as we can compose 2D MAAF fil-
ters to determine a 4D spectrum for single effects. In fact, no addi-
tional storage is required, and the image-space filtering algorithm
is unchanged. In contrast, sheared filtering requires operating in a
higher-dimensional 6D space. It is unclear how the FSF algorithm

would even extend to 6D, and it would require storage of and pro-
cessing on a 6D sample set, which could be prohibitive.

Implementation Details: Our algorithm is implemented using
NVIDIA OptiX 3.9 and CUDA 7.5. Since MAAF derives from
axis-aligned filters, our algorithm is relatively easy to implement,
with only a few modifications from an existing AAF implementa-
tion. We will make the source code available online upon publica-
tion. The algorithm consists of the following stages.

Sampling: We first trace 16 path samples per pixel. Similar
to [MYRD14], a path sample consists of a primary lens ray, a
shadow ray and a one-bounce indirect illumination sample. At each
pixel, we collect direct slopes, indirect slopes (sy

min,s
y
max), defocus

slopes (su
min,s

u
max), world locations, normals and the pixel’s pro-

jected area in world-space. Note that for a pixel near the focal plane,
we will have su

max · su
min < 0, which means the double wedge shape

effectively degenerates to a box, and this pixel needs more samples.
We adaptively trace up to 100 more samples for these pixels. The
number of additional samples is estimated conservatively using the
sampling rate equations in Sec. 7 of [MYRD14].

Pre-filtering: To avoid discontinuity artifacts, we average the
double wedge slopes, world locations and normals over a 5×5 im-
age window (similar to most previous work), to ensure accurate pa-
rameter estimates. Given double wedge slopes, MAAF parameters
are computed as discussed above. We use equation 23 to pre-filter
(sum over) y and u, then store only the accumulated values in each
pixel. Our storage is thus proportional to the image size only as in
AAF, and we do not need to store the full 6D data, unlike FSF.

MAAF Filtering: The final filtering pass described in equation 21
is performed in image-space. The direct illumination (soft shad-
ows) and the indirect illumination are filtered seperately. To avoid
artifacts, we reject pixels whose normals deviate more than 20 de-
grees.

7. Results

We now present the results of four scenes rendered with MAAF.
Each scene includes defocus, soft shadows, and diffuse indirect
illumination. MAAF is applied separately for direct and indirect
components, handling soft shadows and global illumination respec-
tively. Both components consider depth of field effects. The storage
of MAAF scales quadratically with the number of component fil-
ters N; this is larger than for AAF, but much less than FSF since
there is no need to store the high dimensional light field.

We compare with AAF [MYRD14] for equal time and equal
quality (using the optimal sampling rates in Sec. 7 of [MYRD14]).
We do not compare to FSF, since an accurate version has not been
demonstrated for multiple effects. Note that our scenes include
larger area lights, leading to more complex shadowing with longer
raytracing times, as compared to [MYRD14].

We also compare with the state-of-the-art a-posteriori
offline denoising method, adaptive polynomial rendering
(APR) [MMMG16]. We implemented APR on the CPU, but
this is significantly (250x) slower than a GPU implementation, as
in the original paper, in terms of Gflops. For a fair comparison,
we scale all reported APR running times by the Gflop ratio, which
enables closely matching the timings in [MMMG16]. Even after
this scaling, APR is slower than our method by nearly two orders
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MAAF (5) AAF (Equal Quality)
Scene Tris spp Sampling Pre filt. Filter Overhead Total Speedup spp Sampling Filter Total
CONFERENCE 163 K 32 1.67s 0.54s 0.13s 28.6% 2.34s 7.3x 158 17.07s 0.03s 17.10s
STILL LIFE 233 K 17 1.32s 0.26s 0.10s 21.4% 1.68s 5.3x 96 8.85s 0.04s 8.89s
SPONZA 262 K 16 1.29s 0.33s 0.17s 27.9% 1.79s 6.3x 107 11.25s 0.05s 11.30s
TOASTERS 2.5 K 21 0.86s 0.14s 0.12s 23.2% 1.12s 3.2x 97 3.52s 0.04s 3.56s

Figure 12: Timings for MAAF. We see that the overhead is less than 30%, and the method requires significantly fewer samples than AAF,
being significantly faster. Sampling time includes both initial sampling (path/ray tracing) and further adaptive sampling. Pre-filtering time
includes slope smoothing and accumulation over y and u. Filtering is only the final spatially-varying convolution in the image domain.

(a) MAAF
32 spp, 2.34s

(b) Ground Truth
6400 spp, 869s

(c) MAAF
16 spp, 1.79s

(d) Ground Truth
6400 spp, 1074s

Figure 13: Image insets from CONFERENCE (a)(b) and SPONZA
(c)(d). Our method produces results close to the ground truth gener-
ally. But there are some subtle artifacts: (a). Discontinuity around
shadow and focal plane boundaries, where the double wedge shape
changes a lot in nearby pixels. (c). Oversmoothed region.

of magnitude, and still has some noticeable artifacts, e.g., the over
and under-smoothed shadows in Fig. 2.

We use MAAF with 5 filters in 3D (25 total filters in 6D). The
results were all run at a resolution of 720× 720 on an NVIDIA
GTX 980 GPU. Timings are shown in Fig. 12, and result images
are in Figs. 2 and 14. The accompanying video shows that MAAF
also achieves temporal coherence in videos.
Timings: Figure 12 breaks down the performance of the different
stages. The most expensive part of our algorithm is the pre-filtering
and accumulation, which averages 0.3 seconds on these scenes.
This cost is mostly from writing N2 buffers at a time. Moreover,
our experience is that the OptiX program used for prefiltering runs
slower than CUDA kernels for later stages of our algorithm. The
actual MAAF filtering only requires a tenth of a second. In all, the
overhead is only about 25% of the total running time, which is still
dominated by GPU raytracing cost. Thus, our MAAF algorithm,
while introducing larger overheads than AAF, is still fast enough
to be used with high-performance raytracing, especially given the
considerable reduction in sample count. Total wall clock time for
producing the results in Fig. 14 averages less than 2 seconds, a fac-
tor of about 6× faster on average than axis-aligned filtering (Fig. 2
has a greater than 7× speedup). This is an important step towards
interactive physically-based rendering of multiple distribution ef-
fects on commodity graphics hardware.
Rendering Results: Figure 2 shows the conference room scene
with 163K triangles. We are able to achieve high-quality results
comparable to ground truth. AAF for the same time is noisy, and
AAF equal quality requires almost 5 times as many samples. The
raytracing time for AAF is 17s, nearly an order of magnitude more
than our method; adaptive sampling in [MYRD14] leads to high
sample counts in difficult regions with incoherent raytracing, and
degrades performance. Our total running time is only 2.3s, which
is more than 7× faster than equal quality AAF.

The top row in Fig. 14 shows a still life scene with 233K tri-
angles, including strong defocus effects, as well as soft shadows

and global illumination. We require only minimal additional adap-
tive sampling, using a total of only 17 path samples per pixel, as
against the initial 16. Again, we achieve high quality results, more
than 5× faster than AAF. The middle row of Fig. 14 shows the
Sponza Atrium with 262K triangles, including soft shadows, defo-
cus and indirect illumination. In this example, 16 samples per pixel
suffice with no need for further adaptive sampling. We render this
scene in under 2 seconds, a speedup of more than 6× over AAF,
which requires 107 samples per pixel for equal quality. Finally, the
bottom row of Fig. 14 shows the toasters scene, where we achieve
a 3× speedup compared to AAF even on this relatively simple ex-
ample. In this case, rays remain coherent, and our higher overhead
leads to a smaller speedup than the 5× sample count reduction.
Limitations and Artifacts: While we achieve high accuracy, there
are limitations of our method, which may lead to some oversmooth-
ing or minor artifacts at focal plane boundaries. For instance, in the
top inset in Fig. 2, the thin structures on the chair are somewhat
oversmoothed, which is also the case for AAF and even APR. There
is also some blurring of the ground in Sponza (middle inset). Fig-
ure 13 shows more examples. There is often a discontinuity around
the region where the double wedge shape changes a lot. In this
case, the filters in the neighboring pixels could be very different,
violating the implicit assumption that the filters change smoothly.
Another limitation is that using sparse initial samples could lead to
inaccurate double wedge estimation. Our method shares this com-
mon limitation with previous work, e.g., AAF and FSF. We use a
comparable number (16) of initial samples for estimating wedge
slopes, and prefilter the slopes to alleviate this issue. Similar is-
sues also arise with AAF and previous work. However, the overall
quality of our results is close to ground truth visually, and our ren-
derings only required from 1.1 to 2.3s for these examples.

8. Conclusions and Future Work

This paper takes an important step towards efficient, near-
interactive rendering of multiple distribution effects. While many
approximate solutions have been proposed in the past, we believe
that ours is one of the first practical methods based on physically-
accurate GPU raytracing. We extend sparse sampling and recon-
struction filtering in a significant way, developing a multiple axis-
aligned filter approximation of the common wedge spectrum. This
representation is more compact than sheared filtering, while pre-
serving the ease-of-use of axis-aligned filtering, with relatively
small overheads. No expensive storage or multi-stage precompu-
tation is required, and multiple distribution effects can be treated
together, unlike in fast sheared filtering. For analysis of the filter,
we introduce new mathematical ideas of accuracy and coverage,
which can be important baselines for future efforts. In future work,
we would like to explore the limits of the MAAF idea, seeing if
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STILL LIFE, MAAF, 17 spp, 1.68s
MC input

17 spp, 1.32s
AAF (ET)

25 spp, 1.67s
AAF (EQ)

96 spp, 8.89s
APR

32 spp, 82.3s
MAAF

17 spp, 1.68s
Ground Truth

6400spp,1054s

SPONZA, MAAF, 16 spp, 1.79s
MC input

16 spp, 1.29s
AAF (ET)

24 spp, 1.82s
AAF (EQ)

107 spp, 11.3s
APR

32 spp, 86.4s
MAAF

16 spp, 1.79s
Ground Truth

6400spp,1074s

TOASTER, MAAF, 21 spp, 1.12s
MC input

21 spp, 0.86s
AAF (ET)

40 spp, 1.15s
AAF (EQ)

97 spp, 3.56s
APR

32 spp, 103.8s
MAAF

21 spp, 1.12s
Ground Truth
6400spp,379s

Figure 14: Scenes with multiple distribution effects together: defocus, soft shadows, and indirect illumination. We compare MAAF results to
those obtained by AAF equal time and equal quality, as well as the state of the art offline denoising method, adaptive polynomial rendering
(APR). MAAF usually obtains a speedup of about 6× with high quality results.
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one can approximate the double wedge exactly with a simple filter,
or develop triangular filters that can be implemented in a fashion
comparable to axis-aligned filters. Moreover, we seek to bring these
ideas back to filter design in the signal-processing literature.
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