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Abstract Participating media are frequent in real-

world scenes, whether it is milk, fruit juices, oil or

muddy water in river or ocean scenes. Incoming light

interacts with these participating media in complex

ways: refraction at the boundaries and scattering

and absorption inside the volumes. The radiative

transfer equation is key point to solve this problem.

There are several categories of the rendering methods

which are all based on radiative transfer equation,

but with different solutions. In this paper, we

introduce these groups, more specifically, including:

volume density estimation based approaches, virtual

point / ray / beams lights, point-based approaches,

Monte Carlo based approaches, acceleration techniques,

accurate single scattering methods, neural network

based methods and spatially-correlated participating

media related methods. We discuss these methods, the

challenges and open problems in this research direction.

Keywords Participating media; Monte Carlo based

methods; Rendering; Volume density

estimation.

1 Introduction

Participating media are frequent in real-world scenes,

like candles, olive oil, skin or fog (see Fig. 1). It

plays an important role for realistic rendering in movie

production, animation or video games. Computing

illumination simulation in scenes with participating

media is still a costly process, as light interacts with

the participating media in complex ways.
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(a) Participating media (b) Finding Dory (c) Frozen

Fig. 1 Different types of participating media. (a) Figure

reproduced from [42]. (b) Participating media from “Finding

Dory” c©Disney Enterprises, Inc. and Pixar, Inc. (c)

Participating media from “Frozen” c©Disney Enterprises, Inc.

The light is potentially refracted by the boundary

if the indices of refractions differ between inside and

outside the media and then absorbed or scattered as

it travels inside the medium. The refracted boundary

gathers the light in the media and causes high frequency

effects, called volumetric caustics, which are obvious

in media with relatively large mean free path. The

scattering effects blur incident light and cause low

frequency effects, which happen in media with small

mean free path. Directional phase functions and

refraction at the interface add to the computational

complexity. This complex interplay between these

different phenomena makes simulating light transport

in participating media a difficult and ongoing research

problem.

In recent years, several algorithms have been

introduced for rendering participating media, such

as many lights based method (Virtual Ray Lights,

VRL) [57], several extensions to photon mapping

culminating with Unified Points, Beams and Paths

(UPBP) [42], Monte Carlo based methods [25] or point

based methods [71]. All these methods greatly improve

simulation of participating media. In this paper, we

will discuss each of these categories from Section 3

to Section 6 and then will show some acceleration

techniques in Section 6.4. Several approaches focus on

single scattering only, or volume caustics, which will be

shown in Section 8. More recently, deep learning has

been exploited in participating media rendering, and
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we will show some related work with deep learning in

Section 9.

In the classical participating media, the particles are

assumed to have a white noise random distribution.

However, the particles in the media might have some

kinds of forces, which leads to positive / negative

random distribution. Spatial correlated media have

been introduced and studied in the rendering domain

in recent years, and we will show the progress on this

topic in Section 10.

We will discuss challenges and the future work in

Section 12.

2 Background

In this section, we first introduce the properties

of participating media, and then show the core of

rendering participating media: the Radiative Transfer

Equation.

2.1 Participating Media Properties

In this paper, we focus on homogeneous participating

media. This participating media is described by

absorption coefficient σa, scattering coefficient σs and

phase function p(ω, ωt), which represent the absorption

ratio, scattering ratio and the distribution of outgoing

directions for scattering respectively. The sum of the

absorption coefficient and scattering coefficient is called

attenuation coefficient, represented as σt = σa + σs.

Another equivalent expression for a media is scattering

albedo α with α = σs/σt and the mean free path inside

the material (mfp) l with l = 1/σt. The mean free path

denotes the average length before the first scattering

event inside the media.

According to these properties, we generally

classify participating media into high-order scattering

dominant and low-order scattering dominant media,

considering whether they are optically thick or

thin, according to the value of σt. Typical high-

order scattering dominant media include wax, skin,

marble, etc. Low-order scattering dominant media

include olive oil, apple juice, etc. Furthermore,

we separate among single-, double- and multiple-

scattering effects, depending on the number of volume

scattering events inside the translucent material.

Single scattering corresponds to a light path with

only one scattering event inside the material, double

scattering corresponds to paths with two scattering

events, and multiple scattering corresponds to paths

with more than two scattering events. The single

scattering leads to high-frequency effects, and the

multiple scattering leads to low-frequency effects.

Thus the separation between these scattering events is

reasonable. Both high-order scattering dominant and

low-order scattering dominant media are challenging.

Regarding the high-order scattering dominant media,

we have to simulate a large number of scattering events

before convergence. However, the overall appearance of

these materials is often very smooth, meaning we used

a lot of computational power for an almost constant

appearance. The low-order scattering dominant media

usually introduces high-frequency volumetric caustics

effects, due to the presence of double refraction, which

are difficult to capture with either density estimation

based approaches or Monte Carlo based approaches.

Virtual point, ray or beam methods can not simulate

single scattering. Thus, a specific group of methods is

proposed to simulate single scattering only.

2.2 Radiative Transfer Equation

Surface

Fig. 2 The radiative transfer equation.

Light transport within participating medium is

described by the Radiative Transfer Equation [8], which

defines the radiance that reaches a point x from

direction ω as a sum of exited radiance from the nearest

surface and this direction and in-scattered radiance

from the medium among the whole length of the ray,

as shown in Fig. 2. This can be expressed as

L(x, ω) = Tr(x↔ xs)L(xs, ω)+∫ s

0

Tr(x↔ xs)σs(xt)Li(xt, ω)dt,
(1)

Where Tr is the transmittance, defined as

Tr(x↔ xs) = exp−σt‖x−xt‖, (2)

s is the distance through the medium to the nearest

surface xs, and xt is a point and its distance to surface

xs is between 0 and s. L(xs, ω) can be governed

from the rendering equation [37]. Li(xt, ω) is the in-

scattering radiance at xt from all direction ωt over the

sphere of directions Ω4π using the phase function p,

defined as

Li(xt, ω) =

∫
Ω4π

p(ω, ωt)L(xt, ωt)dωt. (3)

Similar to rendering equation, the radiative transfer

equation does not have any analytic solutions. The

solutions to the radiative transfer equation include

volumetric density estimation based, point based, many
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Fig. 3 Different estimators and their results. Figure reproduced from [6].

lights based or Monte Carlo based methods. We will

discuss them in the following sections.

All these methods have their advantages and

disadvantages. Volumetric density estimation based,

many lights based and point based methods require a

lighting pass to distribute points or other elements in

the volume and then use the stored elements in the

rendering pass. They use the elements in different ways:

using density estimation, or gathering the contribution

from these elements, or their combination. Thanks

to the extra structure, these three types of methods

usually are faster than Monte Carlo based methods, at

the cost of the extra storage. Regarding the scattering

types, many lights based methods can not handle single

scattering, while the others are able to handle all types

of scattering effects. Monte Carlo based methods and

a subset of volumetric density estimation ([6]) based

methods can produce unbiased results, while the others

are biased. We will discuss these methods in detail in

the following sections.

3 Volumetric Density Estimation

Among all the types of rendering algorithms for

participating media, density estimation is the most

commonly used. The basic idea of volumetric density

estimation approaches is that distribute light photons,

rays, or beams in the media, and then estimate the

density of these elements in a kernel size. In general,

the group of methods includes two passes: a lighting

pass and a rendering pass. In the lighting pass, the

rays are shot into the media and get scattered until

having negligible energy or reaching the maximum

depth. The scattering events are stored to represent the

light distribution, which can be represented in several

manners: photons, beams, planes, etc. In the rendering

pass, the camera rays are refracted in the media and

gather the contribution from these representations with

a certain density estimator, depending on the types of

the representations. The reusing of the cached elements

for all pixels makes it efficient.

3.1 Different estimators

Jensen et al. [35] generalized photon-mapping

algorithm from light travel among object surfaces to

light transport in participating media. In the lighting

pass, they traced the light in the volume and stored

each volumetric interaction as a photon. In the

rendering pass, they refracted the camera ray into

the volume, sampled the refracted camera ray into

camera samples, and then gathered the contribution

of the stored photons to the camera sample with

density estimation with a 3D kernel. The estimator

is a point-to-point estimator. Later, Jarosz et al. [34]

improved this algorithm, by gathering the contribution

of photons map along with camera rays rather than

camera samples, speeding up the convergence. The

estimator is a point-to-beam estimator. Furthermore,

Jarosz et al. [32] replaced photons with photon beams in

the lighting pass, which makes the representation more

compact, resulting in a further faster convergence for

some media, like fog. The estimator is beam-to-beam.

All of these works rely on a huge volumetric photon

map, which is memory costly. Thus a progressive

method with photon beams [33] is proposed to eliminate

memory limitation. The huge volumetric photon

map is replaced by a lot of small photon maps

which are generated iteratively. In each iteration,

the small photon map is generated, used to update

the contribution of the shading points, and then it’s

discarded. This progressive strategy greatly improves

the practicality of these work.

Křivánek et al. [42] found that different
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Fig. 4 Contributions of the different estimators to the UPBP image of the Still life scene. Figure reproduced from [42].

representations of points, beams, paths, etc. are

suitable for light transport of different participating

media or surfaces. The photons are suitable for high-

order scattering objects, and beams are suitable for

low-order scattering objects, while path is suitable for

volume effects evolved with specular surface rendering.

Based on these observations, the estimators based

on volumetric density estimation and estimators of

Monte Carlo path tracing are combined through

multiple importance sampling (MIS), resulting in a

unified solution, called UPBP. This unified model

can simulate the light transportation of any type

of participating media, by automatic choosing the

suitable representation, as shown in Fig. 4

Fig. 5 A comparison of the equal-time variance of different

estimators in a scene containing participating media. This figure

shows the full light transport in the scene (left), single scattering

(middle/right, top half) and multiple scattering volumetric

transport (middle/right, bottom half). Those estimators

(middle) provide significant variance reduction compared to

prior density estimators (right) at equal render time. Figure

reproduced from [11].

Note that, all of these previous methods are biased,

although they are consistent. A recent work by Bitterli

et al. [6] further has improved the convergence, by

extending to higher dimensional expressions: photon

plane and photon volume. They further improved the

convergence efficiency and achieved unbiased results

by using a zero order estimator. The different types

of estimators are shown in Fig. 3. However, their

estimators suffer from singularities, and require at least

two bounces in the medium past any surface, leaving

the remaining transport to other techniques. Deng

et al. [11] solved these issues by generalizing photon

planes to photon surfaces, results in different types

of estimators, including new “photon cone”, “photon

cylinder”,“photon sphere”, and multiple new “photon

plane” estimators. The estimators are combined with

multiple importance sampling to increase robustness for

arbitrary types of participating media. Furthermore,

they proposed a delta kernel to couple the light and

camera subpath to avoid bias. Compared to the prior

work ([6]), their method significantly reduces variance

and is able to handle any scattering event, including

single scattering (see Fig. 5). However, this method is

not able to handle medium interactions immediately

following scattering from a surface, e.g. volumetric

caustics.

Qin et al. [61] introduced an unbiased photon

gathering for participating media. They combined each

photon’s path with camera path into one path. They

considered all factors in Monte Carlo method such as

visibility and probability to ensure unbiasedness.

Discussion. Density estimation based approaches

are the most commonly used solutions for participating

media rendering, since it supports all types of scattering

events and is able to produce high quality results.

However, there are several limitations of this group of

methods. First, most methods in this group are biased,

except the zero order kernel in Bitterli et al. [6] and

Deng et al. [11]. Second, this group of methods requires

an extra light pass and extra storage for the light

distribution. Third, for high-order scattering dominant

media, they require long time to converge, and for single

scattering, density estimation based methods requires

a large number of elements to simulate high-frequency

volumetric caustics, as insufficient photons / rays /

beams yields blurry caustics.

3.2 Combination with Other Techniques
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Fig. 6 Virtual point light methods (left) convert the vertices of

a random-walk pre-process into a collection of virtual point lights

(VPLs). VRLs (right) convert entire segments of the random-

walk into virtual ray lights instead. This results in denser

sampling, provably weaker singularities, and higher quality when

estimating illumination from the collection of virtual lights

(bottom). Figure reproduced from [57].

Fig. 7 Indirect illumination on surfaces and in the medium.

Progressive virtual ray beams (right) significantly reduce

singularity artifacts compared to the virtual ray lights method

(left). Progressive render effectively eliminates singularities

in four indirect light transport paths (bottom) using novel

importance sampling schemes and a new lighting primitive

compatible. Figure reproduced from [56].

4 Virtual Point / Ray / Beam Lights

Methods

In the previous section, we presented the density

estimation based approaches, which relies on caching

light distribution. Similarly, the virtual point, ray, and

beam approaches have the same requirements, but they

use the cached light distribution in a different way,

gathering rather than density estimation. The count

of photons / rays / beams is decreased significantly,

compared to density estimation based approaches.

Keller et al. [40] proposed instant radiosity, which is

also called Virtual Point Lights (VPLs) and has been

used in a large number of surface rendering algorithms.

It includes two passes: a lighting pass, similar to

photon mapping and a rendering pass, which is based

on gathering, rather than density estimation. Every

photon is treated as a virtual point light, which emits

light into the scene. The number of VPLs is much less

than number of photons, since visibility computation

is required for VPLs. VPLs have been widely used

for indirect illumination. Several improvements [59,

66, 67] have been made to accelerate the visibility

computation, using hierarchical pruning. However,

these methods suffer from singularity issue, which

comes from the potential tiny distance between the

VPLs and the shading points, yielding spike artifacts in

the rendering results. These artifacts could be removed

by clamping or blurring [23], at the cost of bias or

energy missing. The bias issue has been compensated

approximately [55].

Later, VPLs have been extended for participating

media. Arbree et al. [2] combine lightcuts with diffusion

dipole [36] to approximate subsurface scattering.

Multidimensional lightcuts [66] extends VPLs to

participating media and other effects (e.g. motion

blur), thanks to its efficient hierarchy pruning.

However, it still suffers from the singularity issue for

multiple scattering events. Novák et al. [57] replaced

virtual point lights with virtual ray lights (VRLs) to

simulate light transport in translucent materials. The

light rays shot from the light source are scattered in

participating media, and then the path segments in

media are stored as virtual ray lights (see Fig. 6).

The contribution from the stored VRLs to the camera

rays is treat as a line-to-line double integral problem.

This approach produces higher quality than VPLs.

However, it still suffers from singularity issue. Later,

virtual beam lights (VBLs) with finite thicknesses are

proposed to replace VRLs to reduce the singularity

issue, producing artifact-free images faster than VRLs

(see Fig. 7). They also shoot the VBLs progressively,

which significantly reduces the memory cost.

For high-order scattering media, a lot of virtual

ray/beam lights are required, even with progressive

solution, long time is required to converge. Thus, Wang

et al. [3] proposed a precomputed solution to improve

the convergence in high-order scattering media, by

precomputing the scattering events in an infinite

participating media (see Fig. 13). The precomputed

scattering events are stored in two tables for both

point light source and ray light source. Thanks to

the symmetry of revolution around the direction of

propagation and the almost symmetric shape of the

lobes, the dimension of precomputed distribution for

a single media is reduced to three dimensions. In

the lighting stage, only the rays after the surface

events are stored, while the volume events are ignored,

since they are already included in the precomputed
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table. In the rendering stage, the contribution is

gathered from the stored light rays to the camera

ray, by querying the precomputed table, resulting in

much faster convergence. Besides VRL, this approach

can also be used in other Monte Carlo rendering

algorithms. Although this approach greatly improves

the convergence, it has several limitations: it ignores

the visibility in the media, limites to homogeneous

translucent media and only handles multiple scattering

and relegates single scattering to other rendering

methods.

On the contrary, Georgiev et al. [18] proposed

a joint importance sampling method for low-order

scattering. They devised joint importance sampling

of path vertices in participating media to construct

paths that explicitly account for the product of all

scattering and geometry terms along a sequence of

vertices instead of just locally at a single vertex. Many

rendering algorithms could benefit from this approach,

including VRLs, to significantly reduce noise and

increase performance in renderings with both isotropic

and highly anisotropic, low-order scattering.

Similar to the lightcuts to organize the virtual point

lights, the virtual ray lights can also be organized

into a certain hierarchical structure for pruning VRLs.

Frederickx et al. [14] clustered the VRLs into a series

of ray slices in the precomputation pass and estimate

the required cluster number using sufficient analysis

of variance in the rendering pass, resulting in faster

convergence. Yuksel and Yuksel [74] treated the self-

illumination in explosion rendering as the lighting

problem in VPLs, and organized these VPLs into

a hierarchy. In addition, multiple scattering was

precomputed in the hierarchy, resulting in efficient

explosion rendering.

To solve the expensive visibility computation of a

large number of virtual light source in participating

media, Huo et al. [28] proposed a sparse sampling

and reconstruction method, based on the smooth

characteristics of the multiple scattering in the

participating media. The virtual light sources are

organized into a small number of representative points

using clustering. The accurate visibility computation

is performed for these representative points and the

visibility of all virtual light sources is obtained through

matrix completion, which greatly improves efficiency.

Discussion. The VRL (VBL) based participating

media rendering methods are faster than density

estimation based methods, since much less rays or

photons are required in this types of method. However,

the visibility computation is still expensive, while

the density estimation based methods do not have

this issue. Also, they are not able to handle

single scattering, and rely on density estimation based

methods to compute it. Furthermore, they have

singularity issue, especially in high-order scattering

media, although this issue has been reduced by many

techniques. All the VRL based methods are biased,

while some of the density estimation based methods

are unbiased.

5 Point based Methods

Point-based global illumination (PBGI) algorithm [9]

was first proposed to compute the diffuse light

transport for surface rendering and widely used in

movie production, since it’s noise-free and much

faster than Monte Carlo based methods. Similar

to the previous two groups of methods, PBGI also

includes two passes: a lighting pass and a rendering

pass. However, the lighting pass is quite different,

since the cached point cloud includes the geometric

information, which serves as an approximation of the

geometry representation and will be used for visibility

computation with rasterization in the rendering pass.

Wang et al. [69] expanded PBGI to participating

media rendering. Besides the points on the surface,

they are also placed inside the medium. The

volume samples including geometric information, using

bounding boxes. The volume and surface samples

are organized into hierarchies respectively. During

rendering, single-, double- and multiple- scattering are

computed separately (Fig. 8). Single scattering is

computed directly, finding light samples are closer to

the camera ray. To compute double scattering, they

traversed the spatial hierarchy to obtain the best tree

cut and gathered the contributions from these nodes.

For multiple scattering, they used a precomputed table

to store the resulting contribution. They then added

the contributions from single, double and multiple

scattering. For indirect lighting and multiple scattering

after several bounces on the refractive surface, they

used the surface samples. This method has the

advantage of fast convergence, with little noise during

simulation, and it performs well for a large range

of materials, from low albedo to high albedo, and

for isotropic to highly anisotropic. However, this

method also has certain limitations, such as the large

amount of multiple scattering data, and does not

support scenes containing complex materials (such as

glossy reflections). Wang and Holzschuch [71] further

improved it, with a faster single scattering tighter

bounding boxes, and a GPU implementation to support
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Fig. 8 The framework of PBGI in participating media rendering. The algorithm: it begins by computing incoming light at volume

and surface samples. Then it computes Single-, Double- and Multiple scattering effects for each camera ray using these volume and

surface samples. Figure reproduced from [71].

Fig. 9 Comparison between [71] and other volumetric methods on a wax media. For this material, with a large albedo α and a

small mean free path `, multiple scattering effects dominate. Figure reproduced from [71].

media interactive rendering and editing. The rendered

results for wax media is shown in Fig. 9.

Recently, Liang et al. [46] introduced the frequency

analysis theory to single scattering computation in

PBGI. Since the single scattering is usually high

frequency, and a large number of volume samples are

required to produce the sharpness of the volumetric

caustics, they proposed to use covariance tracing of

the volume samples and then adjust the kernel size

for single scattering computation, resulting in higher

quality with less volume samples.

Discussion. The point based methods for

volumetric rendering scale well with scene complexity

and provide noise-free results in much shorter

time. They provide a natural compromise between

computation time and quality, by acting on the number

of samples. Differ from the density estimation-based

methods, the points in PBGI are carefully distributed

and include geometric information, thus they are

able to produce high-quality single scattering result

with much less points and shorter time than density

estimation-based methods. Regarding the multiple

scattering, the precomputed multiple scattering table

avoids the tracing of scattering events and helps to

decrease the converge time significantly. Compared to

many-light based methods, there are more points used

in PBGI to capture the high-frequency in the single

scattering, while many-light based methods cannot

simulate single scattering. The main limitation for

this group of algorithms is that homogeneous materials

is assumed. Extension to heterogeneous materials,

with spatially varying scattering properties, will require

future work. They also do not consider visibility

when summing the contributions from volume and

surface samples to a camera sample, resulting in over-

estimation when there are occlusions. Furthermore, the
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point based methods are also biased. In summary, point

based-methods are suitable for rendering applications

with limited rendering cost and interactive rendering

applications, e.g. interactive media editing and lighting

editing.

6 Monte Carlo based Methods

Monte Carlo based methods have been widely used

in participating media, since they are unbiased and

simple. We focus on efficient sampling for Monte Carlo

solutions to transport problems. Interested readers can

refer to broader surveys of volumetric media rendering

in research [58] and production [13].

Monte Carlo based rendering was first proposed

for forward path tracing integration [38], which relies

on two sampling operations: distance sampling and

phase function sampling. The distance sampling

usually considers the transmittance attenuation along

the media, thus is performed exponentially to the

distance. For high-order scattering media, millions of

scattering events happen before leaving the objects, due

to the small step with the distance sampling which is

relative to the mean free path. A highly anisotropic

medium requires the sampling of a high frequency

phase function, resulting in noisy result, even with

importance sampling. When the medium is enclosed in

a refractive boundary, the path sampling is even more

difficult with unidirectional path tracing. Lafortune

and Willems [44] later expanded it to bidirectional

path tracing, which improves the convergence rate of

light transport with refractive boundaries. Pauly et

al. [60] proposed the Metropolis light transport (MLT)

approach for participating media.

The above Monte Carlo methods take long time

to converge when simulating high-order scattering

or highly anisotropic participating media. Thus,

further advanced approaches are proposed on top of

them to improve the convergence rate, such as next

event estimation, zero-variance random walk, or path

guiding.

6.1 Advanced Sampling

Joint importance sampling [17] constructs single

and double scattering sub paths, while accounting for

the product of phase functions and geometry terms

along the sub paths. For isotropic scattering, a

fully analytic formula for sampling phase functions

and geometry terms for double scattering at once

is derived using marginalization. Using tabulation,

a generalized method is provided that can handle

anisotropic scattering as well. Joint importance

sampling samples distances based on geometry terms,

and the transmittance is not importance sampled, thus

it’s not suitable for high-order scattering media.

6.2 Next Event Estimation

Jakob and Marschner [29] proposed a new mutation

strategy for metropolis light transport based on

manifold exploration, improving the sampling for paths

involving specular and highly glossy surfaces. It

can also be used for participating media, especially

for media surround by refractive boundaries. The

manifold exploration idea further benefits the next

event estimation (NEE).

NEE is usually used in Monte Carlo (MC) rendering

to reduce variance, via estimating direct illumination by

sampling a point on the emitter and testing its visibility

by casting a shadow ray. NEE is not suitable for

participating media with refractive boundaries. Hanika

et al. [22] proposed Manifold next event estimation

(MNEE), which leverages manifold exploration [29] to

connect to the light source through multiple refracting

surfaces. The main drawback of these techniques is that

the search for the boundary vertex may not succeed.

Since it relies on the geometric derivative, it does

not handle detailed or displaced surfaces well. It was

improved by Koerner et al. [41], via searching a point

in the volume which satisfies Fermat’s principle instead

of walking over the surface. This method is suitable

for highly directional, near-delta distributions, since the

computational overhead is too expensive. Both of these

methods can be integrated into a unidirectional path

tracer using MIS.

Recently, Weber et al. [72] proposed Multiple Vertex

Next Event Estimation (MVNEE), which connects the

point to the light source with sub-path generated

by perturbation, instead of one segment connections.

The sub-paths are generated by perturbing seed paths

generated with path tracer. This approach is proposed

for the multiple scattering in a high-order scattering

homogeneous participating media, and it could be

combined with path tracer via multiple importance

sampling. This method significantly reduces noise and

increases performance of multiple scattering renderings

in highly anisotropic, optically dense media, but it is

not suitable for participating media with boundaries.

6.3 Zero-variance Random Walk

Zero-variance random walk path means creating

random walk without variance. This means that at

every scattering point, an outgoing direction as well as a

distance to the next scattering event has to be perfectly
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importance sampled by all terms of the measurement

equation: the product of phase function, transmittance,

and incoming importance (or radiance, depending on

the direction of the random walk). In practice, it’s

impossible to sample such a path, since it’s hard to

obtain the incoming radiance distribution. Even with

path guiding, the incoming radiance distribution is an

approximation, which can not guarantee zero variance.

Thus the present work is only for some simple situation.

For high scattering and isotropic participating media,

Dwivedi sampling [43] biases the sampling probability

distributions to exit the medium as quickly as possible,

based on the idea that the path close to boundary has

higher contribution than path deep into the body. They

approximate the geometry via locally fitting a slab to

compute an analytic approximation of the light field for

Dwivedi sampling. This method leads to less variance,

however, this method is not suitable for thin geometries

(such as ears) with a strong backlight.

Later, Meng et al. [48] solved this issue by taking the

geometric characteristics of the object into account in

the sampling process, so as to guide the scattering away

from the object as quickly as possible. They proposed

two biasing sampling methods: closest points and

incident illumination sampling. The first one searches

for the closest point to the boundary at every scattering

vertex to increase the chances to escape thin geometry.

The second one chooses light vertices proportional to

their emission using importance sampling, specifically

improving the variance of the random walk for backlit

cases.

The main limitation of these works is that they

are suitable for high-order scattering and isotropic

participating media.

6.4 Path Guiding

Path guiding was first introduced for surface

rendering [24, 52, 62, 65]. The common goal is to

find an “optimal” distribution that can approximate

the actual path integral and make convergence faster.

In these works, the incoming radiance distribution

of some samples is learned and further used by

combining with Bidirectional Reflection Distribution

Function with multiple importance sampling [52] or

product importance sampling [24]. Besides path

guiding methods in path space, several works have

focused on the primary sample space [19, 53, 75]. Deep

learning has also been used in path guiding. Müller

et al. [54] proposed a deep neural network model to

present the probability density function of samples.

The learned model is leveraged for sampling the ray
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Fig. 10 Comparison between multiple importance sampling and

RIS of two function f1 and f2 product. The RIS produces result

much closer to the target function (product of two functions)

than MIS. Figure reproduced from [10].

outgoing direction. The advantage of this work is

independence from scenes and local point parameters

(e.g. including textured BRDF). However, this method

is biased and the sampling is very expensive. Path

guiding makes convergence faster compared to the

original path tracing.

Later, path guiding has been introduced for volume

rendering. Deng et al. [10] extended [52] to translucent

materials. They also used a spatial-directional tree

to represent the incident radiance distribution and

then sample the outgoing direction after a scattering

considering both this learned lighting distribution

and the phase function. More specifically, they

introduced the resample importance sampling (RIS)

to joint sample the lighting distribution and the

phase function, as they observed the low sampling

quality of MIS for the product of two high frequency

functions. The RIS is combined with MIS, depending

on the sharpness of the phase function to save the

computational cost in RIS. Fig. 10 shows the sampling

results of both RIS and MIS of 2D functions. As

demonstrated in the paper, the RIS is also able to

improve the results in the surface rendering, when

importance sampling the lighting distribution and the

BRDF. The proposed method significantly improves

the performance of light transport simulation in

participating media, especially for small lights and

media with refractive boundaries. This method can

handle any homogeneous participating media, from

high scattering to low scattering, from high absorption

to low absorption, from isotropic media to highly

anisotropic media. Unfortunately, this approach uses

9
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Fig. 11 Top: An example path containing volume (blue) and surface (yellow) vertices. Note that, in the path tracing algorithm,

the path carries visual importance, and thus is generated in the opposite direction of the flow of light. Bottom: The four considered

zero-variance sampling decisions. Optimal decisions are whether to scatter within or outside the medium, how far to travel until the

next scattering event, how to choose the scattering direction and when to terminate the path. Figure reproduced from [25]

Fig. 12 Comparison between standard sampling and path

guiding from Herholz et al. [25]. Figure reproduced from [25].

the naive distance sampling, which has a significant

impact on the convergence speed.

Herholz et al. [25] proposed a path guiding approach

using zero-variance path sampling theory, which is able

to guide all the sampling decisions (Fig. 11), including

distance sampling, direction sampling, Russian roulette

and splitting. The zero sampling is guided by a cached

estimate of the adjoint transport solution, which is

represented as a kd-tree in the spatial domain and

directional distributions using a parametric mixture

model based on the vMF distribution. For distance

sampling, they considered the product of transmittance

and the adjoint transport solution (e.g. in-scattered

radiance), using an incremental sampling strategy to

avoid expensive cumulative density function (CDF)

sampling. For direction sampling, they computed

the product of the vMF and the phase function

also represented with vMF approximation, and then

sampled this product (see Fig. 12). Compared to

Deng et al. [10], sampling the product of two functions

should have higher quality than resample importance

sampling of the two functions, although the product

operation requires extra computational cost. The

vMF representation in the spherical domain makes

the product operation easier than the quad tree used

in Deng et al. [10]. With all the sampling decisions

guided by the cached estimate of the adjoint transport

solution, Herholz et al. [25] led to significantly faster

convergence compared to Deng et al. [10] and unguided

path tracer.

Both of the path guiding approaches are unbiased,

and are able to handle all types of scattering events,

including single scattering and multiple scattering.

Discussion. Monte Carlo based methods have

been used in movie production, since they are

unbiased, robust and have simple parameters. They

are able to handle all the types of scattering,

including single and multiple scattering. However,

these methods usually take long time to converge,

for both volumetric caustics and smooth multiple

scattering effects. Advanced sampling approaches (e.g.

path guiding) improve their convergence. However,

compared to the previous groups of methods, Monte

Carlo based methods still have a slow convergence.

Thus, the targeting application of Monte Carlo based

methods are high quality rendering applications with

enough time budget.

7 Acceleration Techniques

In the previous sections, we presented and discussed

four groups of participating media rendering methods.

The performance of these methods could be further

improved by combining with acceleration techniques,

like gradient domain rendering, frequency analysis,

radiance caching and precomputation.

7.1 Gradient-based Rendering

The gradient-based method [27] was introduced

for the homogenous participating media by Gruson

et al. [1], taking advantage of the smoothness

characteristics of the participating media’s rendering

10
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Fig. 13 The original path is replaced with a special path. Figure reproduced from [3].

results. In their paper, four different gradient-

based estimation methods were introduced, including

point to point, point to beam, beam to beam,

beam to light plane. With the gradient domain

rendering, smoother results are obtained than the

original method. More recently, a deep learning based

reconstruction approach for participating media has

been proposed [73], yielding a better reconstruction

solution than Poisson reconstruction. We will describe

this approach in Section 9.

7.2 Frequency Analysis

Frequency analysis on light transport has been

introduced for prefiltering and adaptive sampling

([12],[5]) in surface rendering. Later, Belcour et al. [4]

introduced it to participating media, based on the

observation that multiple scattering leads to smooth

appearance. They proposed the analysis of absorption

and scattering of local light fields in the Fourier domain,

and derived the corresponding set of operators on the

covariance matrices of the power spectrum of the light

field. Using these covariance matrix, they proposed

several improvements: adaptive sampling in the image

space and during the contribution gathering among the

camera and the light samples, etc., resulting in faster

convergence of photon beams approach [33].

7.3 Radiance Caching

Radiance caching method [31] uses a spherical

harmonic function to represent and store radiance

distribution of some sparse points and related gradient

information. The illumination at a new position

is calculated through the existing distribution and

gradient to complete the interpolation, thereby reduces

the amount of calculation and getting smoother effect.

Since the stored sampling points are sparse, the points

to be calculated may be different from the stored

points due to different occlusions, resulting in different

illumination, and the previous method did not consider

the visibility problem during interpolation. This

problem was solved by Marco et al. [47], by using the

second-order Hessian error metric to determine whether

the interpolation error is acceptable. Thanks to the

visibility, it produces results with higher quality than

Jarosz et al. [31].

7.4 Precomputation

High-order scattering media can be rendered by

density based methods (e.g. UPBP), many-light based

methods (e.g. VRL) and Monte Carlo based methods

(e.g. MEMLT). However, all of these methods have

very low convergence rate. This issue was solved by

Wang et al. [3], via precomputing multiple scattering

in the infinite participating media. The precomputed

multiple scattering data is stored in a table of two-

dimensional position and one-dimensional directions,

utilizing the symmetry of lobes. The precomputed

multiple scattering is used during the mutation. For

a seed path generated with path tracing, the sub-paths

within the media are replaced with a special path,

which is a virtual path with a converged contribution

computed from the precomputation table. During

mutation, only the surface events and the endpoints

of the special path could be mutated, thus the path

lengths are greatly decreased using this special path,

and much less mutation count is required, since all

vertices within the special path will not be touched.

This approach results in much faster convergence

than the original MEMLT, especially for high-order

scattering approach. Besides MEMLT, this method is

also suitable for other bidirectional tracing methods,

like VRL and UPBP. Recently, Ge et al. [15] used

neural networks instead of tables to represent multiple

scattering, which reduces the memory usage from

hundreds of MB to KB without significant reduction in

quality. Although the precomputation greatly improves

the convergence rate, it introduces bias to the rendering

results. The contribution of the special path is biased,

as it is essentially based on density estimation in the

precomputation pass.

11
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Fig. 14 (a) Multiple paths (black lines) may connect light L to

scatter point V, while the non-refractive approximation (purple

line) cannot account for these paths. (b) Geometry of problem

at a point P with geometric normal N̂g and shading normal Ĥs.

Figure reproduced from [68].

8 Accurate Single Scattering

Approaches

Single scattering corresponds to light entering

the material, being refracted at the first interface,

scattering once inside the material, and leaving

the material, being refracted a second time at the

interface before reaching the camera. The presence

of two refractions makes it difficult to compute single

scattering using standard methods. Single scattering

effects can produce volume caustics, with complicated

shapes, under sharp lights, e.g. point lights. With

a point light, the single scattering can be solved in

a deterministic way. In this section, we will show

two methods which focus on accurate single scattering

solutions.

Walter et al. [68] introduced a method for accurate

computation of single scattering effects in participating

media under point light source. Under this

configuration, it’s impossible to render with volumetric

path tracing or MEMLT. They treated single scattering

computation problem as a searching problem: finding

all the points on the surface that connect the point

light and the camera sample which satisfy Fermat’s

principle. The presence of shading normal of the

surface points makes the problem more complex (see

Fig. 14). They computed these entry points on the

surface using Newton-Raphson optimization. With

the interval Newton, all the solutions can be found.

However, to capture the sharpness of the caustics, a

large number of camera samples are required along

the camera ray. Similar to this method, Wang et

al. [70] extended it to multiple-bounce pure specular

light transport computation, however, it can also be

used for single scattering computation. It produces

similar results as Walter et al. [68].

Holzschuch [26] improved it by computing the extent

of the influence of each triangle over the camera ray,

based on the observation that the radiance caused by

an individual triangle on the surface varies smoothly

and discontinuities correspond to triangle edges. This

method is significantly faster than Walter et al. [68]

while providing higher quality results (see Fig. 15).

Sun et al. [63] proposed an analytical solution

for single scattering of participating media without

boundaries under point light, which is able to achieve

real-time frame rate.

Both of the above methods can compute accurate

single scattering without any noise. However,

computation time for this method depends strongly on

scene complexity. Moreover, these methods are limited

to participating media under point lights.

9 Participating Media Rendering

Based on Neural Networks

Neural network has also been leveraged in

participating media rendering, including atmospheric

clouds rendering, multiple scattering representation,

BSSRDF models and reconstruction of gradient-

domain volumetric rendering.

9.1 Atmospheric Cloud Rendering

Atmospheric cloud is high-order scattering media,

and it requires very long time to simulate the multiple

scattering event. Kallweit et al. [39] proposed to render

atmospheric clouds using a radiance-predicting neural

networks (RPNN) for multiple scattering. RPNN

represents the radiance for each shading configuration,

which includes location, direction, the light source

and the density structure of the entire cloud. They

proposed a hierarchy of point stencils to represent

varying scales of the cloud density, as shown in

Fig. 16. The network structure is based on a multilayer

perceptron (MLP), shown in Fig. 16. The hierarchical

descriptor is fed progressively into the network. During

rendering, Monte Carlo rendering is used for direct

lighting and single scattering, and the neural network

is queried for multiple scattering based on the shading

configuration. The rendering results of this method

are almost identical to path tracing, but with thousand

times of speedup, as shown in Fig. 17.

9.2 Multiple Scattering Representation

Wang et al. [3] proposed to use precomputed table to

represent multiple scattering and used it to accelerate

several rendering algorithms. Each medium requires

a 3D representation, which makes it impossible to
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Fig. 15 Comparison among, Holzschuch [26], Walter et al. [68], photon mapping and path tracing. Figure reproduced from [26].

Fig. 16 Stencil grid (left) and progressively training network

(right). Figure reproduced from [39].

represent the entire media space, further considering

the albedo and phase function. To solve this issue, Ge et

al. [16] proposed to use neural network to represent the

multiple scattering distribution for arbitrary infinite

media, which maps a seven dimensional function to

a radiance, via a four-layer neural network structure

(as shown in Fig. 18). The input layer includes the

anisotropy value g of the participating medium, the

scattering albedo α, the location of the sampling point

r(ρ; z) and direction (θ;ϕ), and the output layer is the

radiance. They used this neural network to represent

double scattering and multiple scattering, and left

single scattering with other methods. The storage for

both double and multiple scattering is reduced from

50 GB to 23.6KB. During rendering, they reproduced

the precomputed table for a specific media from the

neural network, and then used the precomputed table

for multiple scattering computation, similar to Wang

et al. [3]. They integrated it into virtual ray light

(VRL) with an efficient GPU implementation, resulting

in interactive frame rate, as shown in Fig. 19.

Fig. 17 Comparison of path-traced references and RPNN

approach. Figure reproduced from [39].

Vicini et al. [64] introduced a shape-adaptive

BSSRDF model via a conditional variational

autoencoder, which learns to sample from a reference

distribution produced by a brute-force volumetric

path tracer. This model relies on the combination of

three neural networks, which together constitute the

probability generation model of BSSRDF sampling

surface. The first feature network extracts features

from the input parameters. These input parameters

include material properties (reflectivity, anisotropy,

and refractive index) and a set of geometric features.

In order to describe the local geometry, this method

proposes to use low-order ternary polynomials to

encode approximate distance functions, adapting

the model to geometric details, including curvature,

thickness, angle, etc. The second scatter network learns

to sample from the reference distribution generated by

a volume path tracer; the third absorption network

13
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Input layer 1st hidden layer 2nd hidden layer Output layer

... ...

Fig. 18 Network structure of Ge et al. [16]. Figure reproduced

from [16].

performs regression fitting on the scale factor of the

distribution of multiple scattering. Fig. 20 shows

the structure of the three networks. This method

supports arbitrary homogeneous media parameters,

which maintains the efficiency of the classic BSSRDF

model without the assumption of diffusion theory, and

greatly improves overall accuracy. However, it can

only handle high-order scattering effects and does not

work well on shapes with sharp features.

9.3 Reconstruction for Gradient Domain

Rendering

Xu et al. [73] proposed an unsupervised neural

network for image reconstruction of gradient-domain

volumetric photon density estimation, more specifically

for volumetric photon mapping, using a variant of

GradNet [21] with an encoded shift connection and

a separated auxiliary feature branch, which includes

volume based auxiliary features such as transmittance

and photon density. This network smooths images on

global scale and preserves the high frequency details

on a small scale. Their network produces a higher

quality result, compared to previous works (L1 or L2 or

GradNet). Although they only considered volumetric

photon mapping, it’s straightforward to extend this

method for other forms, like beam radiance estimation.

However, this method can not reconstruct images with

a lot of noise, and tends to over-blur some features.

10 Spatially-correlated Participating

Media

All the rendering algorithms mentioned in the

prior sections assume that the particles in the media

have white-noise random distribution. However, the

media in the real-world might not follow this kind of

distribution, but are distributed according to certain

rules. This change in internal properties determines

that the transmittance no longer obeys the exponential

law. The earliest research on spatially-correlated

participating media was mainly for discrete media,

such as sand (see Fig. 21). Recently, the study on

continuous spatially-correlated participating media has

got attention, opening a new research direction. In this

section, we first show previous work on the discrete

media, and then show the related work on continuous

spatially-correlated participating media.

10.1 Discrete Participating Media

Moon et al. [51] proposed an importance sampling

approach for path tracing in discrete media, via

precomputation. In the precomputed stage, a shell

function is used to represent the probability density

function on the sphere around the center point. In

the rendering process, importance sampling is guided

by the precomputed shells to sample a large distance in

the discrete media, rather than a lot of small steps.

This method reduces the number of sampling steps

and improves the convergence efficiency. It’s further

improved [49] to support multi-scale rendering: using

path tracing with [51] for accurate rendering at small

scales, and using the diffusion theory to approximate

at large scales. Later, Muller et al. [50] treated

mixed media of multiple discrete participating media as

equivalent continuous participating media to support

mixed media rendering. In addition, they proposed

a different multi-scale solution: a particle scattering

distribution function for small scale rendering and

Moon et al. [51] for large scale rendering.

10.2 Continuous Spatially-correlated

Participating Media

In the spatially-correlated participating media,

particles no longer have white-noise randomly

distribution, but follow certain laws, such as mutual

attraction or repulsion caused by forces between

particles. In a randomly distributed medium, the light

attenuates exponentially; in a mutually attracting

medium, because there is a relatively large gap, the

attenuation is slower than exponential attenuation; in a

mutually repulsive medium, the opposite is attenuation

and the speed is faster than exponential attenuation.

The Generalized Boltzmann Equation (GBE) in

the field of neutron transfer [45] solves the neutron

transfer in non-exponential media based on several

assumptions. These assumptions include: an isotropic

medium without boundaries, the phase function and

scattering albedo of the medium do not depend on

distance, and so on. The theory of light transport

in continuous spatially-correlated participating media
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Fig. 19 Comparison of Ge et al. [16] and UPBP. Figure reproduced from [16].

Fig. 20 The network structure of shape-adaptive BSSRDF model. Figure reproduced from [64]

Fig. 21 Participating media in discrete space. Figure

reproduced from [49].

Fig. 22 The result of randomly distributed, mutually attracted

and mutually repelling particles. Figure reproduced from [30].

involved in computer graphics [30] eliminates several

limitations on the basis of GBE, such as the no-

boundary limit, so that the theory can be applied to

rendering (see Fig. 22). This method can simulate

the light transport of homogeneous spatially-correlated

participating media. Although the proposed theory can

support non-uniform participating media, it does not

provide a feasible solution, and does not explain the

reversibility and the path integral form, so it cannot be

applied to any light transport method.

A new form of path integration [7]: the non-

exponential medium rendering is converted into the

average of a series of different index participating

media, in which two hypotheses [45] are introduced.

These hypotheses are that the phase function of the

medium and the scattering albedo do not depend

on distance and the free-flights of photons, but only

depend on the last scattering event. They lead to the

approximate solution of a series of average formulas for

different participating media. In addition, this method

guarantees reversibility and supports the rendering of

non-uniform participating media.

Guo et al. [20] proposed a general, physically-based

framework for modeling and rendering such correlated

media with non-exponential decay of transmittance

(see Fig. 23). They described spatial correlations

by introducing the Fractional Gaussian Field (FGF),

a powerful mathematical tool that has proven

useful in many areas but remains under-explored in

graphics. With the FGF, they studied the effects of

correlations in a unified manner, by modeling both
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Fig. 23 A complex scene containing several spatially-correlated

media, demonstrating that the Fractional Gaussian Field (FGF)

is able to reproduce a wide range of appearances stemming from

short-range to long-range correlations and support macroscopic

heterogeneity (left). A reference generated by the classical

transport theory is provided for a comparison (right). [20].

high-frequency, noise-like fluctuations and k-th order

fractional Brownian motion (fBm) with a stochastic

continuity property. As a result, a wide variety of

appearances stemming from different types of spatial

correlations are able to be reproduced. Compared to

previous work, this method is the first that addresses

both short-range and long-range correlations using

physically-based fluctuation models. This method can

simulate different extents of randomness in spatially-

correlated media, resulting in a smooth transition in

a range of appearances from exponential falloff to

complete transparency.

11 Comparison and Discussion

In Table 1, we compare several typical methods from

several groups, on the supporting scattering events,

biased or not, storage cost and rendering efficiency.

Scattering event. Many-light based methods can not

handle single scattering, while the others can handle

both single and multiple scattering.

Unbiasedness. Monte Carlo-based methods produce

unbiased results, while the others are mostly biased,

except for Bitterli et al. [6], which is unbiased for

multiple scattering when using zero-order estimator,

and Deng et al. [11] which is also unbiased when using

delta kernel.

Storage cost. Density based approaches and point

based approaches have more memory cost than others,

where Bitterli et al. [6] and Deng et al. [11] introduce

higher-dimension elements, e.g. photon planes and

volumes, thus less memory cost is required compared to

UPBP [42]. Many-lights based method has less memory

cost compared to the density based methods, since they

are based on gathering rather than density estimation.

Monte Carlo based methods usually do not need extra

structures, resulting in less memory cost. When Monte

Carlo based methods are accelerated with path guiding,

more memory cost required to store the learned lighting

distribution.

Rendering efficiency. Among all these methods,

point based methods are the fastest, since they are

able to achieve interactive frame rate. However, their

rendering results have the lowest quality among all

these methods. Monte Carlo based methods are the

slowest, since they requires long time to converge, but

they produce the highest quality. Path guiding based

methods improve the convergence rate. Many-lights

based methods are less efficient than PBGI, but are

still faster than density based methods and Monte Carlo

based methods. Density based methods have different

rendering cost. Methods of Bitterli et al. [6] and Deng

et al. [11] converge faster than UPBP, thanks to their

higher-dimension elements.

12 Challenges and Future Work

This article summarizes several recently proposed

efficient rendering methods for participating media,

including point-based rendering methods, precomputed

methods, and path guiding methods. These

three methods improve the rendering efficiency of

participating media from different perspectives.

At present, the media rendering and surface

rendering are relatively independent, but the two

are closely coupled in the actual scene. Although

there are some attempts to link the two and study

their relationship, there is still no complete theory.

Therefore, building a unified model of surface rendering

and participating media has important theoretical and

practical significance.

The participating media model introduced in this

article is limited to uniform participating media, while

the participating media in the real world are more

complex, such as spatially-correlated participating

media. In these participating media, the distribution

of particles is no longer random, but is affected

by a certain gravitational or repulsive force, which

makes the previous theory no longer applicable. Some

methods have been proposed to solve this problem, but

these methods still have the problem of low rendering

efficiency, so how to efficiently render spatially-

correlated participating media has important practical

significance.

At present, the noise reduction method based
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Tab. 1 Comparison among several approaches, considering supporting scattering events, performance, storage cost, etc. Unbiased

(multiple) means only unbiased for multiple scattering and biased for singles scattering.

Method Type Scattering Event biased / unbiased Storage Cost Rendering Efficiency

UPBP [42] Density-based Single + Multiple biased • • • • • • • ◦ ◦ ◦
Bitterli et al. [6] Density-based Single + Multiple unbiased (multiple) • • • • ◦ • • • ◦ ◦
Deng et al. [11] Density-based Single + Multiple unbiased (delta kernel) • • • ◦ ◦ • • • • ◦
Wang et al. [71] Point-based Single + Multiple biased • • • • ◦ • • • • •
VRL [57] Many light-based Multiple only biased • • • ◦ ◦ • • • ◦ ◦
MEMLT [29] Monte Carlo-based Single + Multiple Unbiased • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦
Wang et al. [3] Monte Carlo-based Multiple only biased • • ◦ ◦ ◦ • • • ◦ ◦
Herholz et al. [25] Monte Carlo-based Single + Multiple Unbiased • • • ◦ ◦ • • ◦ ◦ ◦
Deng et al. [10] Monte Carlo-based Single + Multiple Unbiased • • • ◦ ◦ • • ◦ ◦ ◦

on deep learning has been tried a lot in surface

rendering, and it is also effective. However, the

performance of these methods in participating media

is not satisfactory. One important reason is that

the characteristics of the participating media are

very different from the characteristics of the surface

material. So how to design and make full use of the

characteristics of the participating media to support the

noise reduction requires future research. In addition,

some participating media have a strong global effect

due to scattering, such as the effect of fog or smoke,

and the current network architecture used for surface

rendering will cause aliases on the participating media.

Therefore, the noise reduction of participating media

requires a different network architecture than before.
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