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Figure 1: Multi-feature RPNN (MRPNN) renders multi-scattered cloud illumination in real time at 1024×1024 resolution,
producing results close to the ground truth (a). Thanks to its novel network design, MRPNN supports configurable shading
parameters (b), while the prior work only accepts fixed ones. 𝐺 configures Henyey-Greenstein phase function. In addition, our
network correctly handles the shadow boundary (c), which was previously a failure case.

ABSTRACT
We present Multi-feature Radiance-Predicting Neural Networks
(MRPNN), a practical framework with a lightweight feature fusion
neural network for rendering high-order scattered radiance of par-
ticipating media in real time. By reformulating the Radiative Trans-
fer Equation (RTE) through theoretical examination, we propose
transmittance fields, generated at a low cost, as auxiliary informa-
tion to help the network better approximate the RTE, drastically
reducing the size of the neural network. The light weight network
efficiently estimates the difficult-to-solve in-scattering term and
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allows for configurable shading parameters while improving pre-
diction accuracy. In addition, we propose a frequency-sensitive
stencil design in order to handle non-cloud shapes, resulting in ac-
curate shadow boundaries. Results show that our MRPNN is able to
synthesize indistinguishable output compared to the ground truth.
Most importantly, MRPNN achieves a speedup of two orders of
magnitude compared to the state-of-the-art, and is able to render
high-quality participating material in real time.
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1 INTRODUCTION
Participating media exists as a ubiquitous form of material observed
widely in the real world, for example, in cloud, milk, jade, skin, and
so on. Correctly handling the interaction between these materials
and light greatly enhances the realism of rendering results. This sub-
ject has been the focus of numerous investigations, in the context
of general light transport (e.g. bidirectional path tracing [Lafortune
and Willems 1996], Metropolis methods [Pauly et al. 2000]), or
specifically tailored to rendering participating media (e.g. photon
beams [Jarosz et al. 2008], photon surfaces [Deng et al. 2019] and
volumetric path guiding [Herholz et al. 2019]). However, since light
could hardly be absorbed before undergoing thousands of bounces
in the volume of participating media, especially those of low absorp-
tion rates such as clouds, the rendering process takes considerable
time to converge to noise-free results. Researchers have been pursu-
ing more effective approaches in recent years. While some of these
approaches refer to diffusion theory and/or pre-computation, the
line of research starting from Kallweit et al. [2017] introduced the
Radiance-Predicting Neural Networks (RPNN). They achieved no-
table performance improvements and showed how neural networks
(NN) can be used to estimate in-scattering irradiance.

Despite their accomplishments, the brute-force architecture of
RPNN and its variants limits their performance and robustness.
First, because RPNN receives only a few density samples as input
and uses a fully connected structure, it is difficult for the network
to infer the underlying physical principle of light transport. One
clue is that RPNN does not correctly handle shadows (see Fig. 1).
In order to map this extremely complicated function, excess neural
connections were used, which resulted in bloated network struc-
tures and lower performance. Second, the shading parameters in
RPNN are hardcoded. Changes in phase values or albedos triggers
retraining of the network. The straightforward structure of RPNN
merely encodes all scenarios in which different shading parameters
push the dimension to an impractical level.

Our motivation is to create a network architecture that better
approximates the solution to the RTE. We started by reformulating
the RTE through theoretical examination. The investigation reveals
that the media could be decomposed into multiple features, rather
than being directly fed into the networks. The decomposed features
include a set of density fields, pre-integrated phase values, and
albedos (see Fig. 10). The decomposition leads to a smarter and
fewer-shot network architecture with faster inference and helps
achieve configurable parameters. Additionally, we suggest a new
sample stencil with two parts, each concentrating on either low
frequency (shadow-aware) or high frequency (diffusion-aware) in-
formation. The network thus achieves better results in shadow
boundaries.

Based on the observations above, we offerMulti-feature Radiance-
Predicting Neural Networks (MRPNN), a framework for fusing fea-
tures extracted from the RTE and predicting the radiance in real
time using a lightweight network.

Through experiments, we verify that our method achieves an
order of magnitude performance boost over RPNN, configurable
shading and better generalization capability in non-cloud shapes,
which can never be achieved by previous work. With MRPNN, we
are able to generate realistic volumetric rendering in real time.

In particular, our paper makes the following contributions:
• Reformulation of the radiance-predicting problem from an
intricate mapping to a simpler one through multi-feature in-
put, allowing us to significantly simplify the neural network
structure while enabling dynamically adjustable albedos and
phase parameters.
• A lightweight radiance-predicting framework that requires
much less computation to achieve a real-time volumetric
rendering solution, with better results on non-cloud shapes
and the shadow boundary, and better quality compared to
RPNN.

2 RELATEDWORK
Monte Carlo Integration. Various approaches based on Monte

Carlo (MC) integration have been developed to render participating
media. Solving the RTE, i.e. finding all potential light paths con-
necting the light sources, the camera, and the medium vertices, is
central to these approaches. For example, bidirectional path trac-
ing [Lafortune and Willems 1996] generates rays from both the
light sources and the camera to explore the path space. In order to
efficiently find those paths with higher contribution, Pauly et al.
[2000] introduced Metropolis Light Transport to media rendering.
To reduce the estimation variance and increase light path utiliza-
tion, the photon-based method was introduced to benefit efficiency
[Jarosz et al. 2008], and further improved by Jarosz et al. [2011].
These schemes were unified into one framework to achieve a more
robust integrator [Krivánek et al. 2014]. Although these methods
are unbiased and they all speed up the rendering process consider-
ably, they are still time consuming and can only be used for offline
rendering [Kallweit et al. 2017].

Diffusion Theory. Diffusion estimators, in addition to MC inte-
grators, are another type of RTE solvers for efficiently capturing
multi-scattered volumetric illumination [Stam 1995]. The intention
of diffusion-based methods is to address the multi-scatter issue
of MC integrators. A foretype, the Flux-Limited Diffusion (FLD)
proposed by Koerner et al. [2014] is built based on Classical Dif-
fusion Approximations (CDA) for more accuracy. Diffusion-based
approaches [Jensen et al. 2001] address the high-order problem,
but they are hampered by other concerns that prevent them from
being used in real time. Their computational costs, for example,
are polynomially dependent on grid resolution, which is also non-
constant. However, with insufficient resolution, the bias would be
distinguishable. Furthermore, because they naturally do not support
progressive rendering, it is difficult to distribute the computational
load across frames.

Learning-based methods. Several works have employed learning-
based approaches for rendering tasks. To enhance the efficiency
of rendering BSSRDFs, neural networks have been employed to
predict the exit point position of an object after internal scatter-
ing [Vicini et al. 2019], or to directly estimate the contributions
of all possible paths between two specific points in homogeneous
media [Leonard et al. 2021]. Mildenhall et al. [2020] utilize neural
radiance fields to represent scenes and perform rendering through
ray marching. Neural radiance fields are further utilized to accel-
erate the convergence of path tracing [2021]. These methods offer
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valuable insights into the application of learning techniques for
rendering purposes.

Radiance Prediction Neural Networks. Researchers have been
looking for approximate but more efficient MLP-based methods to
achieve faster performance. The research starting from Kallweit
et al. [2017] has drawn our attention. They were the first to in-
troduce neural networks to estimate the challenging in-scattering
term. They have successfully avoided the time-consuming process
of tracing numerous light paths, and thus is able to synthesize im-
ages of clouds within minutes. The performance of this method is
further improved by 2 ∼ 3× by caching the latent vectors [Panin
and Nikolenko 2019].

In essence, the aforementioned neural solutions both consider
light transport as a mapping from a density field to a radiance
field. Since the mapping can be very complex, the neural network
must be large enough to approximate it, which makes evaluation
time-consuming. For example, consider the intricate visibility re-
lationships among the voxels. Since we are requiring the network
to produce Dirac weights for the intermediate voxels, this task is
incredibly challenging for network estimators. However, it is easy
with ray-marching. The task of the network may be streamlined
by using the simple-to-compute features as additional input. Sec. 3
and 4 begin with theoretical deduction and then conclude with the
detailed framework. We demonstrate that with proper decomposi-
tion of the input features and tailored neural network structure, it
can converge with a very limited number of training data, indicat-
ing that it understands the underlying physical principle of light
transport rather than brute force. In Sec. 5, we validate our claim
through a series of experiments.

3 RENDERINGWITH MULTI-FEATURES
As shown in Alg. 1, our framework contains four steps: 1) Sample
a light direction (for ambient light), or get the direction of a given
directional light. 2) Prepare the transmittance features. 3) Perform
delta tracing, predict and accumulate 1-SPP radiance. 4) Repeat from
Step 1 (for ambient light), or repeat from Step 3 (for directional
light).

In essence, we assume neural networks can correctly predict
in-scattering radiance at any arbitrary location within media with
appropriately prepared inputs, allowing us to accumulate it along
the light path. Given a starting point 𝑥 , ray direction 𝜔 and light
vector 𝑙 , we generate several sample points u along the ray using
delta tracking [Woodcock et al. 1965]. Then, at each sample point,
we predict the in-scattering radiance and accumulate it. Before
prediction, we sample the multi-feature s according to a stencil
pattern, which assembles the descriptor and will be fed into the
neural network. The descriptor is the network’s input, which speci-
fies the optical context surrounding a given location. The stencil,
accordingly, is a set of discrete relative positions that describes the
points.

In the following sections, we will first demonstrate how to ex-
tract the multiple features from the Radiance Transport Equation
(RTE) [Kajiya and Herzen 1984] by reformulating it as the sum of
contributions from paths of different lengths. The results indicate
that the extracted features may be useful in network estimation.
We then demonstrate how to decompose the transmittance fields

(see Sec. 3.2), which is necessary for network compacting. Then,
in order to support configurable shading parameters, we extract
phase and albedo (see Sec. 3.3). Following that, we propose a new
frequency-aware stencil for collecting data from the sample point’s
surrounding discrete points while achieving better shadow bound-
aries (see Sec. 3.4). Finally, we present the lightweight radiance
prediction framework (see Sec. 3.5).

ALGORITHM 1: MRPNN::Render(𝑥,𝜔, 𝑙 )
𝐿 ← 0
for 𝑁 := 1 to TotalSamples do
(u, ℎ𝑖𝑡 ) ← GetSamplePointWithDeltaTracking (𝑥,𝜔 )
if ℎ𝑖𝑡 == 𝑡𝑟𝑢𝑒 then

s← ApplyStencil (u, 𝜔, 𝑙 )
descriptor← SampleAndGenerateDescriptor (s)
𝐿 ← 𝐿 + PredictRadiance (descriptor) + DirectLight(𝑥, 𝑙 )

else
𝐿 ← 𝐿 + SampleSkyBox(𝜔 )

end if
end for
return 𝐿/TotalSamples

3.1 RTE
We begin the theoretical investigations of the RTE by reviewing its
classic formulation. The RTE depicts the differential change of the
radiance 𝐿 traveling through a medium at position 𝑥 in direction 𝜔 :

𝜕

𝜕𝜔
𝐿(𝑥, 𝜔) = 𝐿𝑒 (𝑥, 𝜔) − `𝑡 (𝑥)𝐿(𝑥,𝜔)

+`𝑠 (𝑥)
∫
Ω
𝑝 (𝜔,𝜔𝑖 )𝐿(𝑥, 𝜔𝑖 )d𝜔𝑖 .

(1)

The right-hand side of RTE breaks down into 3 terms:
(1) Self-emission term. 𝐿𝑒 represents the differential incre-

ment of light contributed by the particles, such as chemilu-
minescence and nuclear luminescence, which are rare in real
life. We ignore this term for the sake of simplicity.

(2) Extinction term. The extinction term is defined by the
total amount of light being absorbed or out-scattered, where
`𝑡 = `𝑎 + `𝑠 is the extinction coefficient; `𝑎 and `𝑠 are the
absorption and scattering coefficients, respectively.

(3) In-scattering term. The in-scattering term collects the in-
bound light scaled by the phase function 𝑝 from the spherical
neighbor Ω.

We use the term albedo (denoted by 𝜍 ) to refer to the amount of light
being re-scattered rather than absorbed when a collision occurs.
We assume that the albedo of the medium is constant through the
space, i.e. `𝑠 (𝑥 )

`𝑡 (𝑥 ) ≡ 𝜍 . Ignoring the emission term, the integral form
[Arvo 1993] of Eq. (1) is simplified to:

𝐿(𝑥, 𝜔) =
∫ 𝑧

𝑥

𝑇 (𝑥,𝑢)`𝑠 (𝑢)𝑆 (𝑢,𝜔)d𝑢 +𝑇 (𝑥, 𝑧)𝐿𝑠 (𝑧, 𝜔), (2)

where 𝑧 = lim𝑡→∞ 𝑥 − 𝑡 · 𝜔 , 𝐿𝑠 is the in-coming radiance from 𝑧

toward 𝜔 , and the transmittance term 𝑇 is:

𝑇 (𝑥,𝑦) = 𝑒−
∫ 𝑦

𝑥
`𝑡 (𝑢 )d𝑢 , (3)
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and the integral part of the in-scattering term 𝑆 is:

𝑆 (𝑥, 𝜔) =
∫
Ω
𝑝 (𝜔,𝜔𝑖 )𝐿(𝑥,𝜔𝑖 )d𝜔𝑖 . (4)

Here we assume that the lights are distant (e.g. the sun). Other
light sources may be effective, but they are out of our scope. Under
this condition, the 𝐿𝑠 term from Eq. (2) can be written as:

𝐿𝑠 (𝑥,𝜔) = 𝛿 (⟨𝑙, 𝜔⟩ + 1) · 𝐼 , (5)

where 𝛿 (⟨𝑙, 𝜔⟩ + 1) is the Dirac function asserting that light is only
coming from direction 𝑙 , and 𝐼 is the light intensity. We will also
use 𝑇 (𝑥,𝜔) in short of lim𝑏→∞𝑇 (𝑥, 𝑥 + 𝑏 · 𝜔).

Plugging Eq. (2) and Eq. (5) into Eq. (4), we get:

𝑆 (𝑥,𝜔) =
∫
Ω

[(
𝑝

∫ 𝑧

𝑥

𝑇 `𝑡𝜍𝑆d𝑢
)
+ 𝑝𝑇𝐿𝑠

]
d𝜔𝑖

= 𝜍

∫
Ω
𝑝

∫ 𝑧

𝑥

𝑇 `𝑡𝑆d𝑢d𝜔𝑖 + 𝑝 (𝜔, 𝑙)𝑇 (𝑥, 𝑙) · 𝐼 .
(6)

Note that the 𝑆 term appears on the both side of Eq. (6). Following
the notation of Veach [1998], we employ an operator K which is
defined as (Kℎ) (𝑥, 𝜔) =

∫
𝑝
∫
𝑇 `𝑡ℎ(𝑥,𝜔)d𝑢d𝜔𝑖 and a set of in-

scattering intensity field S𝑖,𝑖≥0 being the order of scattering. The
RTE can be reformulated as:

S0 = 𝑝 (𝜔, 𝑙)𝑇 (𝑥, 𝑙) · 𝐼 , S𝑖 = KS𝑖−1,

S =

∞∑︁
𝑖=0

𝜍𝑖S𝑖 = S0 + 𝜍S1 + 𝜍2S2 + 𝜍3S3 · · · .
(7)

Eq. 7 shows that the RTE can be rewritten as an additive series.
When given approximated S𝑖 as hints, the network can infer the
final result S more easily.

Splitting the in-scattering field. To approximate S𝑖 , we immedi-
ately hit the first problem. Note that for 𝑖 > 0, the operator K
involves intricate integration over both position 𝑥 and direction
𝜔 , raising a problem of too many dimensions, which causes diffi-
culties during both training and runtime. To simplify the problem,
we’d better separate the directionally invariant part S′

𝑖
and the

remaining part 𝑃𝑖 , where S𝑖 (𝑥,𝜔) = 𝑃𝑖 (𝑥, 𝜔) · S′𝑖 (𝑥). Note that 𝑃𝑖
is impossible to be separated through formulation; its intention is
a scale factor that accounts for the phase function (directionally
invariant part), which will be later discussed.

Directionally invariant part. According to Eq. (7), the phase term
𝑝 in operator K is ignored, such that S′

𝑖
is directionally invariant:

S′0 = 𝑇 (𝑥, 𝑙) · 𝐼 , S
′
𝑖 = K′ (S′𝑖−1),

S =

∞∑︁
𝑖=0

𝜍𝑖𝑃𝑖S′𝑖 .
(8)

Eq. (8) reveals the three valuable physically-based features hidden
beneath the RTE: the directionally invariant part S′

𝑖
, phase 𝑃𝑖 and

albedo 𝜍𝑖 . It should be noted that 𝑆 is not a simple combination of
the extracted features, but a neural network conditioned on these
features that can well approximate 𝑆 . To this end, our next goal is
to extract features from the three terms.

x

y light vec (l)

Density field

(Constant)

Transmittance fields (from scaled density fields)

× w0 × w1 × w2 × w3 × w4 

R
PN

N ?

≈

…

Scattering field Linear Combination

Sum

…

Example scene overview

Path
tracing

Figure 2: A toy example case. The light enters from+𝑦, and the
density field extends to infinity in ±𝑥 . Left: we are using the
RPNN to predict the scattered field from a constant density
field, which is hard. Right: given the hint transmittance fields,
the result could be easily deduced.

3.2 Transmittance Field
To approximate the directionally invariant part S′

𝑖
in Eq. (8), we

propose to generate certain features by applying𝑇 (𝑥, 𝑙) (defined in
Eq. (3)) to density fields. Fig. 2 demonstrates our intuition, integrat-
ing the scattering field over a homogeneous volume with a constant
density field. In this simple setting, an unbiased estimator produces
non-constant radiance. Given that the input is spatially constant, it
would be hard for a network to infer the relationship (e.g., RPNN).
Considering that light travels farther into themedia due to diffusion,
which is similar to traveling through a down-scaled density volume,
we first increasingly down-scale the constant density field. Then
we generate a set of fields by applying𝑇 (𝑥, 𝑙) to those down-scaled
density fields. The scattering field can be easily approximated using
a linear combination of the generated fields, indicating that we
can leverage 𝑇 (𝑥, 𝑙) and the scaled density fields to approximate
S′
𝑖
. Furthermore, as the diffusion operator K′ in Eq. (8) could be

approximated by applying 𝑇 (𝑥, 𝑙) to density mipmap [Wrenninge
et al. 2011], we propose to use scaled density mipmaps instead of
scaled density fields.

Given the above analysis, we apply 𝑇 (𝑥, 𝑙) to scaled density
mipmaps, yielding the so-called transmittance field:

S̃𝑖 = 𝑒−
∫ 𝑦

𝑥
𝛽 (𝑖+1) `𝑖 (𝑢 )d𝑢 , (9)

where `𝑖 denotes the 𝑖-th level of mipmaps generated from the den-
sity field, which is down-scaled by a hyper-parameter 𝛽 (𝑖+1) (0 < 𝛽 < 1).
Therefore, we can use our transmittance fields S̃𝑖 to hint the direc-
tionally invariant partS′

𝑖
. This intuition will be further validated by

experiments. By providing transmittance fields, the network better
understands the mapping. Since the approximated transmittance
fields are being increasingly smoother in the spatial domain, we can
use gradually reduced spatial resolution to calculate and store them,
yielding the so-called mipmaps. More details will be addressed in
Sec. 4.1.

3.3 Phase and Albedo
The remaining components of Eq. (8) to be addressed are the phase
term 𝑃𝑖 and albedo term 𝜍𝑖 .

Phase. Reminiscent that the goal of the phase feature is to deter-
mine a scale factor to assist the network in learning the contribution
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of phase functions. In practice, we adopt 𝑃𝑖 = 𝑝′ (𝜔, v𝑖 −u) ·𝑝′ (v𝑖 −
u, 𝑙) as the phase feature 1 , where v𝑖 is the 𝑖th stencil point and 𝑝′ is
the cumulative version of phase function (detailed implementation
will be given in the supplementary material) over the volume of
the point.

Albedo. In Eq. (8), those powers of albedo (𝜍𝑖 ) will only appear
as the weights of the combination of the S𝑖 . We use 𝜍 as the feature
of the albedo (and the remaining {𝜍2, 𝜍3, ...} are superfluous).

We should mention that by separating the features as in Eq.
(8), the phase and albedo are configurable parameters that can be
dynamically adjusted in testing.

3.4 Frequency-Sensitive Stencil Pattern
Inputting the entire field into the network can lead to difficult opti-
mization and over-parameterization of the network. To solve this
problem, we need a stencil pattern sampling to collect information
from the sample point’s surrounding discrete points. We design a
frequency-sensitive stencil pattern according to the decomposition
of global-local multiple scattering [Zinke et al. 2008]. Our stencil
has two parts, one for high-frequency shadow boundary and the
other for low-frequency diffusive scattering. We use stratified uni-
form spherical distributions for the low-frequency part, and use
a cone shape towards light direction for the high-frequency part.
Compared to a naïve uniform stencil pattern (e.g., the grid-lattice
used in RPNN), our frequency-sensitive method can better predict
non-cloud shaped media and shadow boundaries.

The 𝑖th layer in the stencil is denoted by𝑄𝑖 = {𝒒𝑖,1, 𝒒𝑖,2, ..., 𝒒𝑖,𝑁𝑖
},

where 𝒒𝑖, 𝑗 is the 𝑗 th stencil point in the 𝑖th layer and 𝑁𝑖 is the
number of the points in this layer. Our stencil consists of totally
𝐾 = 12 layers, which is split into a low-frequency part 𝑄1, ..., 𝑄𝑀
and a high-frequency part 𝑄𝑀+1, ..., 𝑄𝐾 where 𝑀 = 8. Each layer
corresponds to a mip-level𝑚𝑖 . The details of each single layer of
stencil design will be given in the supplementary material.

3.5 Two-Stage Network
Our design motivation is based on the network’s ability for esti-
mating the in-scattering radiance, where the network is a function:

𝑆∗𝑥 (z,Θ) : R𝑑 → R, (10)

which maps a descriptor z and a set of parametersΘ to an estimated
radiance value in the spectral channel 𝑥 .

To adapt the proposedmulti-feature inputs and frequency-sensitive
stencil, we separate the entire network into two stages, namely the
feature and the albedo stage (see Fig. 3). 𝑆 ′

𝑖
(transmittance field) and

𝑃 ′
𝑖
(phase) are responsible for estimating S𝑖 and will be fed into the

first stage. 𝜍𝑖 is responsible for combining S𝑖 of different spectra
and will be fed into the second stage. Because the feature stage is
albedo-independent, it only needs to be run once in spite of the
number of spectral channels, which reduces the computational cost
of the network. As we use the RGB color space, the albedo stage will
be executed 3 times to compose the final RGB output (i.e., for each
of 𝜍𝑥,𝑥∈{𝑟,𝑔,𝑏} ). Note that thanks to the assistance of RTE-based fea-
tures, our network is light-weight, contains only ∼ 50𝑘 parameters
(approximately 83% of LeNet-5’s, 0.2% of ResNet-50’s and 0.03%

1The phase feature of the central point v0 = u is 𝑃𝑖 = 𝑝′ (𝜔, 𝑙 )

Figure 3: An overview of the network structure.

of VGG-16’s), and has fast inference speed (frame cost ≤ 33.3ms).
More details can be found in Sec. 4.3.

4 IMPLEMENTATION DETAILS
In this section, we will first show how to implement feature extrac-
tion (Sec. 4.1). Then, we demonstrate the detailed construction of
the network’s inputs (Sec. 4.2). Following that, we present the ar-
chitecture of our lightweight network (Sec. 4.3). Finally, we display
our training details (Sec. 4.4).

4.1 Feature Extraction
Density mipmaps. The mipmap layers are generated efficiently

by the hardware’s bi-linear interpolation. In our case, the 9 layers
of mipmaps begin at the input `0 fields with a resolution of 2563
and end at `8 with with a resolution of 13.

Transmittance fields. We employ the ray-marching [Drebin et al.
1988] technique to compute the transmittance fields. For each voxel,
we generate several uni-spaced sample points towards the light
source depending on the voxel resolution. The above process is
executed on each mip-level 𝑖 of the density maps, where the density
field is scaled by 𝛽 (𝑖+1) (0 < 𝛽 < 1) during the estimation (which
is suggested in Sec. 3.1), and we emprically set 𝛽 = 0.578.

Phase function. We use the Henyey-Greenstein (HG) phase func-
tion as the volume-averaged phase function. The HG phase function
is dynamically controlled by a hyper-parameter 𝐺 . In addition to
the HG phase function, our framework is capable of rendering
other phase functions, e.g., the Lorenz-Mie phase function (see Fig.
9). Detailed implementation will be given in the supplementary
material.

4.2 Descriptor
In response to the stencil, the descriptor is built utilizing features
that describe a point and its illumination context in the volume.
The 𝑗 th feature out of stencil 𝑄𝑖 (or 𝒒𝑖, 𝑗 ) is:

F𝑖, 𝑗 = {𝐹 `𝑖,𝑗 , 𝐹
𝑆
𝑖,𝑗 , 𝐹

𝑃
𝑖,𝑗 },

where 𝐹 `
𝑖, 𝑗

and 𝐹𝑆
𝑖,𝑗

are the density and the scaled-transmittance
samples at the stencil point 𝑣𝑖, 𝑗 = 𝑢 + 𝒒𝑖, 𝑗 with the corresponding

mip-level𝑚𝑖 , and 𝐹𝑃𝑖,𝑗 is the phase. In practice, we use 𝑙𝑜𝑔
(
𝐹
`

𝑖,𝑗
+ 1

)
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and 𝑙𝑜𝑔
(
𝐹𝑃
𝑖,𝑗
+ 1

)
to compress the ranges of the values (which is

trivial and will be omitted in the rest).
The features in each stencil layer form a single-layer descriptor

Σ𝑖 = {F𝑖,1, F𝑖,2, ..., F𝑖,𝑁𝑖
}, (11)

and finally the descriptor is established through:

𝑧 = {Σ1, Σ2, ..., Σ𝑀 , Σ𝑀+1, ..., Σ𝐾 ,𝐺, 𝜍𝛼 , 𝛾}, (12)

where𝐺 is the parameter of the HG phase function, 𝜍 is the albedo,
𝛼 is a hyper-parameter (detailed in Subsec. 4.4), and𝛾 = cos−1 (𝜔 · 𝑙)
is the angle between the view and the light. We assume that the
density outside the volume boundary is 0. However, the scaled-
transmittance fields should be given special consideration. More
information can be found in the supplement file.

4.3 Network Architecture
Feature processing. We have introduced multi-features (den-

sity, scaled-transmittance, and phase) as the input to the network.
To handle these inputs more efficiently, we employ the Squeeze-
and-excitation Module (a.k.a., the SE module [Hu et al. 2018]) for
each layer. The ablation tests in Sec. 5.2 show that the SE module
produces more stable and better results than other methods (e.g.,
fully-connected layers).

Feature stage. Its purpose is to compute the latent space vec-
tors for the input feature. We introduce a two-part network in the
feature stage to fuse stencils from different frequencies in order
to investigate the high- and low-frequency parts separately. It is
based on 2 individual sub-networks in connection with the low-
frequency part of the descriptor Σ1, ..., Σ𝑀 and the high-frequency
part Σ𝑀+1, ..., Σ𝐾 . Each layer of descriptor is first passed into the
SE module, then is combined with the output of the former block
by addition. We feed individual stencil layers progressively to the
network with a residual connection.

Albedo stage. In this stage, our goal is to introduce albedo to
the network, fuse the low- and high-frequency information and
compute the final output. We first use a SE module to scale the input
latent vectors from the previous stage. In order to accelerate the
inference process, a dimension reduction operate is perform. Finally
we use several fully-connected layers with residual connection to
compute the output.

We will provide the low-level details of network architecture
and hyper-parameter setting in the supplementary material.

4.4 Training
To train our network, we employ a supervised learning scheme. We
define the collection of descriptors and labels (ground-truth) by:

D = {(z1, 𝑆 (𝒖1, 𝑙1)) , ..., (z𝑁 , 𝑆 (𝒖𝑁 , 𝑙𝑁 ))} , (13)

where 𝑁 is the size of the collection. Our goal is to find a Θ that
minimizes the average loss between predicted and target values:

Θ∗ ∈ argmin
Θ

1
𝑁

𝑁∑︁
𝑖=1

ℒ

(
𝑆∗ (z𝑖 ;Θ) , 𝑆 (𝒖𝑖 , 𝑙𝑖 )

)
. (14)

We use a mean-square-error (MSE) based loss function as per
RPNN’s design with albedo term 𝜍𝑥 included:

ℒB =
1
|B|

∑︁
𝑖∈B

(
𝑙𝑜𝑔

(
𝑆∗ (z𝑖 ;Θ)

𝜍𝛼𝑥
+ 1

)
− 𝑙𝑜𝑔

(
𝑆 (𝒖𝑖 , 𝑙𝑖 )
𝜍𝛼𝑥

+ 1
))2

, (15)

where B is a minibatch during training and 𝛼 ≥ 1 is a parameter.
On the one hand, the log transforms [Yeo and Johnson 2000] con-
siderably condense the range of the radiance, which speeds up the
training [Bako et al. 2017]. It also prevents the artifacts of bright
mutations induced by high-frequency phase functions. On the other
hand, introducing 𝛼 normalizes the loss function, and when 𝜍𝑥 > 0,
the input data is closer to normal distribution [Box and Cox 1964].
We recommend using 𝛼 = 4 by experimenting with range [1, 8]
and a step size of 0.5. In this situation, the skewness of all training
label 𝑙𝑜𝑔

(
𝑆 (u𝑖 ,𝑙𝑖 )
𝜍𝛼𝑥

+ 1
)
is much closer to 0.

Data Generation. Using manual and procedure methods, we gen-
erated 26 cloud-shaped volumetric models and created 7 others in
non-cloud shape for training, validating and testing, all of which
were resized to suit their bounding box, and stored with a reso-
lution of [512]3. 6 cloud-shaped models and 7 non-cloud shaped
models were chosen at random for testing, these models are not
used for training or validation. And the remaining 20 models in
cloud-shaped were used for training and validation.

We generated 250k groups of samples (z𝑖 , 𝑆 (𝒖𝑖 , 𝑙𝑖 )) for each
model, totaling 5M. Then, in a 4:1 ratio, we partitioned these into
two non-overlapping subsets for training and validation.

For each model, we randomly generated 50 groups of different
parameters {𝑙 𝑗 , 𝜖 𝑗 }, namely the light direction, and a parameter
that scales entire density field. And for each sample we randomly
select parameters {𝐺 𝑗 , 𝜍 𝑗 }, where 𝐺 𝑗 is the parameter 𝐺 in the HG
phase function, 𝜍 𝑗 is a single channel of the albedo.

Training Configuration. We employ the Stochastic Gradient De-
scent technique with Adabound optimizer [Luo et al. 2019], with
a learning rate 𝛼 = 0.001 and 𝛼∗ = 0.1. To enhance generalization
ability, we use a minibatch of the size of |B| = 64. We also use a
validation set to evaluate and monitor the convergence process in
order to select a superior training outcome.

5 EXPERIMENTS AND ANALYSIS
We tested our Multi-feature RPNN against the naïve RPNN as the
baseline, and an unbiased path tracer as the reference. All tests were
carried out on an Nvidia RTX 2080 GPU with a 10242 resolution
(exceptions explicitly noted). Our training time is about 4 days. The
resolution of volumetric data is 10243. “Cloud” refers to a cloud-
shaped configuration, and “Model” to one created from a specified
geometry. All configurations are demonstrated in Fig. 4.

Objective 1: an equivalent bias. In the first two columns of Tab.
1, we show that the MRPNN preserves an equivalent bias level
compared with RPNN. The bias was measured through the RMSE
of the renderings. Based on the bias test, we have proof-of-concept
that the auxiliary transmittance fields are critical for minimizing
the network’s complexity in response to our motivation in Sec. 3.2.
A speedier framework is achievable since the network’s dimension-
ality and necessary samples are considerably decreased.
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Table 1: Bias and performance test results. Note that the
neural network-based approaches are cost-consistent with
change of light direction, whereas the reference (MC esti-
mator) fluctuates in time. In the convergence test, we used
64SPP for both RPNN and MRPNN, and adaptive samples de-
pending on the noise for the reference. Note that rendering
takes much less time (≤ 0.5ms) than network inference. (See
supplementary material for full table)

Model Light Dir. Bias Frame Cost (ms) Convergence Boost
Ours RPNN Ours RPNN RPNN Ref.

Cloud0
Side 1.55e-2 1.85e-2 1812.5 ×
Front 2.21e-2 1.75e-2 5.2 1812.5 ×
Back 3.52e-2 4.28e-2

597.5 114.9 ×
1562.5 ×

Model0
Side 1.80e-2 2.18e-2 837.5 ×
Front 1.86e-2 2.20e-2 5.0 628.1 ×
Back 2.08e-2 6.83e-2

447.0 89.4 ×
487.5 ×

Table 2: Parameter scale and feature comparisons. Supported
features aremarked ✓and unsupported ✗. Note that the LUTs
column refers to whether a variant uses the volume-averaged
phase function.

Model Parameters ` 𝑆 𝑃 LUTs High Freq. SE-Module
MRPNN (Ours) 49.7 k ✓ ✓ ✓ ✓ ✓ ✓

MRPNN-Var1 49.7 k ✓ ✓ ✓ ✗ ✓ ✓

MRPNN-Var2 49.7 k ✓ ✗ ✗ ✗ ✓ ✓

MRPNN-Var3 49.7 k ✓ ✓ ✗ ✗ ✓ ✓

MRPNN-Var4 49.7 k ✓ ✗ ✓ ✗ ✓ ✓

MRPNN-Var5 49.7 k ✓ ✓ ✓ ✓ ✗ ✓

MRPNN-Wide 80.4 k ✓ ✓ ✓ ✓ ✓ ✗

MRPNN-Narrow 47.3 k ✓ ✓ ✓ ✓ ✓ ✗

RPNN 1296.4 k ✓ ✗ ✗ ✗ ✗ ✗

RPNN-Var1 1296.7 k ✓ ✓ ✗ ✗ ✗ ✗

RPNN-Var2 1296.7 k ✓ ✗ ✓ ✗ ✗ ✗

RPNN-Var3 1298.3 k ✓ ✓ ✓ ✗ ✗ ✗

Objective 2: real-time performance. In the last four columns of
Tab. 1, we tested MRPNN’s performance against RPNN and the
reference. Each frame’s cost is made up of the network’s inference
time and the rendering time. It’s worth noting that rendering time
for MRPNN and RPNN is nearly identical, which is significantly
less (frame cost ≤ 0.5ms) than inference time. Our MRPNN was
able to render in real time (frame cost ≤ 33.3ms), and is order(s) of
magnitude faster than both RPNN and the reference, which is to be
expected given the network’s compact design.

In addition, Tab. 2 compares the parameter scale for MRPNN
and RPNN. The variations of both approaches differ in the descrip-
tors and structure, which will be used in later ablation tests. The
parameter scale of MRPNN is only approximately 3.8% of RPNN’s,
which explains the faster inference speed.

Objective 3: generalization ability in varying shading parameters.
With an initial intent to generalize the shading parameters which
were previously hardcoded into the network in RPNN, we tested
our framework under various phase parameters 𝐺 and albedos
as listed in Tab. 3. Note that RPNN does not handle non-uniform
(𝝇 ≠ {1.0, 1.0, 1.0}) albedos or varying 𝐺 and is marked "n/a".

Table 3: Check experiment of the biases with different shad-
ing parameters.

RMSE ×102 Side Front Back
Model Parameter Ours RPNN Ours RPNN Ours RPNN

Cloud0
𝝇 = {1.0, 1.0, 1.0} 1.55 1.85 2.21 1.75 3.52 4.28
𝝇 = {0.96, 0.98, 1.0} 1.38 n/a 2.08 n/a 2.57 n/a
𝝇 = {0.8, 0.9, 1.0} 1.51 n/a 2.49 n/a 1.55 n/a

Model0
𝝇 = {1.0, 1.0, 1.0} 1.80 2.18 1.86 2.20 2.08 6.83
𝝇 = {0.96, 0.98, 1.0} 1.35 n/a 1.57 n/a 2.60 n/a
𝝇 = {0.8, 0.9, 1.0} 1.20 n/a 2.21 n/a 1.76 n/a

Cloud0
𝐺 = 0.857 1.55 1.85 2.21 1.75 3.52 1.75
𝐺 = 0.5 2.13 n/a 2.00 n/a 3.91 n/a
𝐺 = 0.0 3.10 n/a 1.94 n/a 4.04 n/a

Model0
𝐺 = 0.857 1.80 2.18 1.86 2.20 2.08 2.20
𝐺 = 0.5 1.43 n/a 1.74 n/a 1.93 n/a
𝐺 = 0.0 2.32 n/a 1.53 n/a 2.40 n/a

Objective 4: ability of generalization in non-cloud objects. In the
second row of Tab. 1, we test an artist-created model, which is a
non-cloud object with regular boundaries. By comparing the RMSE
biases with that of the reference, we can see that in the majority of
cases MRPNN quality is better than that of RPNN. Also we achieve
the same level of bias as clouds for rendering non-cloud objects.
It can therefore be said that MRPNN outperforms RPNN in the
generalized rendering of non-cloud objects.

Faster convergence. We tested MRPNN and RPNN’s training con-
vergence based on the same number of nodes (200 as the original
RPNN), Adabound optimizer, initial learning rate and weight de-
cay, data configuration, training set size, and validation sets with
the split ratio of 4:1. Fig. 5 shows the results, where our MRPNN
achieves apparently better convergence. This profits from the pa-
rameter scale of our network: RPNN uses approximately 1.3 million
trainable parameters due to the density-only design, while MRPNN
contains only about 50,000 trainable parameters. Consequently,
MRPNN learns faster while converging with less error.

5.1 Examining the SE Modules
In Sec. 4.3 we propose to use SE modules to help the network fuse
the feature channels. To support this, we implement two other net-
works. MRPNN-Narrow is achieved by removing the SE Module in
MRPNN, and MRPNN-Wide is achieved by replacing the SE Module
in MRPNN with fully-connected layers, detailed architectures are
listed in the appendix.

As shown in Fig. 5, MRPNN-Narrow has no evident quality
or speed change in runtime, but its convergence is slower than
MRPNN. In MRPNN-Wide, features are fused at each layer by brute
force using large matrices, causing a 2 ∼ 3 times slower runtime
performance. Also, due to considerably increased trainable weights,
the training convergence is slower. Given the above, the SE module
can better fuse the inputting features.

5.2 Ablation Tests
In addition to the wide and narrow variants, we implemented sev-
eral more variants, each of which disables some features while
ensuring the same number of parameters (as detailed in Tab. 2). Fig.
6 presents the results.
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Volume-averaged phase functions (LUTs for short). MRPNN-Var1
with non-volume-averaged phase converges slightly slower, indi-
cating that LUTs provide the network with more precise context.

Transmittance fields. We removed the transmittance fields in
MRPNN-Var2 and MRPNN-Var4. Note that both variants are con-
siderably harder to converge, which again supports our proposal
to introduce the transmittance fields.

Split stencil. We removed the high-frequency part of the stencil
in MRPNN-Var5. As expected again, the convergence rate decreases.
The high-frequency part not only addresses the shadow boundary,
but also speeds up the training.

Modified RPNN. In addition to our network, we integrate the fea-
tures into the RPNN to validate their effectiveness. We implement
(approximately) the same number of trainable parameters. Based on
the results, we can conclude that our proposals are even effective
in the original RPNN architecture. This again supports our claims.

6 DISCUSSION AND FUTUREWORK
In this paper, we offer a novel framework to render high-fidelity
participating media in real time, which is nearly 2 orders of magni-
tude faster than the state-of-the-art thanks to the compact network
architecture and fewer required samples. Also, our stencil design
addresses the shadow boundary. Furthermore, our framework is
able to generalize different shading parameters by concatenating
new features, as suggested by our investigation into the RTE.

Our approach has limitations. First, the use of mipmaps may
cause issues in highly fragmented portions of the volume, resulting
in more biased brightness (see Fig. 7). Introducing new auxiliary
features, such as the variance of down-scaled densities, may aid
in addressing this issue. Second, because the scaled transmittance
fields in our case are directionally consistent, stochastic progressive
sampling and denoisers are disabled (if any) (see Fig. 8). Design-
ing new ambient-oriented features, such as spherical harmonics
encoded with lighting information [Kaplanyan and Dachsbacher
2010], could be a solution. Finally, we assumed that the albedos and
phase parameters are homogeneous over the entire volume, which
could not fulfill all potential types of materials. A more in-depth
examination of the RTE and a better design of the descriptor may
alleviate this issue.
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Figure 4: Render configurations and comparisons. All scenes are rendered with 𝜍 = 𝑅𝐺𝐵(1.0, 1.0, 1.0), 𝐺 = 0.857 (except 𝜍 =

𝑅𝐺𝐵(0.8, 0.9, 1.0) in CLOUD2 and 𝐺 = 0.5 in MODEL1).

Figure 5: Convergence of validation errors (log-
transformed).
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Figure 6: Validation errors of the ablation tests.
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(a) Reference (b) MRPNN

Figure 7: Because of mipmapping, the network assumes frag-
mented volumes to be continuous lower-density volumes,
resulting in imprecise overall illuminance.

Frame 4 Frame 8 Frame 16 Frame 32 Frame 64Frame 2

MRPNN (converged)

Reference (converged)

Figure 8: MRPNN produces random overall biases before con-
vergence in ambient lighting, which can’t be addressed by de-
noisers.
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Figure 9: MRPNN renders with configurable phase functions on the fly, avoiding the need to retrain the network. The results
show promising compatibility of MRPNN in phase functions. CLM is an abbreviation for Chopped Lorenz-Mie.
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Figure 10: Framework overview. The system takes a density field, phase function, and albedo as inputs. Then, in pre-processing,
we recursively down sample the density field and generate the corresponding transmittance fields. The volume-averaged phase
function’s LUT is also generated in this phase. Finally, in runtime, we sample the density and transmittance fields and the
phase with the stencil, and the assembled descriptor is then passed to MRPNN network for estimation.
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