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Figure 1: Our lightweight neural basis functions compactly represent complex 2D spherical functions (lighting, visibility and
BRDF), and efficiently support practical computation, such as Double Product Integral (DPI, left) and Triple Product Integral
(TPI, right), pervasively used for all-frequency shading. Our neural basis functions faithfully preserve all-frequency details
from the ground truth (GT). However, spherical harmonics (SH) suffer from the absence of all-frequency shadows, while
spherical Gaussians (SG) and wavelets lose details at equal compression rates compared with ours (0.39%). Also, our neural basis
functions easily support efficient rotation (R), and they are temporally stable without flickering as opposed to wavelets.

ABSTRACT
Basis functions provide both the abilities for compact representa-
tion and the properties for efficient computation. Therefore, they
are pervasively used in rendering to perform all-frequency shading.
However, common basis functions, including spherical harmonics
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(SH), wavelets, and spherical Gaussians (SG) all have their own lim-
itations, such as low-frequency for SH, not rotationally invariant
for wavelets, and no multiple product support for SG. In this paper,
we present neural basis functions, an implicit and data-driven set
of basis functions that circumvents the limitations with all desired
properties. We first introduce a representation neural network that
takes any general 2D spherical function (e.g. environment lighting,
BRDF, and visibility) as input and projects it onto the latent space
as coefficients of our neural basis functions. Then, we design sev-
eral lightweight neural networks that perform different types of
computation, giving our basis functions different computational
properties such as double/triple product integrals and rotations.
We demonstrate the practicality of our neural basis functions by
integrating them into all-frequency shading applications, showing
that our method not only achieves a compression rate of 0.39% and
10×-40× better performance than wavelets at equal quality, but
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also renders all-frequency lighting effects in real-time without the
aforementioned limitations from classic basis functions.
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1 INTRODUCTION
Basis functions are useful in rendering in computer graphics. They
not only enable compact representations of 2D spherical functions,
such as environment lighting, Bidirectional Reflectance Distribution
Functions (BRDFs), and visibility functions, but also provide nice
computational properties that simplify complex light transport and
dynamic all-frequency shading. The desired properties include the
expressiveness of capturing all-frequency lighting effects, rotational
invariance, and the ability of supporting efficient double or triple
product integrals.

However, different types of basis functions have certain limita-
tions. Even for 2D basis functions, which have been studied for
decades, trade-offs still have to be made according to the prop-
erties of different basis functions. For example, it is pervasively
believed that spherical harmonics (SH) are only suitable to capture
low-frequency signals, wavelets do not easily support spherical ro-
tations, and spherical Gaussians (SG) do not have orthonormality.

The unique limitations of each type of basis functions inspire
us to think about the question: can we design a set of basis func-
tions that has all the desired properties and does not have these
commonly encountered objectionable limitations? This question
can be mathematically difficult, but in this paper, we make the first
attempt to solve this question in a data-driven way. We also demon-
strate the practicality of our data-driven neural basis functions in
all-frequency shading applications utilizing basis functions.

Our high-level idea is using neural networks to handle the repre-
sentation and computation tasks of 2D functions. We first present
an autoencoder-style representation neural network that takes any
general 2D spherical function as input and learns to compress it
into a latent vector. The latent vector acts as the coefficients of our
implicit basis functions. Then, we focus on common types of com-
putations (such as rotations, double product integrals, and triple
product integrals) applied in all-frequency shading, and train a
series of lightweight networks that endow our basis functions with
the desired computational properties. The lightweight networks
act as individual operators to perform computation solely in the
latent space, just like the way that we operate on the coefficients
of traditional basis functions.

With our neural basis functions, we demonstrate that a 2D spher-
ical function can be significantly compressed with much higher
frequencies retained, even when compared with wavelets using

equal storage. Moreover, double and triple product integrals, tradi-
tionally believed expensive for SH (triple product only) and SG, can
be faithfully calculated using our computational networks. Further-
more, once represented using our neural basis functions, the origi-
nal function will never have to be expanded again. All computations
are immediately performed in the latent space, such as rotations us-
ing our rotation network and subsequent shading (which involves
double/triple product integrals) using our integration networks. We
believe our method has opened up new possibilities to incorporate
lightweight neural networks in the core rendering process.

2 RELATEDWORK
In this section, we briefly review techniques that are most relevant
to us. We categorize them into three different types:

Basis functions. Various types of (2D) basis functions, such as
spherical harmonics (SH), spherical Gaussians (SG), and wavelets,
have been widely used in rendering [Ritschel et al. 2012]. Basis
functions are usually defined in the spherical domain, providing
compact representation for lighting, BRDFs, and visibility functions.
A small number of SH basis functions are capable of approximating
low-frequency environment maps and materials [Cabral et al. 1987;
Westin et al. 1992; Ramamoorthi and Hanrahan 2001a,b; Marques
et al. 2022]. While it requires a lot of SH functions to approximate
all-frequency lighting effects, a sparse set of wavelets can faithfully
reproduce them [Ng et al. 2003, 2004; Sun and Mukherjee 2006;
Sun and Ramamoorthi 2009]. To model surface reflectance, many
existing works used SG mixtures (or its anisotropic variants) to
approximate the normal distribution function (NDF) of a rough
surface [Han et al. 2007; Wang et al. 2009; Xu et al. 2013]. Since
different kinds of basis functions have certain appealing mathe-
matical properties, they are effective on some specific rendering
applications. However, they all have individual issues as will be
pointed out in Sec. 3, which are the main problem that we tackle
in this paper. Our goal is to use a data-driven approach to figure
out a set of neural basis functions that has all the desired prop-
erties, including compact all-frequency representation, rotational
invariance, and efficient double/triple integral computation.

Neural approaches and lightweight designs in core rendering. Re-
cently, there is abundant work using neural networks to synthesize
photorealistic images [Tewari et al. 2020] and to perform inverse
rendering [Wang et al. 2018; Sztrajman et al. 2020; Calian et al.
2018]. A series of works [Mildenhall et al. 2020; Bi et al. 2020;
Zhang et al. 2021] learned neural radiance fields (NeRFs) for syn-
thesizing novel views of the given scenes. However, most of them
do not focus on core rendering. We mainly discuss methods that
use neural networks to improve and aid the physically based ren-
dering process. For example, deep shading [Nalbach et al. 2017]
and neural direct-to-indirect light transport [Xin et al. 2020] ex-
ploit easy-to-acquire screen space auxiliary information to predict
more complex shading effects, and neural complex luminaires [Zhu
et al. 2021] design three lightweight neural networks to replace
the key operations for lighting in the modern offline rendering
framework: light radiance evaluation, sampling and pdf (proba-
bility density function) calculation. These approaches are usually
applied as shaders in the rendering process, as opposed to those
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using neural networks to completely bypass/replace the rendering
process. Since performance is the key to core rendering, especially
for real-time rendering where an inference time of 50 milliseconds
is considered prohibitively expensive, we decide to use lightweight
neural networks in contrast to the complex ones used in computer
vision applications. Despite being lightweight, we try to inject more
prior knowledge into the networks to keep them as lightweight as
possible.

Neural basis functions and operations in the latent space. The
concept of “neural basis” has been used in the neural rendering
community [Wizadwongsa et al. 2021; Garbin et al. 2021; Granskog
et al. 2020]. This line of research work often involves dimension
reduction, for example, separating directions and positions into two
independent parts. In this way, one part can be considered as coef-
ficients, and the other is treated as basis functions. The separated
representation indeed looks like the use of basis functions, but they
are significantly different because they only represent/compress
information but do not support computation/operation. There has
been recent work on performing computations in the latent space,
e.g., rotation-invariant or rotation-equivariant convolutional neu-
ral networks for spherical signals [Cohen et al. 2018; Esteves et al.
2018]. In particular, Rhodin et al. [2018] learned a geometry-aware
latent representation by treating the latent vector as a set of 3D
points and applying rotations directly on the latent vector. Rainer
et al. [2022] train neural networks to encode environment lighting
and scene attributes (position, normal, etc.) into the latent space,
and predict the radiance from arbitrary combinations of these two
types of latent vectors. Neural network itself can also be embedded
into the latent space [Sztrajman et al. 2021] or be treated as latent
variables [Hu et al. 2020]. Our goal is to ensure neural basis func-
tions have certain mathematical properties, by introducing different
computation neural networks as different operations completely
performed in the latent space, leading to a operand-operator style
neural solution, similar to the concurrent work by Fan et al. [2022].

3 PRELIMINARIES
Basis functions are a (possibly infinite) set of functions B𝑖 (𝑥), 𝑖 ∈
{1 . . . 𝑁 } that can be used to approximately represent any function
𝑓 (𝑥) as a linear combination:

𝑓 (𝑥) ≈
𝑁∑︁
𝑖=1

𝑎𝑖B𝑖 (𝑥), (1)

where 𝑥 is a variable of a certain dimension and the 𝑎𝑖 -s are the
coefficients corresponding to the basis functions. We are especially
interested in 2D spherical functions as they are widely used in
rendering for representing lighting, BRDFs (strictly, its 2D slice
instead of its full 4D form), and visibility functions. We do not
intend to model all high-dimensional signals that would be required
in rendering.

Projection. To obtain each coefficient 𝑎𝑖 , we need to project the
original function onto each basis function, which is the product
integral of 𝑓 (𝑥) and B𝑖 :

𝑎𝑖 =

∫
𝑓 (𝑥) B𝑖 (𝑥) d𝑥 . (2)

Orthonormality. A set of basis functions is orthonormal over the
domain Ω if ∫

Ω
B𝑖 (𝑥) B𝑗 (𝑥) d𝑥 =

{
1, if 𝑖 = 𝑗,

0, if 𝑖 ≠ 𝑗 .
(3)

Given orthonormal basis functions, it becomes very convenient
to compute the product integral of two functions, i.e. double product
integral (DPI). With both functions projected onto this set of basis
functions, the DPI result is a simple dot product of the coefficients.

Rotational invariance. We first define a rotation operator 𝑅(𝑓 , 𝛼)
that rotates a spherical function 𝑓 with some angles 𝛼 with respect
to a fixed central axes of the origin spherical function. In general,
a set of basis functions defined in spherical domain is rotational
invariant if

𝑅(𝑓 (𝑥), 𝛼) ≈
𝑁∑︁
𝑖=1

𝑎𝑖𝑅(B𝑖 (𝑥), 𝛼) . (4)

Rotational invariance is an important property for practicality
because rotating basis functions itself is usually much cheaper and
more efficient compared with rotating and re-projecting the original
spherical function. Note that the coefficients 𝑎𝑖 are invariant after
rotation.

Multiple product integrals. When multiple (𝑀 > 2) functions are
represented using the same set of basis functions, the integral of
the product of𝑀 basis functions is

𝑐𝑖 𝑗 · · ·𝑘 =

∫
B𝑖 (𝑥) B𝑗 (𝑥) · · ·B𝑘 (𝑥)︸                      ︷︷                      ︸

M terms

d𝑥 . (5)

The multiple product integrals are especially useful in rendering.
In this paper, we focus on the twomost widely used cases: the double
product integral (DPI, when𝑀 = 2) for all-frequency shading, and
the triple product integral (TPI, when𝑀 = 3) for dynamic relighting.
And next we will give a brief introduction of them.

All-frequency shading via DPI. The key idea of this application
is to separate and move the fixed portion of light transport to the
precomputation stage. For example, Sloan et al. [2002] handle envi-
ronment lighting on diffuse objects by partitioning the rendering
equation into two parts, the incident lighting and the transport
function at each shading point with normal n:

𝐿(𝝎𝑜 ) =
∫
Ω
𝐿(𝝎𝑖 )𝑉 (𝝎𝑖 ) 𝑓𝑟 (𝝎𝑖 ,𝝎𝑜 )max(0, n · 𝜔𝑖 )︸                                   ︷︷                                   ︸

transport function

d𝝎𝑖 , (6)

where the environment lighting 𝐿(𝝎𝑖 ) is a 2D spherical function,
and the precomputed transport function that consists of a con-
stant Bidirectional Reflectance Distribution Function (BRDF) 𝑓𝑟 for
diffuse materials and a 2D spherical visibility function𝑉 (𝝎𝑖 ) speci-
fying whether the light is occluded in different directions, is also
a 2D spherical function of 𝝎𝑖 . Therefore, computing all-frequency
shading boils down to evaluating double product integrals (DPI).

Dynamic relighting via TPI. One important variation of the above-
mentioned shading application is using triple product integrals (TPI)
for relighting with a fixed view. The idea is to split the rendering
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Table 1: Strengths and weaknesses of different basis func-
tions. Note orthonormality is out of consideration, since its
original purpose is to provide an efficient computation of
product integrals, which is already satisfied by our design of
DPI/TPI neural network.

SH Wavelet SG Ours

All-frequency × ✓ ✓ ✓
Rotational invariance ✓ × ✓ ✓

Orthonormality ✓ ✓ × N/A
DPI support ✓ ✓ × ✓
TPI support × ✓ × ✓

equation into three different parts: lighting, visibility, and the BRDF
(with the cosine term) as

𝐿(𝝎𝑜 ) =
∫
Ω
𝐿(𝝎𝑖 ) 𝑉 (𝝎𝑖 )︸︷︷︸

visibility

𝑓𝑟 (𝝎𝑖 ,𝝎𝑜 )max(0, n · 𝜔𝑖 )︸                          ︷︷                          ︸
cosine−weightedBRDF

d𝝎𝑖 . (7)

With a fixed view direction 𝝎𝑜 , the BRDF 𝑓𝑟 will become a 2D
spherical function of 𝝎𝑖 , so the BRDF term can be precomputed and
represented using basis functions at every pixel. When the lighting
condition changes, we only need to update the coefficients of the
lighting function using a projection as defined in Eq. (2). Then, we
can compute a triple product integral for each pixel to generate a
new image efficiently.

Note that, the fixed view relighting can be extended to dynamic
view by simply precomputing all BRDF slices from different views
with classic basis functions [Ng et al. 2004] and generating tables of
2D BRDF slices. In this way, shading with dynamic views becomes
no different from that with a fixed view, which are irrelevant to
the choice of basis functions. Therefore, we only focus on the fixed
view relighting for simplicity.

Though pervasively used, traditional basis functions defined in
the 2D spherical domain all have their own limitations. We have
briefly discussed several types of commonly used basis functions
in Sec. 1, and we summarize their strengths and weaknesses in
Table 1. A more detailed discussion is provided in the supplemental
document.

4 NEURAL BASIS FUNCTIONS
4.1 Motivation and overview
Being aware of the various limitations of different basis functions,
we would like to design a set of functions that keep all the good
properties but do not have the issues. We first briefly summarize
and analyze the key design principles:
• high compression rate, ideally introducing an order of magnitude
less storage cost as wavelets at the same quality;

• capturing all-frequency lighting effects, i.e. keeping more high-
frequency details such as shadows and glossy highlights with
equal storage cost as compared to any other types of basis func-
tions;

• fast rotation like SH, allowing operations only on the coefficients
rather than on the original functions;

Figure 2: The overall scheme of our neural basis functions.
Our encoder (E) compresses a 2D spherical function to a short
latent vector, which serves as coefficients of our implicit neu-
ral basis functions. Although our decoder (D) is capable of
converting the latent vector to the original function, it is
not used in subsequent computations. All the mathematical
properties are guaranteed by our lightweight computation
networks: rotation (R), DPI and TPI. They conduct compu-
tations solely in the latent space and ensure the real-time
performance.

• efficient double and triple product integrals; and

• flexibility to support only desired operations and constraints
rather than all mathematical requirements for basis functions.
For example, we do not enforce orthonormality since its original
purpose is to efficiently compute product integrals, which is
already satisfied by our neural DPI/TPI operations.
With our neural basis functions, we are able to achieve all these

goals. For a 2D spherical function, we compress it into a latent
vector using a representation network (Sec. 4.2). The elements
from the latent vector serve as coefficients, and the basis functions
are completely implicit. We have reached a compression rate of
0.39%, equivalent to wavelets keeping 0.19% coefficients (because
the sparse wavelet coefficients must be stored together with their
indices), but as accurate as wavelets using 10×-40× more storage
than ours. For the computations, we focus on rotation (Sec. 4.3),
DPI (Sec. 4.4), and TPI (Sec. 4.5), all conducted solely in the latent
space. Fig. 2 shows the overall scheme of our neural basis functions,
and we present the detailed network designs in the supplemental
document.

4.2 Representation
We use an autoencoder as the Representation (P) network. Given
a 2D spherical function 𝑓 (discretized using the octahedral map-
ping introduced by Clarberg [2008]) as input, the encoder E(·) can
compress it into a low-dimensional latent vector z:

z = E(𝑓 ). (8)

The elements from z serve as coefficients of our implicit basis
functions. We resample the original function 𝑓 with the resolution
of 3× 128× 128, and the encoded latent vector z has a dimension of
3× 8× 8, indicating a compression rate of 0.39%. Then, the decoder
D(·) reconstructs a spherical function 𝑓 from the latent vector z:

𝑓 = D(z) . (9)
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Our goal is to approximate 𝑓 to the original function 𝑓 as closely
as possible. Note that we just use our full representation network
to encode 2D spherical functions into latent vectors in the training
stage – only the encoded low-dimensional latent vectors are used
during rendering, rather than the expensive decoder.

4.3 Rotation
Our Rotation network (R) takes in a latent vector z and rotation
parameters 𝛼 , producing a new latent vector:

z𝛼 = R(z, 𝛼). (10)

The reconstructed function from the rotated latent vector should
closely resemble the rotated function:

D(z𝛼 ) ≈ 𝑅(𝑓 , 𝛼), (11)

where 𝑅(·, ·) is the rotation operator defined in Eq. (4).
For the representation of the rotation parameters 𝛼 , we use the

continuous rotation representation 𝑆𝑂 (3) [Zhou et al. 2019] rather
than Euler angles or quaternions, because the latter ones are not
continuous representations for spherical rotations and thus are not
suitable for neural networks to learn.

4.4 Double Product Integral
To support the double product integral (DPI) operation and achieve
fast computation at runtime, we design a lightweightDouble Product
Integral (DPI) Network. Given two latent vectors z𝑖 = E(𝑓𝑖 ) and
z𝑗 = E(𝑓𝑗 ) that are compressed by the encoder, representing two
spherical functions, the DPI network takes these two latent vectors
as input and performs double product integral in the latent space:

DPI(z𝑖 , z𝑗 ) ≈
∫
Ω
𝑓𝑖 (𝝎) 𝑓𝑗 (𝝎) d𝝎, (12)

here 𝑓𝑖 (𝝎) · 𝑓𝑗 (𝝎) is the double product of the corresponding spher-
ical functions of latent vectors z𝑖 and z𝑗 . For all-frequency shading
applications, these two spherical functions are the environment
lighting and the transport function, and the output of the DPI net-
work is a color value indicating the outgoing radiance.

4.5 Triple Product Integral
To support efficient triple product integral (TPI) operation, we
introduce a Triple Product Integral (TPI) Network.

Similar to the DPI network, given three latent vectors z𝑖 = E(𝑓𝑖 ),
z𝑗 = E(𝑓𝑗 ) and z𝑘 = E(𝑓𝑘 ) compressed by the encoder, the TPI
network perform triple product integral in the latent space:

TPI(z𝑖 , z𝑗 , z𝑘 ) ≈
∫
Ω
𝑓𝑖 (𝝎) 𝑓𝑗 (𝝎) 𝑓𝑘 (𝝎) d𝝎, (13)

here the three functions are environment lighting, visibility and
BRDF, and the output of the TPI network is a color value of the
outgoing radiance after relighting.

5 TRAINING AND INFERENCE
In this section, we give a brief introduction of our training strat-
egy and loss functions. Then we describe necessary information
regarding rendering integration and runtime inference. For more
details, please refer to our supplementary document.

5.1 Data preparation
Our training data consists of general environment maps and geo-
metric data (including visibilities, BRDFs and transport functions).
All are 2D spherical functions. The environment maps are collected
from the Internet. We randomly rotate the environment maps dur-
ing training for data augmentation. And the geometric data is ray
traced from randomly generated scenes with complex occlusion
and materials (we use the Disney principled BRDFs [Burley and
Studios 2012] for generality). In the end, we have about 400 envi-
ronment maps and 3 million geometric data entries (each of them
is a 2D image) in total. These 2D spherical functions are either
downsampled (for environment maps) or generated (for geometric
data) to a resolution of 128 × 128.

We use a hybrid training strategy with a pre-training step and a
fine-tuning step. We first pre-train our networks with all the data,
to acquire the initial weights of each network. Then for a specific
scene, we perform fine-tuning to further improve our networks, in
order to provide us scene-specific neural basis functions with better
quality. We continue training the pre-trained model using about
30% geometric data from this specific scene, together with several
environment maps (numbers are specified in Table 2). More detailed
information such as training time can be found in the supplemental
document.

5.2 Loss functions
We introduce several specially designed loss functions to train our
representation and computation networks. First, inspired by pre-
vious work on image compression [Agustsson et al. 2019], we use
VGG perceptual loss LVGG jointly with ℓ1 loss to train the represen-
tation network. We found that the VGG loss has a significant benefit
on preserving local details. Since we have to deal with HDR envi-
ronment maps and glossy BRDFs, we preprocess HDR values with
the 𝜇-law compression T (·) [Kalantari and Ramamoorthi 2017]
with 𝜇 = 16, inherited from the settings by Guo et al. [2019]. The
final loss function LED for training our representation network can
be formally written as:

LED = LVGG (𝑓 ,T (𝑓 )) + ℓ1 (𝑓 ,T (𝑓 )), (14)

where 𝑓 = D(E(T (𝑓 ))).
Recall that the DPI network takes in two latent vectors z𝑖 and z𝑗

and outputs a value representing the double product integral of the
original spherical functions 𝑓𝑖 and 𝑓𝑗 . We design the loss function
as follows:

LDPI = Lrel

(
DPI(z𝑖 , z𝑗 ),

det(J)
𝑁

𝑁∑︁
𝑛=1

𝑓𝑖 (𝝎𝑛) 𝑓𝑗 (𝝎𝑛)
)
, (15)

where 𝑁 is the pixel number of the images generated by the octa-
hedral mapping [Clarberg 2008], det(J) is the Jacobian determinant
of the spherical mapping (4𝜋 in our case), Lrel is a relative loss we
found that can improve the convergence of learning shadows:

Lrel (𝑥,𝑦) =
|𝑥 − 𝑦 |
|𝑦 | + 𝜖

, (16)
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where 𝜖 = 0.01 is a small constant to avoid division by zero. Simi-
larly, in the TPI case, the loss function LTPI can be written as:

LTPI = Lrel

(
TPI(z𝑖 , z𝑗 , z𝑘 ),

det(J)
𝑁

𝑁∑︁
𝑛

𝑓𝑖 (𝝎𝑛) 𝑓𝑗 (𝝎𝑛) 𝑓𝑘 (𝝎𝑛)
)
.

(17)
Based on different needs for computation from different applica-

tions, we jointly train the representation network with either the
DPI network or the TPI network with a combined loss of 𝜆LED +
LDPI/TPI. We use a fixed 𝜆 = 0.05 as the weight of LED.

After training the representation network and the DPI/TPI com-
putation network, we train the rotation network R independently.
Given a latent vector z representing a function 𝑓 and the rota-
tion representation 𝛼 , we perform rotation in the latent space and
calculate the loss in the 2D image space of the original spherical
functions. Recall the definition of the rotation function 𝑅 (Eq. (4)),
the loss function for training the rotation network is:

LR = ℓ1 (ẑ𝛼 , z𝛼 ), (18)

where z𝛼 = E(T (𝑅(𝑓 , 𝛼))) and ẑ𝛼 = R(z, 𝛼).

5.3 Inference/Rendering integration
Our all-frequency shading applications are implemented using the
NVIDIA OptiX [Parker et al. 2010] and CUDA. During runtime, we
use NVIDIA TensorRT [NVIDIA 2021] to infer neural networks. We
use float16 precision for TensorRT, which does not affect the quality
but will accelerate the inference. Note that the float16 format is only
for inference. For fair comparison, we still use float32 to compute
our storage cost.

6 RESULTS
In this section, we first validate the desired properties of our neural
basis functions, including the ability of capturing all-frequency light
effects (P) and rotation in the latent space (R). Then we demon-
strate results rendered with dynamic shading using our computa-
tion networks (DPI and TPI).

We will also compare our method with other basis functions.
To make fair comparisons with them, we enforce them to use the
same amount of storage. For spherical harmonics (SH), we use the
first seven degrees of SH basis functions. For wavelets, we keep
the approximation coefficient and the first 31 largest coefficients
since the wavelet coefficients must be sparsely stored together with
their indices. For spherical Gaussians (SG), we use 16 SG lobes to
approximate a spherical function. Each isotropic SG at least requires
4 floating numbers to specify its 2D center, 1D bandwidth and 1D
amplitude. SG parameters are optimized using L-BFGS [Li et al.
2019]. We use structural dissimilarity (DSSIM) as the error metric,
and we tonemapped the HDR results to sRGB for DSSIM evaluation.

6.1 All-frequency light effects
To demonstrate our representation network’s ability of capturing
all-frequency effects in spherical functions, we show in Fig. 3 the
comparison of compression followed by reconstruction among our
encoder/decoder network, SH, SG, and wavelet. Using equal stor-
age, SH produces ringing artefacts when using equal (1×) storage
since its degree is not high enough, SG leads to over smoothed
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Figure 3: Comparison of compression followed by recon-
struction among our representation network, SH, SG, and
wavelet. The reconstructed spherical functions using our
representation network match the original functions more
accurately while others have their own issues.

images without high-frequency details, and the highly compressed
wavelet loses most details and shows severe blocky artifacts. In con-
trast, the reconstructed spherical functions using our neural basis
functions match the original functions more accurately. Achieving
equal quality (EQ) using wavelet requires up to 41× more storage
compared with ours.

6.2 Rotation
As shown in Fig. 4, with a latent vector and a 𝑆𝑂 (3) rotation matrix,
our rotation network can perform rotation operation in the latent
space. We compare the spherical functions reconstructed from the
rotated latent vectors (“Decoder w/ R” column) with the rotated
spherical functions (“GT” column), and our results accurately match
the ground truth. We also feed the rotated spherical functions to the
encoder as input and then forward the resulting latent vectors to
the decoder. The reconstruction results (“Decoder w/o R” column)
are close to ours, indicating that our trained representation network
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Figure 4: We compare the spherical functions reconstructed
in different ways. The results indicate that our representa-
tion network forms a meaningful latent space that supports
efficient rotation, leading to better quality than wavelet.

can generate meaningful latent vectors that support efficient rota-
tion. Compared to the wavelet results at equal storage, our method
leads to significantly better image quality and temporal stability.
During rendering, the rotation will be applied on the latent vector
of the original, unrotated environment lighting. We show animated
rotation results in the supplemental video.

6.3 All-frequency shading by computation
networks

We compare our rendering results with other non-neural baselines
using spherical functions represented by SH, SG, and wavelet. All
the rendering results are generated using a desktop with an NVIDIA
3090 GPU. The scene configurations and performance statistics are
summarized in Table 2.

DPI network. In Fig. 5, we compare rendering results using our
DPI network with images rendered using SH and wavelet in all-
frequency shading. With equal storage, a small number of SH coef-
ficients cannot capture high-frequency shadows, and highly com-
pressed wavelet coefficients suffer from significant artifacts. In
contrast, our method accurately reproduces the high-frequency
shadows under a sharp spotlight.

TPI network. In Fig. 6, we compare rendering results using our
TPI network with images rendered using wavelet and SG basis func-
tions in dynamic relighting. The figure in the top right corner shows
the reconstructed environment lighting of eachmethod. Computing
a new set of wavelet coefficients after rotating a spherical func-
tion is expensive. We need first to rotate the spherical function
explicitly and then project the rotated function onto wavelet basis.
Since wavelet compression only keeps the largest coefficients and
truncates the rest, wavelet coefficients at consecutive frames may
change significantly, causing severe flickering artifacts. Flickering
is even more evident when using highly compressed wavelet coef-
ficients in our case. As for spherical functions represented by SG,
they can be rotated efficiently. However, with insufficient SG lobes,
it cannot accurately capture high-frequency effects such as shadows
and glossy highlights. In contrast, our neural basis functions and
TPI network can generate high-quality images in real-time frame

Table 2: The scene configurations and performance statistics.
Our runtime performance of each scene meets the real-time
requirements. The running time of the rotation network is
negligible since the rotation is only operated on lighting.

Scene Figure #Valid
pixels

#Trained
lighting

DPI
(ms)

TPI
(ms) FPS

Plant (teaser) Fig. 1 249324 2 5.7 N/A 175.4
Teapot Fig. 1 316830 12 N/A 7.4 135.4
Dragon Fig. 6 336788 12 N/A 7.5 130.8

San Miguel Fig. 6 920130 12 N/A 19.8 50.6
Plant Fig. 5 184163 1 5.0 N/A 199.3

rates. Even with dynamic environmental lighting, our rendering
results are temporally stable (shown in the supplemental video).

Performance. The performance numbers are summarized in Ta-
ble 2. Thanks to our lightweight computation networks, we can
achieve real-time performance. Note that the running time is lin-
early scaled by the number of valid pixels (with traced rays hitting
the objects). We only count the inference time.

We also need to point out that our network inference is indeed
slower than traditional basis functions (such as the dot product of
SH coefficients) for equal storage comparison. Nevertheless, we
believe that it is not easy to conduct a better comparison than equal
storage, even it exposes both the advantage (better quality) and the
disadvantage (slower performance) of our method. Making equal-
quality comparisons or equal-quality comparisons needs to use a
prohibitively large number of terms for traditional basis functions.

6.4 Discussion and limitations
Relation to precomputed radiance transfer (PRT). Though we

choose all-frequency shading applications to demonstrate the ca-
pacity and the efficiency of our neural basis functions, our focus is
fundamentally different from PRT research. PRT makes use of ex-
isting basis functions, while we design a new type of basis function
completely in its compressed formwith desired computational prop-
erties, and only use all-frequency shading to demonstrate possible
uses of our neural basis functions.

Therefore, we believe that our research is orthogonal to PRT. We
do not extend further discussion on PRT methods, especially those
not using basis functions [Ren et al. 2013]. While we are fully aware
that PRT has its own issues, we do not attempt to address them,
e.g., enabling dynamic camera movement in relighting. However,
since moving camera essentially requires precomputing more BRDF
slices (Sec. 3), we believe our method can be extended to solving
it. This involves fine-tuning with a larger set of 2D BRDF slices,
and compressing them into a dictionary of latent vectors. During
rendering, the corresponding latent vectors of the BRDF slices will
be queried and used in follow-up computations as usual. Since
projecting 2D functions onto our neural basis functions is fast
enough, the precomputation can be performed in a reasonable
amount of time in practice.
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Plant

SH 0.02193 Wavelet 0.05394 DPI 0.00690 GT

Figure 5: Comparison between our DPI network, SH and wavelet in all-frequency shading. The figure on the top right corner
shows the reconstructed environment lighting of each method. Our method accurately reproduces the high-frequency shadows
under a sharp spot light, while SH is failure to capture high-frequency shadows, and wavelet suffer from significant artifacts.

Dragon

Wavelet 0.02418 SG 0.00783 TPI w/o R 0.00317 GT
San Miguel

Wavelet 0.15148 SG 0.20447 TPI w/o R 0.02240 GT

Figure 6: Comparison between our TPI network, wavelet and SG in dynamic relighting. Wavelet coefficients at consecutive
frames may change greatly, causing severe flickering artifacts like flickering colors (red arrow) and blocky shadows (blue
arrow). Rotating SG is efficient. But with insufficient lobes, it cannot accurately capture high-frequency effects such as shadows
and glossy highlights. In contrast, our neural basis functions can generate high-quality images in real-time frame rates.

Artifacts. Because we use short latent vectors to compress 2D
spherical functions and render images with lightweight computa-
tion neural networks, there is inevitable information loss. When we
reconstruct the original spherical functions, typical artifacts such
as grid patterns and blurred signals caused by neural networks are
noticeable (e.g., comparing the last two rows in Fig. 3).

In addition, the computation networks (DPI, TPI, and R net-
works) produce more noticeable artifacts such as the blurred high-
frequency shadows and missing specular reflection, as can be seen
in our supplemental document and the accompanying video. We
believe that these artifacts can be better suppressed using smarter
loss functions, advanced architectures, and more data.

Generalizability. We have demonstrated that our method has
a certain extent of generality by pre-training on a large dataset.
But our neural basis functions do rely on fine-tuning at this stage
to achieve the best quality on a specific scene. Therefore, how to
further generalize our neural basis functions to completely avoid
fine-tuning is an interesting research direction in the future.

7 CONCLUSION AND FUTUREWORK
We have presented neural basis functions, a learning-based tech-
nique that can significantly compress spherical functions as well as
perform efficient double/triple product integrals and rotation. We

train a representation network to compress an input 2D spherical
function into a latent vector that acts as coefficients of implicit
basis functions, and we design lightweight computation networks
to perform subsequent computations completely in the latent space.
With the help of these computation networks, we achieve the de-
sired key properties of basis functions, including high compression
rate, all-frequency representation, efficient rotation, and practi-
cal evaluation of double/triple product integrals, although we rely
on fine-tuning on specific scenes. We show plausible results of
all-frequency shading in real-time frame rates (≥ 30 frames per
second), but we do have a weakness in inference speed which is
slower than traditional basis functions.

In the future, it is straightforward to train more specific neural
networks to support new effects such as dynamic material edit-
ing [Xu et al. 2007]. It would also be interesting to extend our neu-
ral basis functions to enable more applications like affine TPI [Sun
and Ramamoorthi 2009] and multiple product integrals [Sun and
Mukherjee 2006]. Furthermore, as pointed out earlier, our usage of
neural networks is specially tailored for rendering, so it is crucial
for them to be lightweight. Therefore, we want to draw attention to
this kind of lightweight neural networks used in rendering [Müller
2021]. And we hope to stimulate research on GPU architectures or
low-level programming models for faster inference and training.
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