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Fig. 1. A new rendering pipeline based on precomputed light probes and deep neural networks is proposed that can reconstruct a 1080P (1920×1080) image with
complex global illumination in real time (>30 frames per second). The generated images closely match the path traced ground truth and achieve state-of-the-art
quality as compared with those generated by previous work, e.g., the glossy probe reprojection (GPR) method [Rodriguez et al. 2020]. Thanks to a neural
image reconstruction method, the light probes can be generated with a low resolution and a low sampling rate, saving the precomputation time.

Reproducing physically-based global illumination (GI) effects has been a

long-standing demand for many real-time graphical applications. In pursuit

of this goal, many recent engines resort to some form of light probes baked

in a precomputation stage. Unfortunately, the GI effects stemming from

the precomputed probes are rather limited due to the constraints in the

probe storage, representation or query. In this paper, we propose a new

method for probe-based GI rendering which can generate a wide range of GI

effects, including glossy reflection with multiple bounces, in complex scenes.

The key contributions behind our work include a gradient-based search

algorithm and a neural image reconstruction method. The search algorithm

is designed to reproject the probes’ contents to any query viewpoint, without

introducing parallax errors, and converges fast to the optimal solution. The

neural image reconstruction method, based on a dedicated neural network

and several G-buffers, tries to recover high-quality images from low-quality

inputs due to limited resolution or (potential) low sampling rate of the probes.

This neural method makes the generation of light probes efficient. Moreover,

a temporal reprojection strategy and a temporal loss are employed to improve
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temporal stability for animation sequences. The whole pipeline runs in real-

time (>30 frames per second) even for high-resolution (1920×1080) outputs,
thanks to the fast convergence rate of the gradient-based search algorithm

and a light-weight design of the neural network. Extensive experiments on

multiple complex scenes have been conducted to show the superiority of

our method over the state-of-the-arts.
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networks.
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1 INTRODUCTION
Accurately computing physically-based global illumination (GI) is

a longstanding problem in computer graphics, and is particularly

challenging for real-time scenarios. To accelerate runtime global

illumination, many recent real-time rendering engines favor some

form of light probes which encode lighting information of a 3D scene

into a sparse set of compact caches placed statically in the scene

[Hooker 2016; Majercik et al. 2019, 2021; McGuire et al. 2017]. At

runtime, the light that hits an object is approximately reconstructed

by the precomputed or baked values from a small number of nearest

probes to that object. To offer more physical-plausible shading,

these light probes can be further coupled with visibility [Majercik

et al. 2019; McGuire et al. 2017] or precomputed radiance transfer

[Silvennoinen and Lehtinen 2017; Sloan et al. 2002].
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Among existing probe-based methods, many rely on simplifying

assumptions about path types, such as pure diffuse paths handled

by irradiance probes [Majercik et al. 2019] or one-bounce specular

paths approximated by environment maps [Blinn and Newell 1976].

Generally, long glossy paths–paths with multiple glossy bounces–

are usually excluded from these methods due to the strong corre-

lation between the scattering distribution and the view direction.

To efficiently handle all light paths in static scenes, glossy probe

reprojection (GPR) [Rodriguez et al. 2020] is recently introduced,

enabling interactive rendering of complex glossy scenes. However,

this method has a very large computational burden in the precompu-

tation step since high-quality probes with a high sampling rate are

required. The long baking time makes the lighting workflow ineffi-

cient for artists and difficult for engineers to debug. Moreover, the

heuristic gathering and filtering processes in this method may incur

artifacts, such as inaccurate glossiness of highlights and specular

geometric aliasing along object edges.

With the prevalence of deep learning techniques, neural ren-

dering [Tewari et al. 2020] has become a widespread concern for

many graphical applications. In this paper, we investigate the use

of neural rendering to handle light probes, as a means to lower the

computational cost in the precomputation step, while still main-

taining photorealism even for surfaces of varying roughness. Lever-

aging specialized performance optimization (e.g., TensorRT) for

deep learning, the proposed method is expected to achieve real-time

performance for GI rendering.

Our method is built upon precomputed light probes and resorts

to a neural network for final image reconstruction. The key to

our method is the replacement of heuristic and analytical probe

interpolation in previous methods by a more robust and flexible

learning-based model. In this method, a gradient-based reflection
search algorithm first reprojects parallax-corrected glossy reflection

from multiple probes to the current view. This process ensures that

reflection effects on the glossy surfaces are free of parallax errors

but may produce noise and incomplete structures due to limited

information stored in the probes. To remove the noise and restore

the important structures, we design and train a convolutional neural

network under the guidance of some G-buffers (including normal,

depth and albedo). To better fuse features from different modalities

in this network, a G-buffer Modulation module is specially designed

which improves the quality of reconstructed images.

The proposed learning-based method allows us to precompute

light probes (and lightmaps for diffuse reflection) with a very low

sampling rate while still reproducing high-quality global illumina-

tion with complex light paths (including long glossy paths) from

any novel view. This significantly reduces the precomputation time

that is required for the generation of light probes and lightmaps

and is beneficial for the fast response to scene editing and updat-

ing. As another notable advantage, the low-level image statistics

priors [Nalbach et al. 2017; Ulyanov et al. 2018] learned by our deep

convolutional network, including geometrical structures and tex-

ture details, are also beneficial for reducing the specular geometric

aliasing along object edges [Rodriguez et al. 2020].

In summary, our paper makes the following contributions:

• We introduce an efficient rendering pipeline for reproducing

high-quality global illumination with complex glossy light

paths from low-quality light probes.

• We propose a gradient-based reflection search algorithm that

explicitly takes the parallax changes between the probe and

the novel view into consideration during probe query.

• We design a neural network, with a dedicated G-buffer mod-

ulation module, that can better recover high-quality images

from low-quality inputs due to imperfect lightmaps and light

probes.

• We illustrate the effectiveness and robustness of our method

on multiple scenes with complex glossy paths, showing real-

time performance when rendering at 1080P resolution on

latest GPUs.

2 RELATED WORK
In this section, we review existing techniques that are closely related

to our work.

2.1 Probe-based global illumination
Light probes were first introduced into rendering by Greger et al.

[1998] in their seminal irradiance volumes work. Since then, it has

become a standard method for approximating global illumination

in real time. Probes can be represented in various forms including

cube maps [Hooker 2016], octahedron maps [Cigolle et al. 2014],

Spherical Gaussians [Currius et al. 2020] or Spherical Harmonics

(SH) expansions [Sloan et al. 2002; Tatarchuk 2005]. Considering the

tradeoff between accuracy and performance, different information

can be stored in a probe. Irradiance probes encode lighting infor-

mation as SH basis functions to achieve high efficiency and allow

dynamic contents update. However, only diffuse reflection can be

well captured by irradiance probes. To support the computation of

indirect glossy reflection, Křivánek et al. [2005] proposed to cache

and interpolate directional incoming radiance instead of irradiance.

Such a radiance caching scheme has been successfully applied in

both offline [Dubouchet et al. 2017; Jarosz et al. 2008; Jiang and Kainz

2021; Marco et al. 2018; Zhao et al. 2019] and real-time rendering

[Müller et al. 2021; Vardis et al. 2014]. Light field probes [McGuire

et al. 2017] further extend radiance/irradiance probe structures with

additional geometric information to eliminate light and dark leaks.

Silvennoinen and Lehtinen [2017] suggested to factorize the trans-

port matrix into global and local transport matrices and sample

sparse radiance probes to reconstruct indirect lighting. Majercik et

al. proposed Dynamic Diffuse Global Illumination (DDGI) [Majercik

et al. 2019] which combines sparse irradiance probes with visibility-

aware interpolation to rapidly approximate indirect illumination.

Hu et al. [2021] extended DDGI by employing signed distance fields

as a representation of the scene, enhancing the details of reconstruct-

ed global illumination. By using angularly-filtered radiance, DDGI

can also be extended to approximate glossy reflection [Majercik

et al. 2021] from a limited set of path types. To handle all types of

glossy paths, glossy probe projection [Rodriguez et al. 2020] is pro-

posed at the cost of heavy precomputation and specular geometric

aliasing. Our deep learning-based method addresses these problems

and allows real-time novel view reconstruction.
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2.2 Real-time specular/glossy Illumination
Due to the high-frequency range and the view-dependent nature,

specular illumination has long been unfavored by precomputation-

based techniques [Ramamoorthi 2009], especially for scenes with

complex interreflection. In the context of real-time rendering, much

effort has been devoted to accurately reproduce specular or highly

glossy illumination. Many methods rely heavily on dedicated graph-

ics hardwares [Szirmay-Kalos et al. 2009]. For perfect reflection,

environment mapping [Blinn and Newell 1976] has been widely

adopted to model reflected distant lighting from an infinite environ-

mentmap. To recreate parallax effects that aremissing in the original

environment mapping technique, Szirmay-Kalos et al. [2005] added

depth information to the environment map to select the proper pixel

inside the environment map. Chen and Arvo [2000a; 2000b] pro-

posed specular path perturbation methods to find reflection points

on implicit curved reflectors with a second-order Taylor expansion.

Explicit triangle meshes are also used to compute the accurate re-

flection positions in the scene [Ofek and Rappoport 1998; Roger

and Holzschuch 2006]. To simulate glossy reflection, prefiltering

strategies can be applied on the environment map [Kautz et al. 2000].

Xu et al. [2014] proposed to analytically compute one-bounce glossy

interreflection using Spherical Gaussians, achieving near interactive

performance.

The recent advent of hardware-accelerated ray tracing in modern

GPUs [Burgess 2020; Harada 2020; Sandy et al. 2018] has spurred

the development of real-time ray tracing (RTRT) that naturally

supports all types of glossy paths. Currently, many RTRT methods

rely on rendering a very noisy image using a very low sampling

rate (e.g., 1 sample per pixel) and denoising the results with a highly

efficient denoiser [Chaitanya et al. 2017; Fan et al. 2021; Koskela

et al. 2019; Schied et al. 2017; Zhuang et al. 2021]. To maximize

the quality of path traced images before denoising, Bitterli et al.

[2020] proposed ReSTIR which combines importance resampling

and classic weighted reservoir sampling to allow the reuse of a

large number of samples in constant time. This method focuses

on direct illumination from a large number of light sources, but

can be further extended to indirect illumination via resampling

multi-bounce indirect lighting paths [Ouyang et al. 2021]. Temporal

coherence between adjacent frames is quite often considered to

further reduce the samples taken at each individual frame [Scherzer

et al. 2012; Yang et al. 2020].

2.3 Novel view synthesis
Our work is also closely related to novel view synthesis which aims

to warp image content from captured views to a new view. Early

methods typically employ optimization-based multi-view stereo

methods to reconstruct scene geometry (or geometric proxy) and

warp observations into the coordinate frame of the novel view

[Buehler et al. 2001; Chaurasia et al. 2013; Debevec et al. 1998, 1996;

Sinha et al. 2009; Wood et al. 2000]. More recent solutions have

trained deep neural networks end-to-end for view synthesis, which

has emerged as a new paradigm in this field. Usually, a learned

representation of the scene, such as multiplane image (MPI) [Flynn

et al. 2019; Mildenhall et al. 2019; Xu et al. 2019; Zhou et al. 2018a],

3D volume [Lombardi et al. 2019], neural light transport [Zhang
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Fig. 2. High-level overview of our pipeline. To generate the diffuse reflection
map I

d
, we query a lightmap precomputed with a low sampling rate. For

glossy reflection, we rely on precomputed light probes and perform gradient-
based reflection search to obtain a parallax-corrected glossy reflection image
Ig. The final image I𝑜 is reconstructed by a neural network from I

d
and Ig,

with the guidance of several G-buffers.

et al. 2021a] or neural radiance field (NeRF) [Martin-Brualla et al.

2021; Mildenhall et al. 2020; Zhang et al. 2021b], is reconstructed

from the observations.

2.4 Neural rendering
Besides novel view synthesis, neural networks have also been suc-

cessfully applied in other complex and time-consuming aspects of

rendering, such as denoising [Bako et al. 2017; Chaitanya et al. 2017;

Fan et al. 2021; Vogels et al. 2018], material acquisition [Deschain-

tre et al. 2018; Dong 2019; Gao et al. 2019; Guo et al. 2021b, 2020],

texture synthesis [Zhou et al. 2018b], relighting [Chen et al. 2020;

Philip et al. 2019; Xu et al. 2018], spatial/temporal super-resolution

[Guo et al. 2021a; Xiao et al. 2020] and deferred rendering [Gao et al.

2020; Thies et al. 2019]. This forms a new and rapidly emerging

area named neural rendering which has witnessed a large body of

work been published recently in graphics community. Many neural

rendering approaches can be broken up into two components: a

neural scene representation and a neural (potentially differentiable)

renderer. Unlike hand-crafted scene representations used in tradi-

tional rendering, neural scene representations [Eslami et al. 2018;

Granskog et al. 2020; Kulkarni et al. 2015; Sitzmann et al. 2019] are

more flexible and can be tailored to the task at hand. The rendering

process can also be replaced by neural networks [Hadadan et al.

2021; Nalbach et al. 2017; Ren et al. 2013], achieving high perfor-

mance while still preserving physical plausibility. For a complete

review of neural rendering, please refer to a recent survey presented

by Tewari et al. [2020]. In our work, we design, to our knowledge,

the first neural network for final image inference for light probes,

showing superiority as compared with traditional image synthesis

processes in existing probe-based real-time rendering methods.

3 PROBLEM FORMULATION AND OVERVIEW
We aim to solve the rendering equation [Kajiya 1986] in real time, so

as to capture every physically-based shading effect for a given scene
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with more than 30 frames per second. To achieve this goal, we resort

to precomputed lightmaps (for diffuse reflection) and light probes

(for glossy reflection). The usage of lightmaps follows the general

solution in many previous rendering systems [Rodriguez et al. 2020;

Seyb et al. 2020]. Notably, the learning-based image reconstruction

method in our pipeline allows us to generate the lightmap with a

very low sampling rate (e.g., 256 spp), thus largely reducing the

precomputation time.

To reproduce glossy reflection stemming from long glossy paths

in real time, we first precompute a sparse set of light probes and

organize them on a regular 3D grid in the scene. Similar to the

lightmap, these light probes can also be generated with a low sam-

pling rate. For a light probe M located at a grid position p, we store
the accurate radiance from ray queries for all glossy paths origi-

nating at p. This information is then reused when shading glossy

points at novel view near p. We also store the material ID of the

shading point seen directly from the probe’s origin and the world

position of the reflected geometry seen with once-bounce reflection

if every surface is assumed to be mirror-reflected.

At runtime, given a query viewpoint o we first identify 𝐾 nearest

light probes M𝑘 (𝑘 = 1, 2, ..., 𝐾) surrounding o, as shown in Fig.

2. Then, we reproject each light probe to o via a gradient-based

reflection search algorithm (denoted as P):

I
g,𝑘 = P{o, p𝑘 ,M𝑘 } (1)

where p𝑘 is the world position of the 𝑘-th probe. After that, we

obtain 𝐾 2D images I
g,𝑘 (𝑘 = 1, 2, ..., 𝐾 ) storing the glossy reflection

seen from the query viewpoint o. The reflection search is performed

in a parallax-aware manner, which means parallax changes between

the probe and the camera’s viewpoint are corrected by P. This

plays an important role in handling glossy paths since large parallax

errors usually exist, producing unnatural images.

When multiple probes are used (𝐾 > 1), an interpolation process

is typically required to reconstruct the final image from 𝐾 repro-

jected images. Existing methods usually rely on analytical blending

strategies, which are simple and efficient, but are easily plagued

with annoying artifacts such as light/darkness leaks [Hooker 2016],

undersampling [Wang et al. 2019], or geometric aliasing [Rodriguez

et al. 2020]. In this paper, we propose a learning-based method to

recover the final image I𝑜 at o with high quality. Mathematically,

we formulate this step as

I𝑜 = Φ𝜁

(
𝐾∑︁
𝑘=1

𝑊𝑘 Ig,𝑘 + I
d
,D𝑜 ,N𝑜 ,A𝑜 ,B𝑜

)
(2)

where Φ𝜁 denotes the network parameterized by 𝜁 . The first item

feeding to Φ𝜁 is the weighted average of 𝐾 glossy reflected images

plus a diffuse reflected image I
d
, while the other items include a

depth map D𝑜 , a normal map N𝑜 , an albedo map A𝑜 and a reflected

albedo map B𝑜 . These G-buffers (e.g., D𝑜 , N𝑜 and A𝑜 ) have also

been adopted to some other neural rendering methods, such as

deferred rendering [Gao et al. 2020; Thies et al. 2019] and Monte

Carlo denoising [Bako et al. 2017; Chaitanya et al. 2017; Fan et al.

2021; Vogels et al. 2018].

We train the network Φ𝜁 in a supervised manner. To this end, we

construct a large-scale dataset containing sufficient training exam-

ples generated from 3D scenes. Each training example is comprised

(a) (b) (c)

Fig. 3. Data stored at each probe’s position: (a) radiance of glossy reflection
generated with 128 spp, (b) reflected position and (c) material ID. The first
row shows the panoramas and the second row shows the closeups.

of {∑𝐾
𝑘=1

𝑊𝑘 Ig,𝑘 , Id,D𝑜 ,N𝑜 ,A𝑜 ,B𝑜 } and the ground truth Î. After
trained on this dataset with a properly chosen loss function L, the

network Φ𝜁 is expected to output a high-quality image that is close

to the ground truth at any novel viewpoint. Since specially-designed

neural networks are robust to aliasing and noise, our method is able

to eliminate most artifacts mentioned above. The low-level image

statistics priors learned by the network even allow us to gener-

ate light probes with a low sampling rate, which is beneficial for

reducing the precomputation overhead.

4 THE PROPOSED RENDERING PIPELINE
In this section, we expose the details of each step in our pipeline.

4.1 Lightmap with a low sampling rate
We currently handle diffuse reflection and glossy reflection separate-

ly. For diffuse reflection, we adopt the lightmap technique which is

the de facto solution in many rendering systems [Seyb et al. 2020].

Generally, the conventional lightmap technique is plagued by a long

baking time since a very high sampling rate is required to generate

noise-free results. Our learning-based image reconstruction method

makes it possible to accept noisy lightmaps synthesized with a low

sampling rate. Once trained on a large-scale dataset, our network

suppresses noise on the diffuse regions and yields clear diffuse reflec-

tion. This significantly reduces the time required by precomputing

the lightmap, and makes it convenient for artistic design.

4.2 Probe precomputation and storage
To handle glossy reflection, we first precompute a sparse set of

light probes in the scene and arrange them on a regular 3D grid.

For each probe M located at a 3D position p, we render a 360
◦

panorama storing surfaces that are visible from the center of the

probe. Currently, we cache incident radiance from glossy surface,

material ID and reflected position in the panoramas. One case is

provided in Fig. 3. The incident radiance is generated by path tracing

the scene starting from the center of the probe and only takes glossy

reflection into consideration. The reflected position is generated

by treating all surfaces as perfect mirrors and storing the world

position of geometry seenwith one-bounce reflection. Both reflected

position andmaterial ID will be used in the following gradient-based

reflection search algorithm.
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(a) First iteration (b) Second iteration

Fig. 4. Illustration of our gradient-based reflection search algorithm. The
solid purple cross represents a point z seen from the viewpoint o with one-
bounce mirror reflection, while the transparent purple cross is its virtual
image z′ in the local tangent space. The goal of this algorithm is to search a
point on each probe that stores the actual reflection from z.

(a) Planar surface (b) Inconsistent material

Fig. 5. Two special cases of our gradient-based reflection search algorithm.

Similar to the treatment of lightmaps, our neural method allows

the probes to be imperfect, meaning that we can generate noisy

probes with a low sampling rate. This differs from some previous

methods [McGuire et al. 2017; Rodriguez et al. 2020; Silvennoinen

and Lehtinen 2017] which require noise-free probes, and can further

reduce the time cost in the precomputation step. Benefiting from the

image priors learned by the network and the additional G-buffers

(depth, normal and albedo), high-quality images could be recovered

from low-quality inputs.

4.3 Gradient-based reflection search
One key step in probe-based rendering pipelines is to query probes

without producing improper glossy reflection stemming from par-

allax changes between the probe and the novel view. We address

this issue by introducing a new gradient-based reflection search

algorithm. This algorithm searches physically-plausible reflection

positions in the whole screen space of the novel view and converges

fast to the optimal solution with the help of the gradient at each

candidate.

At runtime, for each viewpoint o we first identify 𝐾 = 8 nearest

probes around o (see Fig. 2) and then search on each probe the

optimal reflection position that matches the glossy shading point at

the novel view (see Fig. 4). The optimal reflection position is then

(a) Naive search method (b) Our search method (c) Ground truth

Fig. 6. Illustration of the parallax-corrected glossy reflection generated by
our reflection search method (b), as compared with the effect of the naive
search method (a) and the ground truth (c).

used to query the probes, yielding 8 images (Ig,1, Ig,2, ..., Ig,8) with
parallax-corrected glossy reflection effects.

The basic algorithm. The search process runs iteratively for each

image’s pixels, as visually explained in Fig. 4. Suppose that a primary

ray starting from o reaches z in the scene after being reflected by a

glossy shading point x. In the first iteration, we obtain the tangent

plane at x according to the normal of x. This tangent plane serves
as a mirror reflector that determines the virtual image z′ of z in
the local tangent space of x. The intersection point of line pz′ and
the tangent plane (y1 in Fig. 4(a)) yields a candidate x1 that is used
to further validate its correctness. For planar surfaces, it is easy to

check that the candidate of the first iteration x1 happens to be the

optimal solution, as explained in Fig. 5(a). For curved surfaces, the

iteration continues at x1 and conducts a further search along its

gradient, as shown in Fig. 4(b). Each consequent search is expected

to produce candidates closer to the optimal position. The correctness

of the 𝑘-th candidate x𝑘 is defined as

C(x𝑘 ) =
px𝑘 + zx𝑘
∥px𝑘 + zx𝑘 ∥

· N(x𝑘 ) (3)

where N(x𝑘 ) indicates the normal at x𝑘 . The value of C(x𝑘 ) re-
flects the confidence of each candidate x𝑘 . The iteration stops until

reaching:

(1) a predefined threshold of the optimal value of C(x𝑘 ), i.e.,
𝑇max, or

(2) a predefined maximum search number 𝑁max.

After convergence for each probe, a weighted blending operation is

performed on the eight images (Ig,1, Ig,2, ..., Ig,8), i.e.,

Ig =

8∑︁
𝑘=1

𝑊𝑘 Ig,𝑘 with 𝑊𝑘 =
exp[−𝜏C𝑘 ]∑
8

𝑘=1
exp[−𝜏C𝑘 ]

(4)

where C𝑘 is a confidence map for the 𝑘-th probe, generated ac-

cording to Eq. (3); 𝜏 is a parameter defining the decay rate of the

exponential. As shown in Fig. 6, this method well solves the parallax

problem for the glossy reflection, significantly outperforming the

naive search method which connects the glossy shading point x and
the probe’s location p directly.

Special cases. Two special cases should be concerned during the

iteration. The first happens when two consecutive candidates (e.g.,

x and x1 in Fig. 5(b)) lie on different objects. We check this case

by comparing the material IDs of x and x1. If their material IDs

ACM Trans. Graph., Vol. 41, No. 4, Article 202. Publication date: July 2022.
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(a) Without visibility (b) With visibility (c) Ground truth

Fig. 7. The impact of visibility checking in our search algorithm. Note the
ghosting effects highlighted by the red arrows in (a) due to the visibility
issue.

are different, our algorithm will still search along the gradient of

x but with a shortened step, as indicated by the red arrow in Fig.

5(b). The step is shortened continuously until the same material ID

is achieved. The second special case happens when the projected

coordinate of a candidate is out of the viewport. In this case, we

perform the same shortened search as in the first case.

Handling visibility. Even an optimal position can be found through

the above steps, there is still a risk that this optimal position is

actually occluded from the queried probe. In this case, this optimal

position is invalid and should be dropped. Otherwise, there will be

ghosting artifacts in the resulting images, as shown in Fig. 7. To

address this issue, we resort to the reflected position map stored

in each probe, e.g., Fig. 3(a). We evaluate the distance between z
and the value queried from the reflected position map according

to the retrieved optimal position. If the distance is larger than a

predefined threshold 𝐷max, this optimal value will not be used. This

can suppress the ghosting effects due to the improper query.

Comparison and discussion. Rodriguez et al. [2020] propose a two-
level grid search algorithm to find the optimal reflection position for

each pixel. They first use per-pixel curvature to obtain an approxi-

mate reflection position x′, and then fine-tune it in its neighborhood

by a two-level grid search strategy. A key ingredient necessary for

this algorithm is the curvatures to determine the approximation x′.
However, per-pixel curvature will be inaccurate for meshes that are

tessellated insufficiently or bumpy surfaces with dramatic changes.

More importantly, the search is constrained in a fixed local area

around x′, which may miss optimal positions that are actually out

of this area, leading to obvious parallax errors. In addition, a filter

footprint estimation is involved in the filtering step of their search

algorithm. This may further introduce bias to the highlights due to

the errors from the estimation. To demonstrate this, we show a case

from the Kitchen scene in Fig. 8. As seen, the query results of GPR

(either in gathering or in filtering) deviate significantly from the

ground truth, resulting in inaccurate glossiness as highlighted in the

error maps. In comparison, our results match the ground truth quite

well, since we search the optimal solution in the whole viewport.

The accuracy of our algorithm is clearly indicated by the error maps

and the RMSE values in Fig. 8. As another advantage, our search

algorithm runs much faster than the two-level search algorithm in

GPR, since for many surfaces our method converges to the optimal

solution with only a small number of iterations.
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e
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n
g
i
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Time=7 ms RMSE=0.027

Results Errors

Fig. 8. Visual comparison between our gradient-based reflection search
algorithm and the gathering and filtering algorithms in GPR [Rodriguez
et al. 2020]. For fair comparisons, we precompute the light probes using the
same sampling rate as GPR. Rendering times (tested on an NVIDIA GeForce
RTX 3090Ti graphics card) and errors in terms of RMSE are reported for
each algorithm.

4.4 Neural image reconstruction
Since both lightmaps and light probes in our pipeline are generated

with a low sampling rate, there will be noise and aliasing in the

images I
d
and Ig. To recover high-quality images from these low-

quality inputs, we leverage a specially designed neural network

described below.

Network architecture. Fig. 9 shows the detailed architecture of the

neural network, which is a typical deep encoder-decoder architec-

ture with multiple branches. The encoder consists of two branches.

One branch extracts multi-scale feature maps from the input low-

quality image I = I
d
+ Ig, while the other branch extracts multi-scale

feature maps from several G-buffers, including a depth map D, a
normal map N, an albedo map A and a reflected albedo map B. Note
that the albedo map A is generated for diffuse reflection areas, and

the reflected albedo map B is generated for glossy reflection areas

which captures the albedo of reflected geometries after one-bounce

reflection. For all convolution operations in both branches, the ker-

nel size is set to 3 × 3. Stride-2 convolution is used to downsample

the resolution of the feature maps.
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Fig. 9. The architecture of the network used in neural image reconstruction. Each blue rectangle refers to a feature map with the channel number marked
below. Each arrow indicates a layer of operation explained at the bottom right. Here, “k𝑚 s𝑛” means that the convolution operation has a kernel size of𝑚 ×𝑚
and a stride of 𝑛.

To fuse the feature maps from different branches in the encoder

side, we design and resort to a G-buffer modulation (GM) module

shown in the green box of Fig. 9. Unlike simple concatenation, this

module, inspired by SPADE in [Park et al. 2019], re-weights the

feature maps in the input branch via pixel-wise transformation of

the feature maps from the G-buffer branch. We can formulate it as

Fo = Conv1(FG) ⊗ Fi ⊕ Conv2(FG) (5)

where Fi and FG represent feature maps from the input branch and

the G-buffer branch, respectively. Fo is the output of the GMmodule.

Conv1 and Conv2 are two different convolution operations with a

kernel size of 1 × 1 and a stride of 1. In this case, the feature maps

from the G-buffer branch serve as a condition to help address our

image reconstruction problem. This can better exploit features from

clean G-buffers while avoiding noise and other potential artifacts

from the input image I.
The decoder has a symmetrical structure with the encoder with

slight differences. It uses transposed convolution operations to grad-

ually fuse and upsample the features in a sequential fashion from

deep feature maps to shallow ones. Leaky ReLU activating func-

tion is adopted after every transposed convolution. Moreover, our

network also uses skip connections between mirrored layers in the

encoder and decoder stacks to preserve fine details. In order to guar-

antee real-time performance in the inference phase, our network is

designed in a light-weight manner with few convolution layers and

channels.

Temporal reprojection. To improve temporal stability in animation

sequences, we leverage a temporal reprojection method, in a similar

way as in [Koskela et al. 2019; Meng et al. 2020; Schied et al. 2017].

The key idea behind this method is to accumulate previous frames to

the current one by using the rendered motion vectors. Currently, we

accumulate two consecutive frames in the input. The decay factors

of the two frames are set to 0.3 and 0.1, respectively.

Loss function. The loss function we adopt to train our network

contains three items. First, we calculate the pixel-wise 𝐿1 distance

between the ground truth image Î and the output image I𝑜 inferred

by the network:

L𝐿1 = | |Î − I𝑜 | |1 (6)

In addition, to preserve more details in the image, we adopt Learned

Perceptual Image Patch Similarity (LPIPS) [Zhang et al. 2018] to

calculate the perceptual loss LLPIPS between two images. We use

pre-trained VGG-16 [Simonyan and Zisserman 2014] as our evalua-

tion network and calculate the layer-wise 𝐿2 distance between two

images. Specifically, LLPIPS is calculated as

LLPIPS =
∑︁
𝑙

| |𝜔𝑙 ⊙ (F𝑙 (Î) − F𝑙 (I𝑜 )) | |22 (7)

where F𝑙 is the feature map extracted from the 𝑙-th layer of the

VGG-16 network and 𝜔𝑙 is a vector pre-learned by LPIPS to scale

the activations channel-wise. Last, we adopt a temporal loss to

suppress the temporal flickering that may be caused by our search

algorithm or network inference. Our temporal loss is calculated

between two consecutive frames I𝑜 and I′𝑜 , after I′𝑜 being warped

with motion vector V:

LT = | |I𝑜 −W(I′𝑜 ,V) | |1 . (8)

The final loss function L of our network is the summation of the

three items above:

L = 𝜆𝐿1L𝐿1 + 𝜆LPIPSLLPIPS + 𝜆TLT (9)

where 𝜆𝐿1, 𝜆LPIPS and 𝜆T are weights to balance the influence of

three losses. In our implementation, we set 𝜆𝐿1 to 0.8, 𝜆LPIPS to 0.03,

and 𝜆T to 0.15.

Training and inference. To ensure high-quality image reconstruction,

we current opt to train the network independently for each scene.

The training time and the time used to generate training examples

are counted as precomputation time. During this phase, we render

20 ground truth images for a wide range of views covering the whole
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RMSE=0.036 RMSE=0.034 RMSE=0.044 RMSE=0.020

RMSE=0.034 RMSE=0.027 RMSE=0.040 RMSE=0.026

RMSE=0.049 RMSE=0.032 RMSE=0.040 RMSE=0.017

RMSE=0.047 RMSE=0.021 RMSE=0.029 RMSE=0.012

(a) RTRT [Benty et al. 2020] (b) GPR [Rodriguez et al. 2020] (c) Ours (Search) (d) Ours (Final) (e) Ground truth

Fig. 10. Visual comparisons against two state-of-the-art methods (RTRT [Benty et al. 2020] and GPR [Rodriguez et al. 2020]) which can also achieve real-time
global illumination with complex glossy paths. Errors in terms of RMSE are reported for each method.

scene. Note that these views will no longer be used in the inference

phase. The training process is performed using PyTorch library

[Paszke et al. 2019], and typically takes around 4 hours (1000 epochs

using the Adam optimizer) to converge for each scene. TensorRT is

used to accelerate network inference.

At runtime, images from gradient-based reflection search and

corresponding G-buffers are first rendered into OpenGL buffers, and

then mapped to CUDA tensors for network inference. The mapping

process has negligible time cost compared to the consumption of

the whole pipeline.

5 RESULTS AND DISCUSSION
The whole pipeline of our method contains two stages. In the pre-

computation stage, we generate the lightmaps and probe data using

a modified version of Mitsuba renderer [Jakob 2010]. In our cur-

rent implementation, each lightmap is rendered at 256 spp and a

resolution of 2048 × 2048, while each probe is rendered at 128 spp

and a resolution of 1024 × 512. We typically use 256 probes for

each scene. The real-time rendering stage is implemented on top

of SIBR [Bonopera et al. 2020] with OpenGL and TensorRT. All
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output images are rendered at a resolution of 1920×1080 on a desk-

top machine with an Intel I7-8700K CPU and an NVIDIA GeForce

RTX 3090Ti GPU. The thresholds and parameters used in our reflec-

tion search algorithm are set as follows: 𝑇max = 0.999, 𝑁max = 20,

𝐷max = 0.1 and 𝜏 = 100. We test four scenes (Bathroom, Kitchen,

Livingroom and Staircase) provided by Rodriguez et al. [2020].

These scenes contain many glossy surfaces that are hard to handle

in real time. Animation sequences of these four scenes are provided

in the supplemental video.

5.1 Rendering quality comparisons
We first compare our work with two state-of-the-art methods that

can also generate a wide range of GI effects, in particular multi-

bounce glossy reflection, with high performance. Pair-wise visual

comparisons for the four scenes are provided in Fig. 10. The first

method is RTRT implemented atop NVIDIA’s Falcor framework

[Benty et al. 2020]. To guarantee real-time performance (>30 FPS)

and high image quality, we also adopt precomputed lightmaps (gen-

erated at 2048 spp) in the RTRT framework to reproduce diffuse

reflection. Although RTRT, as a flexible and general solution, can

handle long glossy paths in theory, the time budget only allows us to

generate interreflection within three bounces. Therefore, secondary

glossy reflection effects are absent as illustrated in the first column

of Fig. 10. For instance, the Kitchen scene misses highlights in

the reflected pot, shown in the closeup. Moreover, RTRT tends to

under-estimate the glossiness of the highlights. The second com-

petitor is the GPR method proposed by Rodriguez et al. [2020]. GPR

relies on high-quality probes rendered with a high sampling rate

(2048 spp) to reproduce glossy reflection. Besides the long baking

time required for precomputing the probe data, the probe query

algorithm used in this method easily yields inaccurate glossiness of

the highlights, especially on large planar surfaces, as we explained

previously. Another common artifact that bothers GPR is specular

geometric aliasing which can be observed along object edges. It will

cause temporal flickering in the animation sequence. Thanks to a

more accurate reflection search algorithm and a robust neural image

reconstruction model, our method outperforms these competitors,

achieving high-quality results that are very close to the path traced

ground truth. In Fig. 10, we also provide the images after reflection

search from our whole pipeline. Despite the noise and other artifacts

stemming from low-quality lightmaps and light probes we adopted

in the pipeline, these results (Our (Search)) faithfully capture the ba-

sic structures of light paths for each scene and are free from parallax

errors.

In Fig. 11, we compare our work with another prevailing probe-

based method proposed by McGuire et al. [2017]. This method de-

velops a new probe data structure named Light Field Probes (LFP)

to simulate complex light transport in real time. Here, we generate

their probes at 2048 spp and 1024×1024 resolution to ensure rea-

sonable image quality. For a fair comparison, the same number of

probes are used as ours. As shown in Fig. 11(a), glossy highlights

are not correctly reproduced by LFP, although it achieves real-time

performance. This is actually a common limitation for most existing

probe-based real-time rendering solutions, as the probe structure

(either representation or query) is more friendly to diffuse reflection.

RMSE=0.110 RMSE=0.019

RMSE=0.129 RMSE=0.017

(a) LFP (b) Ours (c) Ground truth

Fig. 11. Visual comparisons with the Light Field Probes (LFP) method
[McGuire et al. 2017]. Note that specular highlights are absent in the LFP
method. Errors in terms of RMSE are reported for each method.

Our learning-based model allows us to generate relatively low-

quality images at the reflection search step. Even so, the proposed

new search method still outperforms some traditional methods in

terms of visual quality. To demonstrate this, we make comparisons

against two traditional methods based on Image Space Gathering

(ISG) [Robison and Shirley 2009] and Unstructured Lumigraph Ren-

dering (ULR) [Buehler et al. 2001], respectively. ISG approximates

glossy reflection by caching specular reflection in a buffer and fil-

tering that buffer during gathering. ULR is a typical image-based

rendering method that relies on a large collection of images from

different camera positions to achieve novel view image synthesis.

Clearly, directly applying these two methods on our probe data

(rendered at 2048 spp) will lead to unsatisfactory results that are

even worse than those generated by our search algorithm.

5.2 Quantitative evaluation
To further validate the image quality of our method, we perform

quantitative evaluation using RootMean Square Error (RMSE), Struc-

tural Dissimilarity (DSSIM) and Learned Perceptual Image Patch

Similarity (LPIPS) [Zhang et al. 2018]. We make comparisons against

ISG, ULR, RTRT and GPR on four scenes. The errors are averaged

over 20 frames for each scene, and the results are listed in Table 1.

Overall, our work performs consistently better than previous meth-

ods in terms of different quantitative metrics. It should be noted

that even the images generated by our gradient-based reflection

search algorithm with low-quality probes beat those generated by

some traditional methods (e.g., ISG and ULR). This indicates the

superiority of the proposed search algorithm.

5.3 Validation of key design choices
In this section, we validate several key design choices in our pipeline.

The first is the number of probes we choose during precomputation.

We currently precompute 256 light probes for each scene. This

ensures high image quality and reasonable precomputation time

and memory cost. Increasing the number of probes will improve

the image quality (e.g., preserving more details) as shown in Fig. 13,

but at the cost of additional overhead both for time and storage.
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RMSE=0.113 RMSE=0.093 RMSE=0.053 RMSE=0.020

RMSE=0.088 RMSE=0.061 RMSE=0.046 RMSE=0.021

(a) ISG [Robison and Shirley 2009] (b) ULR [Buehler et al. 2001] (c) Ours (Search) (d) Ours (Final) (e) Ground truth

Fig. 12. Visual comparisons against Image Space Gathering (ISG) [Robison and Shirley 2009] and Unstructured Lumigraph Rendering (ULR) [Buehler et al.
2001]. Here, probe data used by ISG and ULR are rendered at 2048 spp, while our method only requires a low sampling rate (128 spp). Errors in terms of RMSE
are reported for each method.

Table 1. Quantitative comparisons, in terms of RMSE, DSSIM and LPIPS,
against image space gathering (ISG) [Robison and Shirley 2009], unstruc-
tured lumigraph (ULR) [Buehler et al. 2001], RTRT implemented in NVIDIA’s
Falcor framework [Benty et al. 2020] and glossy probe reprojection (GPR)
[Rodriguez et al. 2020]. For our method, we list statistics of images gener-
ated by our reflection search algorithm (Ours (search)) and the network
inference (Ours (Final)) respectively. The best results are highlighted in
bold.

Scene Method RMSE DSSIM LPIPS

B
a
t
h
r
o
o
m

ISG 0.087 0.131 0.093

ULR 0.110 0.150 0.134

RTRT 0.057 0.068 0.055

GPR 0.033 0.041 0.044

Ours (Search) 0.043 0.093 0.139

Ours (Final) 0.022 0.029 0.030

K
i
t
c
h
e
n

ISG 0.078 0.132 0.092

ULR 0.060 0.117 0.103

RTRT 0.041 0.049 0.048

GPR 0.028 0.035 0.049

Ours (Search) 0.043 0.108 0.139

Ours (Final) 0.024 0.031 0.032

L
i
v
i
n
g
r
o
o
m

ISG 0.126 0.190 0.110

ULR 0.099 0.195 0.107

RTRT 0.055 0.081 0.062

GPR 0.034 0.044 0.047

Ours (Search) 0.044 0.078 0.110

Ours (Final) 0.022 0.022 0.020

S
t
a
i
r
c
a
s
e

ISG 0.069 0.093 0.064

ULR 0.054 0.083 0.061

RTRT 0.053 0.074 0.051

GPR 0.020 0.021 0.030

Ours (Search) 0.030 0.060 0.100

Ours (Final) 0.014 0.013 0.008

(a) 256 probes (b) 489 probes (c) Ground truth

Fig. 13. Comparing images generated with different numbers of probes.
More details appear when the number of probes increases, at the cost of
more time and storage cost.

(a) Concate (b) w/o LPIPS (c) Ours (d) Ground truth

Fig. 14. Validation of our network design. We compare our complete model
used in neural image reconstruction with two ablated models: one model
fuses feature maps from two different branches using simple concatenation
(a) and the other removes the LPIPS loss during training (b).

Next, we show several ablated models for the network used in

neural image reconstruction. The proposed network employs a G-

buffer modulation module to better exploit features from G-buffers.

As compared in Fig. 14(a) and (c), replacing this module with sim-

ple concatenation will introduce obvious artifacts due to improper

feature fusion. Moreover, an LPIPS loss is added in the loss function
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Fig. 15. Impact of the temporal reprojection strategy and the temporal loss.
Here, we compare closeups from five consecutive frames generated with
and without the temporal components. Note the flickering highlights along
the edge of the bin and on the bottle when removing these two components
(-Temp).

to make the results perceptually better. Its effectiveness is validated

by the pairwise comparison between Fig. 14(b) and (c).

To enforce temporal stability for time-evolving images, we employ

a temporal reprojection strategy and a temporal loss in network

training. Without these two components, temporal flickering will

appear frequently. In Fig. 15, five consecutive frames in an animation

sequence are shown. Note the flickering highlights along the edges

of the bin and on the bottle, in the case of removing all temporal

concerns.

5.4 Performance analysis
Time performance for precomputation and real-time rendering is

reported in Table 2 and Table 3, respectively. Comparisons are made

against GPR to show the superiority of our method.

The precomputation for both our method and GPR runs on a high

performance server with four Intel Xeon Gold 5118 CPUs and 128GB

RAM. The results are reported in Table 2. GPR requires high-quality

lightmaps and probes that are rendered at a very high sampling

rate (2048 spp). This results in roughly 20 hours for each scene. In

comparison, the low sampling rate adopted in our pipeline reduces

this time cost for our method to less than one hour. However, the

per-scene training strategy currently incurs 12 hours (including 20

ground-truth images generation and network training) overhead

using an NVIDIA RTX 3090Ti GPU. This additional time cost, which

should also be counted in the precomputation phase, reduces the

performance gain achieved by the efficient generation of low-quality

light probes and lightmaps. Ever so, our method still largely reduces

the total precomputation time consumption as reported in Table 2.

The runtime performance is reported on a PC with an Intel Core

i7-6900K CPU and an NVIDIA RTX 3090Ti GPU. On such a platform,

both our method and GPR achieve real-time performance, as shown

Table 2. Precomputation time cost breakdown for GPR [Rodriguez et al.
2020] and our method, running on a high performance service with four
Intel Xeon Gold 5118 CPUs and 128GB RAM.

Scene Method Lightmap Probes GT Train Total

B
a
t
.. GPR 2.9 h 18.3 h - - 21.2 h

Ours 0.08 h 0.8 h 8.2 h 3.9 h 13.0 h

K
i
t
.. GPR 1.5 h 16.5 h - - 18.0 h

Ours 0.04 h 0.6 h 8.1 h 3.9 h 12.6 h

L
i
v
.. GPR 3.1 h 17.1 h - - 20.2 h

Ours 0.09 h 0.9 h 7.3 h 3.9 h 12.2 h

S
t
a
.. GPR 2.3 h 19.2 h - - 21.5 h

Ours 0.06 h 0.8 h 6.7 h 3.9 h 11.5 h

Table 3. Rendering time cost breakdown for GPR [Rodriguez et al. 2020]
and our method. These statistics are collected from a PC with an Intel i7-
6900K CPU and an NVIDIA GeForce RTX 3090Ti GPU. The search step listed
here for GPR includes gathering and filtering procedures. Raster. means
rasterizing G-buffers.

Scene Method Raster. Raycast Search Infer. Total
B
a
t
.. GPR 0.5 ms 4 ms 20.5 ms - 25.0 ms

Ours 0.5 ms 4 ms 6 ms 14.6 ms 25.1 ms

K
i
t
.. GPR 0.6 ms 4 ms 21.6 ms - 26.2 ms

Ours 0.6 ms 4 ms 6 ms 14.6 ms 25.2 ms

L
i
v
.. GPR 0.5 ms 4 ms 21.6 ms - 26.1 ms

Ours 0.6 ms 4 ms 6 ms 14.6 ms 25.2 ms

S
t
a
.. GPR 0.4 ms 4 ms 19.5 ms - 23.9 ms

Ours 0.6 ms 4 ms 4.4 ms 14.6 ms 23.6 ms

in Table 3. In particular, the proposed reflection search algorithm

requires roughly 6 ms per-frame to achieve the optimal solution.

This is much faster than the search steps involved in GPR. Moreover,

the light-weight design in our network allows us to infer one 1080P

image within 15 ms, guaranteeing real-time performance (>30 FPS)

for the whole pipeline.

6 LIMITATIONS AND FUTURE WORK
Reduced brightness and inconsistency of highlights. Due to the loga-

rithm compression for HDR inputs and insufficient G-buffer infor-

mation, high-frequency highlights may reduce brightness or even

disappear after the network inference. Such a failure case is shown

in Fig. 16. This is a common limitation for many neural image re-

construction methods, as mentioned in KPCN [Bako et al. 2017]

and GradNet [Guo et al. 2019]. It also occasionally causes temporal

flickering of small highlights as shown in the supplemental video.

Adopting more sophisticated neural network architectures such as

GANs [Goodfellow et al. 2014] or Transformers [Ranftl et al. 2021]

may alleviate this issue.
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(a) Ours (Search) (b) Ours (Final) (c) Ground truth

Fig. 16. Our method misses some highlights in the bathroom bowl after the
network inference (Final), even though these highlights are preserved in the
reflection search step (Search).

General model. We currently train a separate model for each 3D

scene in neural image reconstruction. Although this is a widely

adopted strategy in many recent neural rendering tasks [Guo et al.

2021a; Mildenhall et al. 2020; Xiao et al. 2020] to ensure high qual-

ity for the output frames, it will cause additional precomputation

overhead in our pipeline. A general model that is trained on a large

number of different scenes and generalizes well to other scenes will

be very appealing, since it will dramatically reduce the precomputa-

tion time to less than an hour.

Efficient probe updating. To control the budget of precomputation

time, we currently render the light probes with 128 spp, a fairly low

sample rate. Even so, the time needed for precomputing the light

probes is still not affordable for dynamic scenes that require efficient

probe updating. DDGI [Majercik et al. 2019] supports rapid probe

updating, but is limited to diffuse reflection. For glossy reflection, it

is still a challenging issue which deserves further research.

Automatic probe placement. In our current implementation, probes

are simply laid out in a grid-like structure. This facilitates probe

interpolation, but may result in inadequate spatial coverage [Cu-

pisz 2012]. Recently, there are some attempts to place light probes

adaptively and automatically [Vardis et al. 2021; Wang et al. 2019],

according to the input scene’s content. Although our deep learning-

based solution is more robust to this issue than traditional methods

based on analytical interpolation, it is still interesting to see if adap-

tive probe placement is beneficial for our method. Furthermore,

investigating a joint learning scheme of probe placement and novel

view reconstruction is also an interesting future work.

7 CONCLUSIONS
This paper has presented a learning-based solution for real-time

rendering with full global illumination. It builds upon precomputed

light probes and employs a data-drivenmodel to faithfully reproduce

a wide range of GI effects, including multi-bounce glossy reflection

which is forbidden by many previous probe-based solutions. The

whole pipeline of the proposed method comprises a gradient-based

reflection search algorithm and a dedicated neural network for final

image reconstruction. Notably, the new reflection search algorithm

only relies on per-pixel gradient and recovers parallax-free reflec-

tion at any view point with only several milliseconds. The neural

network used in neural image reconstruction succeeds in suppress

noise, aliasing and other artifacts that bother other real-time ren-

dering methods, leveraging image priors learned from the labeled

training data. To the best of our knowledge, this paper presents the

first work dealing with light probes with deep learning techniques.

Extensive experiments on multiple scenes validate the effectiveness

and efficiency of the proposed method.
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