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Fig. 1. Given a set of input images of a nested transparent object, our NU-NeRF pipeline can conduct high-quality reconstruction of both the outer and inner
surfaces in a two-stage manner. The reconstruction results can be used for realistic re-rendering.
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The geometry reconstruction of transparent objects is a challenging problem
due to the highly noncontinuous and rapidly changing surface color caused
by refraction. Existing methods rely on special capture devices, dedicated
backgrounds, or ground-truth object masks to provide more priors and re-
duce the ambiguity of the problem. However, it is hard to apply methods
with these special requirements to real-life reconstruction tasks, like scenes
captured in the wild using mobile devices. Moreover, these methods can
only cope with solid and homogeneous materials, greatly limiting the scope
of the application. To solve the problems above, we propose NU-NeRF to
reconstruct nested transparent objects without requiring a dedicated capture
environment or additional input. NU-NeRF is built upon a neural signed
distance field formulation and leverages neural rendering techniques. It
consists of two main stages. In Stage I, the surface color is separated into re-
flection and refraction. The reflection is decomposed using physically based
material and rendering. The refraction is modeled using a single MLP given
the refraction and view directions, which is a simple yet effective solution
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of refraction modeling. This step produces high-fidelity geometry of the
outer surface. In stage II, we use explicit ray tracing on the reconstructed
outer surface for accurate light transport simulation. The surface recon-
struction is executed again inside the outer geometry to obtain any inner
surface geometry. In this process, a novel transparent interface formulation
is used to cope with different types of transparent surfaces. Experiments
conducted on synthetic scenes and real captured scenes show that NU-NeRF
is capable of producing better reconstruction results than previous methods
and achieves accurate nested surface reconstruction under an uncontrolled
capture environment.

CCS Concepts: « Computing methodologies — Image-based rendering.

Additional Key Words and Phrases: neural radiance fields, transparent object,
reconstruction

1 INTRODUCTION

Transparency is a common phenomenon that can be observed in
everyday materials like water or glass, thus the reconstruction of
transparent objects is required by numerous downstream appli-
cations. However, it remains difficult for computer algorithms to
conduct reconstruction in the presence of transparency due to the
highly complex light paths caused by refraction. The light rays
can be greatly bent in this process, introducing inherent ambiguity.
Thus, it remains an ill-posed problem to reconstruct the object’s
geometry.

To solve this ill-posed problem, a few methods [Huynh et al. 2010;
Trifonov et al. 2006; Wetzstein et al. 2011] utilize special capture
devices like polarisation cameras to obtain additional information
apart from observed color. Later, works attempt to relax the require-
ments for capture devices but still need to capture the scene under
a controlled environment like specially designed background pat-
terns [Li et al. 2023a; Lyu et al. 2020; Wu et al. 2018; Xu et al. 2022]
and opaque plane placed underneath the object of interest [Gao
et al. 2023] to provide information about the intersection location
between the refracted ray and the reference background or plane.
Others do not require special capture devices or environments but
require object masks [Chen et al. 2023; Li et al. 2020] or ground
truth lighting conditions [Wang et al. 2023] as additional inputs.
Moreover, vision-based methods like Li et al. [2020] needs extensive
training dataset, and the domain gap between training scenes and
actual scenes cannot be easily solved.

Despite the efforts made on transparent object reconstruction,
nested transparent objects attract less attention. ReNeuS [Tong et al.
2023] reconstructs the opaque object inside a refractive interface,
where the ground truth geometry and IoR of the outer surface are
given. In addition, they need the object to be captured in a homoge-
neous lighting condition, which is a strong requirement. Bemana
et al. [2022] leverage neural radiance fields to learn a volume with
varying IoR (Index of Refraction), and calculate the light path nu-
merically. To cope with nested objects, they use another radiance
field to fit the inner surface. This method can support varying IoR
and non-homogeneous materials and produces good novel view
synthesis results, but it does not serve the purpose of geometry re-
construction. Therefore, the controlled capture environment (special
background, homogeneous lighting, and opaque plane...), additional
inputs (masks, lighting, and outer geometry/IoR), and the assump-
tion on inputs (solid objects, homogeneous material) prohibit their
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practical use in the geometry reconstruction of nested transparent
objects under an uncontrolled capture setting.

Aiming at overcoming both drawbacks, we propose NU-NeRF,
a geometry reconstruction method for nested transparent objects
under an uncontrolled environment. NU-NeRF leverages SDF-based
neural implicit representation [Mildenhall et al. 2020; Wang et al.
2021] for high-fidelity surface reconstruction. Exemplar results of
NU-NeRF are shown in Fig. 1. Our key observation is that although
MLP is not perfectly accurate when modeling refracted lights, it
can compensate for the remaining residual between the observed
color and the reflection component, producing high-quality recon-
struction results. In contrast, previous methods only use explicit ray
tracing to obtain the refraction component, thus requiring additional
knowledge such as object masks or special capture environments.
NU-NeRF consists of two main stages: 1) Outer surface reconstruc-
tion. NU-NeRF utilizes an outer NeRF to model the surrounding
environment and constrains the reflection on the object surface
according to it. The refraction of the surface is modeled with a
direction-dependent MLP, with the Fresnel effect considered. To
cope with an uncontrolled environment, no prior (e.g. mask, back-
ground, and lighting) is used in this process. 2) Ray-traced inner sur-
face reconstruction. During this stage, a ray-traced reconstruction
technique is employed to obtain the surfaces in an outer-to-inner
manner. The ray-tracing procedure ensures the accurate simulation
of rays, and the surface reconstruction formulation is repeatedly
used in the interior of the objects. We observe that our method can
handle the reconstruction of complex surfaces while supporting
various combinations of outer and inner surfaces with different
types of materials. To sum up, our technical contributions include:

e We propose NU-NeRF, a pipeline that reconstructs nested
transparent objects in an uncontrolled environment. NU-
NeRF can reconstruct inner transparent or opaque surfaces in
the transparent surface, greatly extending the applicability.
We introduce a formulation of surface color components to
support the reconstruction of transparent objects without
prior correspondence knowledge.

e We propose a ray-traced iterative reconstruction strategy
with a novel interface formulation corresponding to it that
can be executed along with the surface reconstruction to cope
with nested surfaces using ray-tracing.

o Experiments conducted on synthetic and real scenes demon-
strate the proposed method can achieve better results than
the baseline that requires object masks.

2 RELATED WORK
2.1 Neural Implicit Representations

Traditionally, explicit representations like voxel, mesh or point
clouds are used in various applications like geometry processing
and rendering [Xiao et al. 2020]. Recently, neural implicit repre-
sentations like Neural Radiance Fields(NeRF) [Barron et al. 2021;
Mildenhall et al. 2020] have gained more popularity, since only a
few posed images are needed to obtain the geometry. The implicit
representation is also flexible enough for applications like deforma-
tion [Park et al. 2021a,b; Pumarola et al. 2021; Tretschk et al. 2021]
or generation [Chan et al. 2022; Niemeyer and Geiger 2021; Schwarz
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et al. 2020]. However, the density-based representation adopted by
vanilla NeRF makes it hard to perform surface reconstruction. This
also hinders further utilization of neural implicit representations
like inverse rendering, since they heavily depend on accurate nor-
mal and surface estimates. Some works [Boss et al. 2021; Verbin et al.
2022; Zhang et al. 2021] try to implement decomposition on NeRF,
they either are not physically-based or suffer suboptimal rendering
quality due to the inaccurate surface and normal estimation. To
solve this problem, VoISDF [Yariv et al. 2021] and NeuS [Wang et al.
2021] proposed to replace the density field with a Signed Distance
Field (SDF), which enables high-fidelity surface reconstruction based
on neural implicit representations while preserving the rendering
quality of NeRF. Later, more works improved the quality of geome-
try reconstruction [Li et al. 2023b; Sun et al. 2022], which further
enables more accurate inverse rendering and editing [Munkberg
et al. 2022; Wu et al. 2023]. Recently, the focus has moved to recon-
structing scenes with challenging visual effects. A relevant work,
NeRO [Liu et al. 2023], is dedicated to reconstructing geometry and
surface BRDF in the presence of strong reflections and achieved
SOTA results. We further propose NU-NeRF to reconstruct the scene
with refraction, which is a more challenging effect, in addition to
reflection.

2.2 Transparent Object Reconstruction

Reconstructing transparent objects is a classical problem that has
been extensively explored [Thrke et al. 2010]. The multiple refrac-
tions of light rays can cause ambiguity and singularity, prevent-
ing accurate reconstruction. Previous works on transparent object
reconstruction are generally about finding correspondences, thus
requiring special capture setups. These setups include light fields
probes [Wetzstein et al. 2011], tomography[Trifonov et al. 2006],
and polarization capture devices [Huynh et al. 2010; Miyazaki and
Ikeuchi 2005; Shao et al. 2022]. To eliminate the need for special
capture devices, a series of works [Morris and Kutulakos 2011; Qian
et al. 2016; Wu et al. 2018] proposed to find correspondence using
specially designed background patterns. Given the ground truth
locations of background intersections of the refracted rays and
the screen, the normal and shape of the object can be optimized.
DRT [Lyu et al. 2020] further improves this pipeline, leveraging
differential ray tracing, coarse-to-fine optimization, and mask con-
straints. NeTO [Li et al. 2023a] refines the shape reconstruction
quality by taking multiple refractions into consideration. Xu et
al. [2022] propose to use a neural and explicit mesh hybrid pattern
for reconstruction of transparent objects. Lin et al. [2023] utilize
sinusoidal patterns and binary patterns as the background to con-
duct the reconstruction of more complex objects (with colored fluids
and diffuse material). Apart from the background pattern, object
masks or environment maps are also used as priors [Li et al. 2020],
these priors can be used to guide the prediction of the refracted
ray direction by neural networks and improve reconstruction re-
sults [Wang et al. 2023]. There are also methods dedicated to solving
a slightly different problem: reconstructing objects behind trans-
parent surfaces like water surface and the surface itself [Zhan et al.
2023].

Recently, with the ongoing trend of neural implicit representa-
tions, some neural radiance field-based works are proposed, achiev-
ing transparent object reconstruction without special capture de-
vices, specially designed backgrounds, masks, or ground truth envi-
ronment maps. Bemana et al. [2022] proposed conduct novel view
synthesis by learning an IoR field along with the radiance and den-
sity, and solved the bent light path along the field. Recently, Deng
et al. [2024] utilize a deformation network to predict the ray path
and obtain faithful novel view synthesis results, but they are not
capable of reconstructing geometry because they use density field
instead of SDF as the representation. Gao et al. [2023] propose a
two-stage method to first predict the multi-view silhouettes of the
object and then the exact shape of a refractive object placed on an
opaque plane. The plane is required by the method, since it is used
for both geometry and appearance prior. NeRRF [Chen et al. 2023]
uses a given input mask to obtain the object shape and then adopts
explicit ray tracing to obtain the radiance estimate.

Our proposed NU-NeRF, on the other hand, eliminates all the
capture setup (special capture devices and specially designed back-
ground) and additional input requirements (masks and ground truth
lighting) used by the previous methods. Moreover, these mentioned
methods are only capable of reconstructing “solid and homogeneous”
objects made with materials of constant IoR (Index of Refraction),
with no geometry inside. In contrast, our method can take input
images of non-solid objects with varying IoR such as a plastic bottle
half filled with water. For this type of objects, NU-NeRF can recon-
struct the outer surface as well as any inner surfaces like the surface
of the water. In the following sections, we cover the two components
of NU-NeRF: Outer Surface Reconstruction (Sec. 3) and Ray-traced
Inner Reconstruction (Sec. 4). The overview of the pipeline is shown
in Fig. 2.

3 STAGE I: OUTER SURFACE RECONSTRUCTION

In this section, we first go through the surface reconstruction method,
which is the building block used in both stages of the iterative ge-
ometry reconstruction strategy. Firstly, we introduce some prelim-
inaries of neural rendering and surface reconstruction (Sec. 3.1).
Secondly, we elaborate on the surface transmission formulation in
the reconstruction process, which describes the rendering process
of a shading point(Sec. 3.2). Thirdly, the optimization losses are
described (Sec. 3.3).

3.1 Preliminaries

Neural Rendering and Implicit Representation. Neural im-
plicit representations like NeRF [Mildenhall et al. 2020] generally
adopt volume rendering techniques, sampling discrete points p;
along a ray and aggregating the colors c¢; of these points using
calculated weights w; to obtain the final color C = Zﬁ\i o0 WiCi-
NeRF predicts density values o; along the ray, and obtains the
weights assuming the scene consists of emissive volume: w; =
exp(2j<; 0jAj)(1—exp(—0;A;)), where A; is the distance between
two neighboring sampled points. To improve the surface recon-
struction quality, NeuS [Wang et al. 2021] proposes to predict the
signed distance values s instead of density values. The SDF value
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Fig. 2. The overview of NU-NeRF pipeline. Given a set of images of a nested transparent object, the reconstruction pipeline of NU-NeRF is separated into
two stages. In the first outer interface reconstruction stage, neural rendering techniques are adopted. For each sample point, the split sum approximation
is used to calculate the physically based reflection. Additionally, an MLP is used to predict the refracted light. Despite the blurry result predicted by the
refraction MLP, it is vital for high-fidelity reconstruction of the outer geometry. In the second ray-traced inner surface reconstruction stage, the outer interface
is modeled using two loRs and an optional thickness. For each refracted ray, another neural rendering process is executed within the surface to obtain the
inner geometry. Note that the surface formulation is used again in the second stage (marked by light blue). Finally, the outer and inner geometry can be

merged together for downstream applications.
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Fig. 3. The definition of surface material. To cope with the transparent
refraction, we additionally introduce a “transparent” type of material and
use a parameter ¢ to interpolate between “transparent” and the regular
“metal and dielectric” material used in previous literature.

. . 2 [s(1)]

can be transferred to density value with o; = max ——gi 5] ,0),
where t is distance between camera origin and the sample point,
®s(x) = 1/(1 + e~%¥), z is a trainable parameter. In this work, we
adopt the basic formulation of NeusS, using SDF as the geometry
representation. We assume the object resides in the unit sphere, and
model the outer background using a NeRF gprg, (p, @), where -
is the ray direction.

The rendering equation. Aiming at the physically correct ren-
dering of the surface geometry, we perform shading following the
rendering equation [Kajiya 1986] considering transmission rather
than mere reflection:

Cc= /;f(n @in, ®)Lin(p, ®in)IN - @in| dwin (1)

where c is the final color, Lj; is the incoming radiance, N is the
surface normal,  is the reversed direction of the ray in the volume
rendering process. f is the Bidirectional Scattering Distribution
Function (BSDF) of the surface point p.
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Fig. 4. The proposed ¢;;.. To address the overfitting problem of the re-
fraction predictor gy, €3¢ is proposed. £;;c encourages the far light grq, to
be the same as the background color CPk9" = ¥, w.bkgrc?kgrobtained by
background NeRF gpgy-- Since the final color is the sum of reflection color
and refraction color, ¢;;. prevents g, from overfitting the color and helps to

reconstruct more details of the geometry.

3.2 Formulation of Surface Reflection and Transmission

Material. As shown in Fig. 3, to enable physically based rendering
of reflection and tramsmission, we parameterize the surface material
as base color a, roughness r, metallic m, Index of Refraction(IoR) 7,
and a transparent parameter t. All these parameters are predicted
by an MLP (Multi-Layer Perceptron) g, (p), the input of which is
the positions of the sample points.
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Fig. 5. Zero and non-zero thickness formulations. When reconstructing non-solid objects like containers, two loRs 7, 17; are used to model the interface,
corresponding to the loR of the container itself and the inner substance. For very thin interface which can be regarded as zero-thick, we assume its two
faces are parallel, thus the refraction direction only depends on the inner loR 1,. When the thickness can not be ignored, we introduce another parameter
h to model the thickness. We additionally use spheres to approximate the local area of the incident position. The normals and outgoing directions at the
intersection points can be calculated using analytical calculations. For this type of surface, we utilize an eroded mask to ignore the pixels at the edge of the
geometry since the light in that area will undergo complex total internal refraction.

Overall Formulation of BSDF. In the scope of this paper, we
only consider the transmission component of a nearly perfect smooth
surface. Thus, we explicitly categorize the surface into “transmissive”
and “reflective” types and use an additional material parameter ¢ to
interpolate between them. This is similar to the “metal” and “dielec-
tric” interpolation used in the variants of the Disney BRDF [Burley
2012], and both interpolations are used in this paper. The material
formulation is illustrated in Fig. 3.

The two types of materials are separately represented by two
BSDFs: f; (reflective material) and f; (transmissive material). We
define f; as the sum of Lambertian diffuse reflectance and Cook-
Torrance specular reflectance [Cook and Torrance 1982], as in the
case of previous methods aiming to perform inverse rendering [Liu
et al. 2023; Zhang et al. 2022]. f; defines the sum of the reflection
and refraction color of a perfectly smooth transparent surface. Be-
cause fr and f; represent two different types of material that both
can reflect light, the reflection component appears in both f; and
fz, but they are calculated differently. Note that the Fresnel coeffi-
cient Fy is calculated using the normal N, in contrast with F in the
Cook-Torrance reflectance that uses the half vector. An additional
transparent value ¢ is introduced to control how transparent the
material is.

_(1-m)a DFG
T Y o N (@ N) @
(1= Fp)d(w, Refr(@in, n,N)) + Fpd(w, Refl(win, N))
fi= N - o; ®3)
- @in|
f=QQ-0fr +tfs (4)

where a is the diffuse albedo, D, F, G are the classic microfacet dis-
tribution, Fresnel and geometry components. They depend on direc-
tions @, wjp, surface roughness r, and metallic m. In Eqn. 2, we omit
the specific formulae of them for simplicity. § is the Dirac delta func-
tion, 7 is the ratio of the IoRs of the inner and outer material, and
Refr is the refraction direction according to Snell’s law, Refl is the
perfect reflection direction. The detailed formulation of Eqns. 1,2,3,4
to the neural rendering will be covered in the following subsections.

Reflection. For reflection rendering, we adopt the basic formu-
lation of NeRO [Liu et al. 2023] and use the split sum [Karis 2013]
approximation. The split sum is a technique dedicated to calculating
the rendering equation (Eqn. 1) efficiently. It replaces the integral
of specular reflection with the multiplication of two integrals

DFG DFG
/ ————dwjp ® / Lin dw / ——— dwin
H 4 @in - N) H # (40 -N)

—
L M

(&)

where H is the hemisphere above the surface, defined by the nor-
mal vector N. In Eqn. 5, L depends on the incoming light, and the
incoming light is pre-filtered according to different roughness by
convolving the light with GGX distribution in the original work by
Karis [2013] and also in some concurrent works of it [McAuley et al.
2012, 2013]. However, in our setting, the light is unknown in the
training stage, thus the pre-filtering technique in the original split
sum method is not available. Thus we introduce the Integrated Di-
rectional Encoding (IDE) techniques [Verbin et al. 2022] to achieve
“filtering” inside of the MLP. To model the light, two MLPs g, and
Jnear are fitted, corresponding to the incident light from infinite far
away and the indirect inter-reflected light by the geometry itself.
An additional interpolation factor s (also referred to as 'occlusion
value’) is predicted for every sample point by the material network
gm following NeRO [Liu et al. 2023]. According to the analysis given
by NeRO [Liu et al. 2023], L can be approximated by:

L~ (1-5)gfar(IDE(®;, 7)) + sgnear (IDE(w;, 1), p) (6)

where IDE is the Integrated Directional Encoding [Verbin et al. 2022],
which transforms the integral of the lighting into the “integral” of
the direction and significantly reduces the number of queries of the
MLPs. As a special case, diffuse color can be approximated using
Ca = %gfar(IDE(wi: 1)).

On the other hand, M depends only on the surface material
a,r,m,n,t. The Fresnel Reflectance F can be approximated using
Schlick Approximation F ~ Fy.j, = Fo+(1—Fp)(1 - -H)® [Schlick
1994], where Fj is the reflectance when the incident angle equals
0, and H is the half vector H = |‘(w+wi")

Torom)] - In our setting, Fy =

ACM Trans. Graph., Vol. 43, No. 6, Article 262. Publication date: December 2024.



262:6 + Jia-Mu Sun, Tong Wu, Ling-Qi Yan, and Lin Gao

((1 = m) - ag + m - a), where as is the specular color of dielectric
material which can be calculated using as = (’7—:11)2. If we substitute
F in M with Fg.p, M can be separated into the following form:

B DG(1-(1-w-H)) DG(1-w-H)®
= L e d“”“/ww—-mda:;
7

Both the integrals in Eqn. 7 can be pre-calculated and stored in
2-D lookup textures since they depend on two scalar parameters:
roughness r and w - N. Thus, at rendering time, only two texture
queries are needed to evaluate M. We rename these two integrals
into Fy, Fy, then M can be calculated by:

M=((1-m)-as+m-a)-F{+F 8)

Transmission. For the transmission component, it is difficult
to directly model it using explicit ray tracing and light transport
laws due to the absence of surface geometry in the training stage.
Instead, we choose to use an MLP g, (p, @, Refr(w, n,N)) to directly
model the refraction. Note that both the original ray direction @
and the refracted direction are input to g,. We now write the full
formulation for surface reconstruction:

c=(1-t)(cg+L-M)

+t(1- Fsch,p)(gr (p, 0, Refr(w, n,N))

+ thch,pgl (p; Refl(w,N))
where F.p, , is the schlick approximation with the normal vector
input Fyep,p = Fo+(1-Fp)(1- - N)3. To g is the predicted incident
light with roughness set to 0: g;(p, @) = (1 = s)gfqr (IDE(@;, 0)) +
Sgnear (IDE(wj, 0), p). According to our observation, g, cannot pre-
dict accurate refraction color due to the highly non-continuous and
rapidly changing nature of refraction, resulting in blurred rendered
color (Please refer to Fig. 2). However, g, can greatly compensate
for the reflection color by providing an average among the position
and direction, allowing high-fidelity reconstruction. If g, is not ap-
plied, the geometry will suffer from significant degeneration, or the
method will fail to reconstruct any meaningful geometry (Please
refer to Sec. 5.5).

3.3 Optimization Losses

In this section, we go through the optimization losses used in the sur-
face reconstruction process. Firstly, we adopt all the losses from the
Stage I reconstruction in NeRO [Liu et al. 2023], including the losses
Crenders Leikonals toces Cstable- trender 1S the Charbonier loss [Char-
bonnier et al. 1994] between the rendered color and the input image
pixel color. £,;konar is the eikonal loss that regularizes the gradients
of the SDF to 1, as applied in NeuS [Wang et al. 2021]. £y¢c is the
occlusion loss encouraging the occulsion value s to be the same as
the ray-traced ground truth s,,qrch: foce = lSmarch — Sl11- €stable 15
a stabilization loss that prevents the zero level set of the SDF from
overly expanding or shrinking applied at the first 1,000 steps of
training. For more detail about this loss, please refer to NeRO [Liu
et al. 2023].

However, we observed this version suffers from a suboptimal
reconstruction of geometry details (Please refer to Sec. 5.5, w/o £,
ablation). This is caused by the introduction of refraction predictor
gr. gr tends to overfit the reflection component, causing the actual
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reflection predictors g, to produce inaccurate light. Since gr is
hard to constrain, we choose to add a regularization on g,,. Because
the final rendered color is the sum of refraction and reflection, this
regularization is effective even if it is not directly applied on g,. It is
called incident light correspondence loss #;;., which encourages
the incident light prediction g, to be the same as the background
NeRF:

tite = 119far (IDE(@,0)) = " w e/ ©)

1

fkg " c?kg " are the calculated weights and colors from the

background NeRF gy, along the ray. We show the formulation
and purpose of ¢ in Fig. 4.

We write the total loss in the surface reconstruction phase as
follows:

where w

L = brender + 1(step < 1000) €5z 4p10 + Zlkfk (ke{occ,eikonal,ilc})
k

(10)
where I is an indicator function, step is the training step, and
Aoces Aeikonals Aile are hyperparameters, controlling the multiplier
of the corresponding losses.

4 STAGE II: RAY-TRACED ITERATIVE
RECONSTRUCTION

In this section, we describe the ray-traced iterative reconstruction.
The strategy can enable NU-NeRF to reconstruct the surface inside
the outer transparent surface. We call the outer transparent surface
“interface” from now on. We first go over an ideal case where the
interface has zero thickness (Sec. 4.1) and then extend the case to
non-zero thickness interfaces (Sec. 4.2). Finally, we combine the
interface ray-tracing and the interface reconstruction described in
Sec. 3 and form a complete iterative strategy (Sec. 4.3). In Fig. 5,
we show our formulation of zero and non-zero thickness interface
formulations.

4.1 Zero Thickness Interface

In objects made of solid transparent material (e.g. glass), the light
goes through the interface and is both reflected and refracted. The
incident energy is distributed according to the Fresnel equations
(See Fig. 5(a)). In this case, the light only undergoes one interaction
with the interface. However, in real life, it is common for light to
undergo two interactions, like on the surface of transparent con-
tainers. We will first describe a simple case: the interface is very
thin. Thus, the light is refracted into it and immediately shoots out.
Since two consequent interactions occur in this process, the Fres-
nel term needs to be applied twice. As the material is super thin,
two interactions can be considered to happen in the same position,
and the surface normals at both points are the same (See Fig. 5(b)).
We then formulate this type of interface with two separate IoRs
11, nr- np is the IoR of the interface material and is used to calculate
the specular color as. 17 is the IoR of the material of the substance
inside, used for calculating the refraction direction. For example, for
a plastic bottle with no water inside, ; = 1.5, 5, = 1.0. As a special
case, the solid objects with a single interaction are modeled using
two identical IoRs to simplify implementation.
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4.2 Non-zero Thickness Interface

The extension from zero thickness interface to non-zero thickness
interface is natural. We additionally introduce a parameter h to
model the thickness of the interface. Since the thickness cannot be
ignored, the incident and outgoing positions of the light are not
the same, and the normals at these points are different. To capture
this effect accurately, we model the local area of the incident point
using a sphere, the radius of which is calculated using the Gaussian
curvature K of the incident point, which can be calculated on meshes
using numerical methods [Meyer et al. 2002]. The radius is obtained
using r = 1/VK, assuming two principal curvatures k1, k2 are the
same (See Fig. 5(c)).

However, there is another concern about the non-zero thickness
interface. When the incident position is near the edge of the geome-
try, the light will repeatedly undergo total internal reflections inside
the interface. In this case, the light does not go into the inner of
the interface. To cope with this case, we render a mask using the
geometry obtained in the first stage (Sec. 3), and apply an erosion
filter on the mask, eliminating the samples near the edge of the ge-
ometry (See Fig. 5(d)). The kernel size e; is treated as an adjustable
hyperparameter.

4.3 “Onion”-like Iterative Strategy

We now combine the interface reconstruction and the ray-traced
reconstruction. The overall pipeline is like “peeling an onion”, re-
peating the same procedure for the outer and inner surfaces:

(1) Given the input images and the corresponding poses of the
object, apply the interface reconstruction (Sec. 3). In this
step, the outer geometry (can be transparent or opaque) is
reconstructed, the materials of the geometry and background
NeRF are also learned.

(2) The geometry of the first step is fixed and transformed to an
interface with two IoRs and an optional thickness defined
on each surface point (Secs. 4.1, 4.2). The rays are traced and
refracted into the interface. Another interface reconstruction
process is performed within the interface to obtain the inner
geometry. All the networks from Stage I, excluding the SDF
network, are directly loaded and learned jointly with a low
learning rate. This is to conduct a refinement of Stage I net-
works via the accurate ray tracing of Stage II. In the second
interface reconstruction process, the outer NeRF and ¢;;. are
removed since the region of interest is completely fixed.

In theory, (2) can be repeated to cope with geometry with more than
two layers. However, in real life, geometries with more than one
nested transparent interface are rare. Considering the simplicity of
the pipeline, we only consider two-layer geometry in this paper.

5 RESULTS AND EVALUATIONS
5.1 Experiment Settings.

Datasets and Evaluation Metrics We evaluate our method and
baselines on two types of datasets:

(1) Synthetic dataset. We collected three types of objects from
the public repository: Solid Objects like those evaluated in

previous works contain datasets Pig and Monkey. Transpar-
ent + Transparent Objects, in which both outer and inner
geometries are transparent. These contain PlasticWater and
Glasswater. Transparent + Opaque Objects, in which the
inner geometry is opaque. This contains Spherepot. Complex
Combined Objects, in which the inner geometry contains
both opaque and transparent surfaces. This contains Glasslce.
Each dataset contains 250 images. We render the ground truth
object masks along with the images for baseline methods re-
quiring the mask.

(2) Real dataset. We take three datasets from Bemana et al. [2022]:
Ball, Glass, WineGlass, and collect 2 datasets from the inter-
net: Lamp and PlasticBottle. These datasets do not contain
ground truth shapes. We additionally captured 3 datasets by
ourselves: BallStatue, RealBottle, RealBottle2. The input im-
ages are taken from a 1-minute video clip that is captured
using a cellphone. It is important to notice there are various
artifacts like defocusing and contre-jour in about 10% of the
images (See Fig. 6 for an example). To obtain the ground truth
shapes, we paint the objects with AESUB Blue Scanning Spray
and scan them using Revopoint POP 3 scanner. Quantitative
experiments are only conducted on the self-captured datasets.
The object masks for the use of baseline methods are anno-
tated using off-the-shelf methods [Contributors 2020] and
manually adjusted for better accuracy.

(b) Contre-Jour Artifact

(a) Defocus Artifact

Fig. 6. Examples of artifacts in the real-captured dataset. The defocus
artifact comes from the rapid movement of the capture devices, making the
automatic focusing system fail. The contre-jour artifact is generated by the
strong light in the background and the low dynamic range imaging system,
making the foreground object appear overly dark.

For the quantitative evaluation of the reconstructed geometry,
we compare the Chamfer Distance (CD) [Barrow et al. 1977] and
Earth Mover’s Distance(EMD) [Rubner et al. 2000] between the
reconstructed geometry and the ground truth mesh. Both distances
are calculated with 50,000 randomly sampled points on the meshes.
Note that for nested objects, CDs of both the outer surface and the
inner surface are calculated. For the baseline methods or ablated
versions that are not able to reconstruct the inner surface, only the
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Table 1. Quantitative comparison of reconstruction results using the cham-
fer distance metric (x10™%) and Earth Mover’s Distance metric (x10~3) on
the synthetic dataset.

Table 2. Quantitative comparison of reconstruction results using the cham-
fer distance metric (x10™%) and Earth Mover’s Distance metric (x10~%) on
the real dataset with ground truth geometry.

Ours NeMTO Li et al. Ours Ours NeMTO Lietal. Ours
Scenes (Outer) [Wang et al. 2023] [2020] (Inner) Scenes (Outer) [Wang et al. 2023] [2020] (Inner)
CDJEMD|CD| EMD| CD|EMD]|CD]EMD] CD|EMD| CD| EMD| CD| EMD] CD] EMD |
Pig 0.73 631 1.16 4.25 557 22,6 N/A N/A BallStatue 3.02 25.5 24.4 59.3 131 893 094 8.66
Monkey 1.02 4.80 143 11.6 856 763 N/A N/A Bottle 4.57 6.78 48.0 50.1 37.1 482 N/A N/A
SpherePot  0.99 3.75 241 8.27 550 838 132 3.27 Bottle2 3.34 27.1 157 74.2 21.7 1269 N/A N/A
PlasticWater 1.67 55.0 3.79 62.3 21.8 913 1.64 092
GlassWater 0.61 14.8 4.09 15.6 589 174 111 1.52
Glasslce 1.62 28.6 68.1 28.8 483 320 148 442

distance of the outer surface is calculated. The ablation studies are
only conducted on the synthetic dataset.

Baseline. Since our method focuses on the geometry reconstruc-
tion of nested transparent objects with an uncontrolled capture
setup, there is no State-of-the-art method with the exact same set-
ting as ours (Please refer to the supplementary material for settings
of different methods). Recent methods require either dedicated back-
ground [Li et al. 2023a; Lyu et al. 2020; Xu et al. 2022] or a certain
environment [Gao et al. 2023]. On the other hand, Li et al. [2020]
and NeMTO [Wang et al. 2023] only require object masks and the
environment map, both of which can be estimated given only the
input images without re-capturing the images, which is closest to
our settings. Therefore, we set Li et al. [2020] and NeMTO [Wang
et al. 2023] as baselines for both qualitative and quantitative compar-
isons. Recent Gao et al. [2023] and ReNeuS [Tong et al. 2023] also
explore transparent object reconstruction but have more require-
ments on the capture environment including a large enough opaque
plane, ground truth outer surface, and homogeneous lighting. There-
fore, we select a few cases that meet the capture requirements for
these methods for qualitative comparisons. For detailed settings for
different baselines, please refer to the supplementary material.

5.2 Results on Synthetic Datasets

The qualitative and quantitative reconstruction results of our NU-
NeRF, NEMTO [Wang et al. 2023], and Li et al. [2020] on synthetic
datasets are shown in Fig. 7 and Table 1. The results on Pig and
Monkey cases show that our method can reconstruct solid trans-
parent shapes with more geometric details compared to previous
methods that require additional input despite some sharp areas be-
ing “smoothed”, like the eyes of the Pig and Monkey datasets. This
is because strong total internal reflection appears in that area. This
effect can also be observed in other SOTA (State-Of-The-Art) meth-
ods [Li et al. 2020; Wang et al. 2023]. For more complicated cases
with nested surfaces like SpherePot, PlasticWater, and GlassWater,
our method is not only capable of reconstructing the detailed outer
geometry (e.g. the folds on the PlasticWater case) but also can recon-
struct the inner surface. On the contrary, NEMTO [Wang et al. 2023]
and Li et al. [2020] even fail to recover the detailed geometry of the
outer surfaces, for example, the PlasticWater case. This is because
NeMTO’s ray bending network fails to generalize to such cases and
predicts wrong light paths and Li et al’s normal and point cloud
prediction networks only estimate the normal and point cloud of
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the outer surface. The Glasslce case is even more challenging, with
the inner objects containing both opaque straw and transparent ice
and the straw having parts in both inner and outer sections in the
scene. Our method can reconstruct all the inner geometry faithfully,
and the inner straw and the outer straw are aligned with each other.
Re-rendering of the scene in Fig. 1 shows the reconstruction result
is accurate. Such a case is obviously beyond the reconstruction ca-
pability of the baseline methods [Li et al. 2020; Wang et al. 2023]
since they only focus on the outer surface reconstruction and rely
on inaccurate light path, normal, and point cloud estimation. As a
result, their reconstruction results of the outer surface tend to be
smoother than ours and leave out details.

5.3 Results on Real-Captured Datasets

The reconstruction results of our NU-NeRF, NEMTO [Wang et al.
2023], and Li et al. [2020] on real-captured datasets are shown in
Fig. 8 and Fig. 9. Fig. 8 includes five real scenes with no ground truth
geometry, three of which (Ball, Glass, and Plastic) contain objects
without geometry located inside, and the other two contain trans-
parent outer surfaces with objects inside. Fig. 9 includes three scenes
captured with a scanner, where the ground truth inner and outer
geometry can be obtained for both qualitative and quantitative com-
parisons. It can be observed that our method can reconstruct outer
geometry without object masks in complex real-captured scenes in
Fig. 8. Although compared to the results on synthetic data, the lack
of images (about 100 images every scene, significantly fewer than
250 in synthetic scenes) and inaccurate camera poses negatively
affect some regions of the reconstructed results, e.g. the bottom area
of Glass case. In the WineGlass case, our NU-NeRF can reconstruct
the inner surface although there are inaccuracies in the outer ge-
ometry. The shape of the pencil in both outer and inner sections is
aligned, thanks to the ray-tracing technique used in Stage II. In the
Lamp case, a light bulb with strong emitted color is included, and
our method can robustly reconstruct both the outer and inner geom-
etry. However, both baseline methods fail to reconstruct the inner
geometry and perform worse in outer geometry reconstruction. In
Fig. 9, the BallStatue case contains both transparent outer surface
and opaque inner geometry. Additionally, there are reflections on
the outer surface. Our method deals with the complex visual effects
well without losing too much geometry detail as reflected in the
quality of inner and outer surfaces. Both the baseline methods [Li
et al. 2020; Wang et al. 2023] can produce plausible results on solid
objects but fails to produce faithful results when there are nested
surfaces and both transparent and opaque materials. NeMTO [Wang
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Input Image GT Outer Recon. Outer

SpherePot

PlasticWater

GlassWater

Glasslce

NeMTO
[Wang et al. 2023]

GT Inner
(Closeup)

Recon. Inner

Lietal. [2020] (Closeup)

Fig. 7. Reconstruction and Rendering results on synthetic scenes. For each scene, we show the input image, GT inner/outer shapes, reconstructed
inner/outer shapes and reconstruction results of NeMTO [Wang et al. 2023] and Li et al. [2020].

et al. 2023] struggles when the background is not “infinitely far” or
the input lighting estimation is not accurate. Li et al. [2020] tend to
“over smooth” the geometry because it includes a geometry smooth-
ing step. The quantitative comparisons between our method and
baseline methods are shown in Table 2. The better geometry recon-
struction quality also reflects on the metrics and our method comes
to the top.

5.4 Comparison with Baselines Requiring Controlled
Capture Environment.

In this section, we choose to compare the proposed NU-NeRF pipeline
with other methods that target transparent object reconstruction but
requires a controlled capture environment. Namely, we choose two
baselines: Gao et al. [2023] and ReNeuS [Tong et al. 2023]. Gao et
al. [2023] aim to reconstruct transparent objects with no additional
inputs other than images, but they need the object to be placed on a
sufficiently large opaque plane, and cannot support nested objects.
ReNeusS [Tong et al. 2023], on the other hand, is only dedicated
to reconstructing opaque objects inside transparent objects with
known outer surface geometry, captured in a homogeneous light.
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Recon. Outer

Input Image

Ball

Glass

Plastic

WineGlass

Lamp

NeMTO [Wang et al. 2023]

®
)
L
?

Li et al.[2020]

Recon. Inner

Fig. 8. Reconstruction and Rendering results on real scenes. For each scene, we show the input image, reconstructed inner/outer shapes, and

reconstruction results of NeMTO [Wang et al. 2023] and Li et al. [2020].

Gao et al. [2023].  We compare our method with Gao et al. [2023]
on two different scenes: the first is PigPlane, which simply adds a
plane needed by Gao et al. [2023] into the Pig dataset. The second
is Ball dataset from Bemana et al. [2022], which places the object
on a relatively small plane. Since the code of their method is not
released publicly at the time we do our experiments, we choose to
implement the method ourselves based on the code of NeuS [Wang
et al. 2021]. As shown in the first row of Fig. 10, Gao et al. [2023] can
reconstruct reasonable geometry when the plane is large enough
but may miss geometry details (the feet) due to its less accurate
silhouette estimation. When the plane is not sufficiently large as
shown in the second row, the inaccurate plane parameter estimation
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causes much worse results since rendered colors are determined by
intersecting the bent rays and the estimated plane.

ReNeuS [Tong et al. 2023]. We compare our method with ReNeu-
Son two different scenes: the first is Glasslce, and the second is Ball-
Statue. When running the method, we provide the ground truth
shape of the outer geometry. Again, we choose to implement the
method ourselves since the code is also unavailable. As shown in
Fig. 11, ReNeus fails to deal with more complex visual effects like
the transparent inner geometry and the reflective outer geometry,
which causes incorrect geometry reconstruction like the collapsed
surface on the ice and the top of the statue. On the contrary, we
model more complex lighting interactions including reflection and
refraction, leading to more faithful geometry reconstruction.
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Input Image GT. Outer Recon. Outer

NeMTO
[Wang et al. 2023]

Li et al.[2020] GT. Inner Recon. Inner

Fig. 9. Reconstruction and Rendering results on real scenes with ground truth geometry captured by ourselves. For each scene, we show the input
image, GT inner/outer shapes, reconstructed inner/outer shapes, and reconstruction results of NeMTO [Wang et al. 2023] and Li et al. [2020].

Gao et al’s

Gao et al. [2023] silhouette

Input Image Ours

Fig. 10. Qualitative comparison of our method and Gao et al. [2023].

Table 3. Ablation studies of reconstruction results of outer interface using
the chamfer distance metric (x10~%) and Earth Mover’s Distance metric
(x1073) on the synthetic dataset. “Fail” means this ablated version produces
no geometry, and is unable to calculate the corresponding metric.

Full w/o gr Only g, w/o lije

Scenes
CD| EMD| CD| EMD| CD| EMD | CD| EMD |

ReNeuS

Input Image Ours [Tong et al. 2023]

[}
)

Glassice

Ballstatue

Fig. 11. Qualitative comparison of our method and ReNeuS [Tong
et al. 2023].

Table 4. Ablation studies of reconstruction results of inner interface using
the chamfer distance metric (x10~%) and Earth Mover’s Distance metric
(x107%) on the synthetic dataset.

Pig 0.73 6.31 1727.81 362.80 1.25 123 1.16 849
Monkey 1.02 4.80 59.23 68.14  Fail Fail 138 24.55
SpherePot  0.99  3.75 Fail Fail 1969.9 285.9 231 4.98
PlasticWater 1.67 55.01 80.52 7030 4.75 102.3 183 64.7
GlassWater 0.61 14.82  Fail Fail 136 18.6 0.74 1553

Full w/o two IORs

CD| EMD] CD | EMD | CD | EMD |
PlasticWater 1.64 0.92 45.35 10.26 N/A N/A
GlassWater 1.11 1.52 984.21 114.92 941.11 110.97

Ww/0 non-zero

Scenes

5.5 Ablation Studies

NU-NeRF consists of two stages, each stage contains multiple design
choices. To test the effectiveness of its design, we remove some of
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Full w/0 gr

Only g

N

No Geometry

Pig

Monkey

PlasticWater

N

No Geometry

N

GlassWater

Fig. 12. Qualitative comparison of reconstruction results of outer surface on
synthetic datasets between the full pipeline and two baselines: without g,
without #;;.. For Pig and Monkey datasets, please zoom in at the highlighted
area to see the better details learned by our method than the without £,
ablation.

Full w/o two IoR Ww/0 non-zero
S —
% N/A
: T =
A
s
§
S o R
>
8
&)

Fig. 13. Qualitative comparison of reconstruction results of inner surface
on synthetic datasets between the full pipeline and two ablations: without
two loR formulation, and without non-zero thickness formulation.

the components of the full pipeline and compare these versions
against the full version, these ablations include:

ACM Trans. Graph., Vol. 43, No. 6, Article 262. Publication date: December 2024.

e Without g,. We start with removing the g, network. g,
serves the purpose of modeling refraction light, so this ver-
sion is NeRO [Liu et al. 2023] plus the loss ;..

e Only g;. g, itselfis a NeRF color network. To validate that our
method does not solely rely on g, to learn both the reflection
and refraction colors, we remove the reflection part g; and
only use g, as an ablation.

o Without ¢;.. ¢;;. is added into our pipeline to increase the
consistency between the learned lighting g;,, ¢ and the outer
NeRF.
Without two refraction indices 7, ; (i.e. solid assump-
tion). We model the interface and the inner substance with
two IoRs to deal with nested surfaces. We remove the two-IoR
formulation and use a single-layer interface with spatially
varying IoR to model the input scene. This is evaluated on
the PlasticWater and GlassWater cases.

e Without non-zero thickness formulation. In this ablation,
we remove the non-zero thickness formulation, with only the
zero thickness interface applied. This version is evaluated on
the GlassWater case.

L[]

The ablation studies results are shown in Fig. 12, Fig. 13, Table 3,
and Table 4. It can be observed in Fig. 12 that the method can not
produce meaningful results without g, since the refraction color
is not modeled. The results produced by only g, in Fig. 12 are also
worse since the reflection part is ignored. And if ¢, is not applied,
the geometry details will be lost as shown in Fig. 12. In addition, as
illustrated in Fig.13, if the two-IoR formulation is not introduced, the
network will learn an “average” version of the IoRs of the interface
and inner material, and the inner SDF will produce superfluous
geometry to compensate for the inaccurate refraction. Finally, if
no non-zero thickness formulation is used, superfluous geometry
will appear at the top area of Glasswater case. This is because the
thickness of the interface causes the light to bend in this area. If the
zero-thickness assumption is used, the network fails to predict this
type of bending and distortion, which causes the compensation of
inner SDF.

6 CONCLUSION

In this paper, we propose NU-NeRF for the geometry reconstruction
of nested transparent objects under an uncontrolled capture environ-
ment that overcomes the drawbacks of current transparent object
reconstruction methods including only applying to solid objects and
having extra requirements for inputs and the capture environment.
To eliminate the need for any capture environment and additional
inputs, we incorporate the neural implicit representation and use the
Signed Distance Field to enable surface reconstruction. We model
the interface using physically correct BSDF defined with Cook-
Torrance reflectance and transmission. We additionally leverage the
split sum approximation to make efficient rendering plausible. To
model the refraction, we introduce a simple yet effective single MLP
into the pipeline to predict the refraction color. A novel incident
light consistency loss is added to improve the reconstruction fidelity
of the outer surface. Furthermore, our method enables nested object
reconstruction by using ray-traced iterative reconstruction. Learn-
able IoRs on the outer surface and the inner substance are tuned
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and ray tracing-based rendering with light path explicitly modeled
is introduced to enable geometry reconstruction of the inner sur-
face. We evaluate our method on both synthetic and real-captured
datasets, where our method outperforms current methods targeting
the geometry reconstruction problem of transparent objects. Never-
theless, our method still has the following limitations: Firstly, our
method does not model complex optics effects like total internal
reflection. Secondly, although theoretically plausible, our method
cannot handle more than two layers of surfaces now. For future
directions, we would like to improve the quality of reconstruction
by taking the actual light transport into account in both the first
and second stage and extend the scope to more complex geometry
with three layers or more.
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