
Mob-FGSR: Frame Generation and Super Resolution for Mobile
Real-Time Rendering

Sipeng Yang
12121024@zju.edu.cn

State Key Lab of CAD&CG, Zhejiang
University
China

Qingchuan Zhu
22251012@zju.edu.cn

State Key Lab of CAD&CG, Zhejiang
University
China

Junhao Zhuge
3200104439@zju.edu.cn

State Key Lab of CAD&CG, Zhejiang
University
China

Qiang Qiu
qiang.qiu@oppo.com

OPPO Computing & Graphics
Research Institute

USA

Chen Li
chenlixyz@gmail.com

OPPO Computing & Graphics
Research Institute

USA

Yuzhong Yan
yuzhong.yan@oppo.com

OPPO Computing & Graphics
Research Institute

USA

Huihui Xu
huihui.xu@oppo.com

OPPO Computing & Graphics
Research Institute

USA

Ling-Qi Yan
lingqi@cs.ucsb.edu

University of California, Santa
Barbara
USA

Xiaogang Jin∗
jin@cad.zju.edu.cn

State Key Lab of CAD&CG, Zhejiang
University
China

II
.

O
u
rs

 F
G

 &
 S

R
 (
×

2
)

I.
 O

u
rs

 F
G

 (
L

R
)

Interpolated &
SR (×2) frame 0.33

II
I.

 T
A

A

Low-resolution (LR)
Interpolated frame 0.33

High-resolution (HR)
TAA frame 0.33

SR frame 1SR frame 0 FG & SR frame 1.33FG & SR frame 0.67FG & SR frame 0.33

(C) Input(A) Input (D) Extrapolation(B) Interpolation

Rendered frame 1Rendered frame 0 FG frame 0.67FG frame 0.33 FG frame 1.33

FSR 2 frame 1 (×2)

DLSS 2 frame 1 (×2)

(E) Baseline SR methods

FSR 1 frame 1 (×2)

Figure 1: Frame generation (FG) and super resolution (SR) results of our method. Requiring only color, depth, and motion
vectors from frames rendered at times 0 (A) and 1 (C), our approach efficiently produces interpolated (B) / extrapolated (D)
frames and their SR counterparts at desired times. The left large images illustrate an interpolated frame (upper), its SR result
(middle), and the high-resolution temporal anti-aliasing (TAA) reference (bottom). The right images show enlarged views of
the yellow-framed regions of the interpolated frame (I.), their SR results (II.), and TAA references (III.), demonstrating our
method’s smooth motion estimation and high-quality SR results. (E) displays ×2 SR results of commercial applications FSR 1,
FSR 2, and DLSS 2. Experiments show that our approach achieves results comparable to the best of these solutions. Notably, our
models have short runtimes, processing FG at 720P in 2.2ms and FG & SR at 1080P in 2.3ms on a Snapdragon 8 Gen 3 processor.

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA

ABSTRACT
Recent advances in supersampling for frame generation and super-
resolution improve real-time rendering performance significantly.
However, because these methods rely heavily on the most recent

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0525-0/24/07. . . $15.00
https://doi.org/10.1145/3641519.3657424

https://doi.org/10.1145/3641519.3657424

SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA Yang et al.

features of high-end GPUs, they are impractical for mobile plat-
forms, which are limited by lower GPU capabilities and a lack of
dedicated optical flow estimation hardware. We proposeMob-FGSR,
a novel lightweight supersampling framework tailored for mobile
devices that integrates frame generation with super resolution to
effectively improve real-time rendering performance. Our method
introduces a splat-based motion vectors reconstruction method,
which allows for accurate pixel-level motion estimation for both
interpolation and extrapolation at desired times without the need
for high-end GPUs or rendering data from generated frames. Sub-
sequently, fast image generation models are designed to construct
interpolated or extrapolated frames and improve resolution, provid-
ing users with a plethora of options. Our runtime models operate
without the use of neural networks, ensuring their applicability to
mobile devices. Extensive testing shows that our framework out-
performs other lightweight solutions and rivals the performance of
algorithms designed specifically for high-end GPUs. Our model’s
minimal runtime is confirmed by on-device testing, demonstrating
its potential to benefit a wide range of mobile real-time rendering
applications. More information and an Android demo can be found
at: https://mob-fgsr.github.io/.

CCS CONCEPTS
• Computing methodologies → Rendering; Image manipula-
tion.

KEYWORDS
Real-time rendering, supersampling, frame generation, super reso-
lution

ACM Reference Format:
Sipeng Yang, Qingchuan Zhu, Junhao Zhuge, Qiang Qiu, Chen Li, Yuzhong
Yan, Huihui Xu, Ling-Qi Yan, and Xiaogang Jin. 2024. Mob-FGSR: Frame
Generation and Super Resolution for Mobile Real-Time Rendering. In Special
Interest Group on Computer Graphics and Interactive Techniques Conference
Conference Papers ’24 (SIGGRAPH Conference Papers ’24), July 27-August 1,
2024, Denver, CO, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/
10.1145/3641519.3657424

1 INTRODUCTION
Mobile platforms, such as smartphones, tablets, and head-mounted
displays, are increasingly used for interactive digital entertainment
and augmented reality, particularly mobile gaming. As a result,
high-quality real-time rendering at high frame rates for mobile
devices has become essential for providing users with a more fluid
experience [Qualcomm 2023]. Modern smartphones have 2K res-
olution screens with refresh rates of 120Hz or 144Hz, providing
unparalleled visual clarity and fluidity. However, limited GPU per-
formance and power budgets impede efforts to improve mobile
real-time rendering rates with high image quality, emphasizing the
significance of advanced rendering acceleration techniques.

Several supersampling techniques have been developed to pro-
duce high-quality images with low rendering overhead. A class of
methods exploit temporal frame redundancies [Briedis et al. 2023],
employing frame reconstruction techniques that generate images di-
rectly via interpolation [Yang et al. 2011] or extrapolation [Guo et al.
2021]. Another strategy is to render at a low resolution (LR) and

then use super-resolution (SR) models to generate high-resolution
(HR) outputs [Edelsten et al. 2019]. Furthermore, recent advance-
ments such as deep learning supersampling (DLSS) 3 [NVIDIA
2023], FidelityFX SR (FSR) 3 [AMD 2023], and ExtraSS [Wu et al.
2023a] integrate SRwith frame generation, reducing rendering over-
head significantly. These methods, however, typically necessitate
high-end hardware for neural networks (NNs) execution or optical
flow estimation, as well as specialized pipelines for extra G-buffers,
rendering them unsuitable for mobile platforms.

To develop a framework for joint frame generation and SR on
mobile platforms, we must address two key challenges: 1) Design
fast and accurate motion reconstruction methods without the use
of expensive optical flow from high-end hardware or motion vec-
tors (MVs) of generated frames [Guo et al. 2021] from deferred
rendering. Existing lightweight motion reconstruction approaches,
such as 3DWarp [Mark et al. 1997] and bidirectional scene reprojec-
tion (BSR) [Yang et al. 2011], while fast and hardware-independent,
frequently produce inaccurate estimates for disocclusions or thin
objects, resulting in visual artifacts. 2) Develop efficient models for
generated and SR frame reconstruction to achieve the desired high
frame rates. Although NNs have become the de facto standard for
achieving real-time SR in recent years, they are difficult to imple-
ment in off-the-shelf mobile devices. Even the mobile-optimized SR
model MNSS [Yang et al. 2023], which deploys NNs on mobile SoC
AI units, requires an additional 11ms of runtime for 720P image
generation, making it unsuitable for today’s mobile phones.

To address the aforementioned challenges, we present a fast su-
persampling framework for mobile platforms that integrates frame
generation and SR to improve real-time rendering performance. Our
framework is based on three critical components: (1) accurate MVs
reconstruction based on splats, (2) high-quality generated frame
reconstruction, and (3) fast resolution upscaling. At the heart of our
approach is the fast and accurate MVs reconstruction for generated
frames, which is based solely on data from rendered frames. Specifi-
cally, we estimate pixel motion in generated frames using MVs from
rendered frames under the assumption of quadratic motion between
adjacent frames. After that, the splatting method with atomic oper-
ations [Khronos 2022] is used to construct pixel motion to MVs at
desired times. Then, using the generatedMVs, we create lightweight
supersampling models to generate high-quality interpolated and
extrapolated frames as well as their SR counterparts. Furthermore,
rigorous experiments are carried out to optimize the framework
design for mobile platforms and calibrate key parameters to ensure
optimal performance. Importantly, our runtime models are devoid
of NNs, making them ideal for off-the-shelf mobile devices.

Our framework supports four modes: interpolation, extrapola-
tion, and SR-enhanced variants of both. Our approach, relying solely
on color images, depth maps, and MVs of rendered frames, not only
allows for fast frame generation at the desired time, but also en-
sures producing high-fidelity, resolution-enhanced, and anti-aliased
outputs. The proposed method stands out due to its short runtime,
which perfectly aligns with the demands for mobile real-time ren-
dering. In summary, our method makes the following contributions:

• A splat-based MVs reconstruction method that estimates ac-
curate pixel-level motion and constructs MVs for both inter-
polated and extrapolated frames at desired times.

https://mob-fgsr.github.io/
https://doi.org/10.1145/3641519.3657424
https://doi.org/10.1145/3641519.3657424

Mob-FGSR: Frame Generation and Super Resolution for Mobile Real-Time Rendering SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA

• A lightweight supersampling framework tailored for real-time
rendering on mobile devices for frame generation and SR.

• An optimized module design that balances performance and
quality, as well as data-driven parameter settings for mobile
supersampling.

2 RELATEDWORK
2.1 Antialiasing and Supersampling
Aliasing artifacts, manifested as jagged contours and moiré pat-
terns, are common in rendered images as a result of insufficient
sampling rates [Akenine-Mo et al. 2018]. A direct solution is to
increase the samples per pixel, as seen in SSAA [Cook 1986], but
this significantly increases the computational demand of rendering.
Akeley [1993] introduced MSAA to improve rendering performance
by reducing the number of shading operations to minimize render-
ing overhead. Additionally, morphological antialiasing techniques,
such as MLAA [Reshetov 2009] and SMAA [Jimenez et al. 2012],
are proposed to reduce jagged edges by applying filtering to post-
rendered images, balancing efficiency and image quality.

In the past decade, the advent of temporal antialiasing (TAA) [Yang
et al. 2020] has signified a major shift in antialiasing from spatial
to temporal supersampling. Utilizing consecutive frames, TAA and
its variants efficiently distribute the shading workload over time,
achieving effective antialiasing with a marginally additional cost.
Expanding on this concept, recent research has explored utilizing
the abundant temporal samples accumulated by TAA to directly
reconstruct higher resolution frames. For instance, temporal SR
(TSR) [Epic 2022] and FSR 2 [AMD 2022] employ heuristic methods
for antialiased HR frame reconstruction. Concurrently, solutions
like DLSS 1 [Edelsten et al. 2019], DLSS 2 [Liu 2020], reduced-
precision network [Thomas et al. 2020], neural supersampling for
real-time rendering (NSR) [Xiao et al. 2020], MNSS [Yang et al.
2023], and FuseSR [Zhong et al. 2023] utilize NNs for enhanced
image reconstruction, and some of these advanced techniques are
becoming standard in PC video gaming. Our work is also based on
temporal supersampling, but it focuses on the practical application
of supersampling for mobile platforms.

2.2 Frame Generation for Rendering
Another method for improving rendering performance is to gen-
erate interpolated or extrapolated frames directly. To produce the
generated frame, the core principle of frame generation methods
involves estimating pixel motion across consecutively rendered
frames. Therefore, accurately modeling pixel’s motion emerges
as a critical aspect of successful frame generation. An early at-
tempt, 3DWarp [Mark et al. 1997], proposes using the temporal
positional changes of pixels relative to camera to determine pixel
motion. However, this approach frequently encounters difficulties
in disoccluded areas, resulting in suboptimal projections. Tracking
inter-frame pixel motions becomes easier with the inclusion of
MVs in rendering engines. BSR [Yang et al. 2011], iterative image
warping [Bowles et al. 2012], and iterative depth warping [Lee et al.
2018] expand on this by introducing iterative-based methods for
predicting motion in the generated frame based on rendered MVs.
Nonetheless, these method has limitations with intricate or rapidly
moving objects, frequently producing inaccurate predictions.

Table 1: Key capabilities of frame generation (in cornsilk),
SR (in light pink), and joint solutions (in Alice blue) rele-
vant to our research. Our method supports interpolation,
extrapolation, and SR. It also supports forward rendering
(as opposed to deferred rendering only), aligning with main-
stream mobile rendering pipelines. Our lightweight method
is also designed to be highly efficient for mobile devices.

Methods
Inter- Extra- Super Forward Mobile

polation polation Resolution Rendering Friendly
3DWarp [1997] ○␣ ○␣

BSR [2011] ○␣ ○␣ ○␣

ExtraNet [2021] ○␣

TSR [2022] ○␣ ○␣ ○␣

NSR [2020] ○␣ ○␣

DLSS 2 [2020] ○␣ ○␣

FSR 2 [2022] ○␣ ○␣ ○␣

MNSS [2023] ○␣ ○␣ ○␣

DLSS 3 [2023] ○␣ ○␣ ○␣

FSR 3 [2023] ○␣ ○␣ ○␣

ExtraSS [2023a] ○␣ ○␣

Ours ○␣ ○␣ ○␣ ○␣ ○␣

Beyond the rendered MVs, recent studies explore optical flow es-
timation for frame generation. Interpolation methods like learnable
MVs [Wu et al. 2023b], NFI [Briedis et al. 2021] and KBI [Briedis
et al. 2023] leverage estimated optical flow or MVs to generate
unshaded frames. DLSS 3 [NVIDIA 2023], a notable commercial
application, also follows a similar approach, but its specific details
remain undisclosed. Extrapolation methods like future frame syn-
thesis [Li et al. 2022], ExtraNet [Guo et al. 2021], and ExtraSS [Wu
et al. 2023a] use NNs to estimate optical flow or lighting variations
for generated frames. Although these methods, which utilize NNs
and costly optical flow estimation, deliver high-quality visuals, their
computational intensity presents challenges for resource-limited
mobile platforms. Furthermore, while rendering MVs of the gener-
ated frame in deferred shading is trivial on high-end hardware, it
imposes a significant burden on mobile platforms, making efficient
frame generation on mobile devices more difficult. Refer to Tab. 1
for a clear organization of the relevant work’s attributes of interest.

There are also some fast motion estimation methods that are
independent of NNs and rendered MVs, such as using the fast
patch-match algorithm for mapping calculations of adjacent frames
[Barnes et al. 2010; Hu et al. 2016]; and utilizing iterative schemes
and image pyramids for searching pixel correspondences across
frames [Hanika et al. 2021]. However, the estimated motion from
these methods often exhibits lower accuracy and resolution, which
would diminish the quality of the generated frames. Moreover, de-
spite their lightweight design, attaining high frame rates on mobile
devices remains a significant challenge using these approaches.

3 METHOD
3.1 Definitions
Our goal is to develop an integrated model for frame generation and
SR. To ensure that the model is applicable to off-the-shelf mobile
devices, our chosen inputs consist of typical forward rendering
outputs: color image 𝐼 , depth map 𝐷 , and MVs𝑀 . We use rendering

SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA Yang et al.

Interpolation

Extrapolation

Super Resolution

W

Warping with Super ResolutionSR

W Image Warping

MVs

Splatting

MVs

Refinement

MVs

Refinement

Pixel Selection

& Blending

MVs

Splatting

MVs

Refinement

Disocclusions

Filling

W SR/

W SR/

W SR/

Weights

Estimation

Backward

Warping

History Rectification

Blending

LUT

SR

 iI

0 0

w wI D → →+

1 1

w wI D → →+

0 0M D+

1 1M D+

0 0I D+

1 1I D+

1 1I D+

1 1M D+

0 0M D+

1

ieI +

1I

1M

1

srI

0

srI

Upsampled

1 1M → +

1M →

0M →

Figure 2: Framework overview. For interpolation, MVs reconstruction of the B-frame 𝐼 𝑖𝛼 is performed using MVs and depth
from I-frames 0 and 1, and color and depth information from these I-frames are then utilized to construct the final output
𝐼 𝑖𝛼 . In extrapolation, MVs and depth from I-frames 0 and 1 facilitate motion estimation, with color and depth from I-frame 1
employed to generate the extrapolated P-frame 𝐼𝑒1+𝛼 . For their SR versions, the image warping module is replaced by warping
with SR. In this process, resampling weights are retrieved from a lookup table (LUT) based on MVs sampling positions, followed
by backward warping. Note that warping with SR only involves using the SR image from the previous I-frame.

data from frames at times 0 and 1 as input for both interpolation
and extrapolation, which are denoted as 𝐹0 = {𝐼0, 𝐷0, 𝑀0} and
𝐹1 = {𝐼1, 𝐷1, 𝑀1}, respectively. Our interpolation and SR model, de-
noted as Ours-ISR, produces the output image 𝐼 𝑖𝑠𝑟𝛼 . The superscript
‘𝑖’ denotes interpolation, and ‘𝑠𝑟 ’ signifies SR. Similarly, our ex-
trapolation and SR model (Ours-ESR) produces the image 𝐼𝑒𝑠𝑟1+𝛼 , and
superscript ‘𝑒’ denotes extrapolation. Our interpolation-only model
(Ours-I) and extrapolation-only model (Ours-E) generate images 𝐼 𝑖𝛼
and 𝐼𝑒1+𝛼 , respectively. The subscript 𝛼 marks the temporal position
of the generated frames, with 𝛼 ∈ (0, 1) for interpolation and 1 + 𝛼

for extrapolation (taking the frame at time 1 as the current frame).
For a standardized representation, we adopt terminology from video
encoding [Richardson 2004]: rendered frames are referred to as I-
frames (Intra-coded), interpolated ones as B-frames (Bidirectional
predicted), and extrapolated ones as P-frames (Predicted).

3.2 Method Overview
Fig. 2 shows the architecture of our proposed framework, which
primarily consists of two main parts: frame generation (including
interpolation and extrapolation) and SR. For the interpolationmodel,
data from two consecutive I-frames 0 and 1 are used to generate a
B-frame. Initially, MVs and depth from I-frames 0 and 1 are utilized
for motion splatting to obtain the bidirectional MVs 𝑀0→𝛼 and
𝑀1→𝛼 , which represent the pixels’ motion from the two I-frames to
a B-frame 𝐼 𝑖𝛼 . Since the derived MVs𝑀0→𝛼 and𝑀1→𝛼 frequently
present grid-like gaps, we introduce a refinement module to fix
these issues. After that, the color and depth from the two I-frames
are aligned to the B-frame by image backward warping. Finally, a
pixel selection & blending module blends the aligned two frames to
produce the interpolated result 𝐼 𝑖𝛼 . For the extrapolation model, we
initially predict single-direction MVs𝑀1→1+𝛼 for the P-frame 𝐼𝑒1+𝛼 .

To avoid ghosting and flickering issues, a disocclusion fillingmodule
is then employed to address the absence of MVs in disoccluded
regions. Finally, we execute backward warping exclusively on I-
frame 1 to produce the extrapolated frame 𝐼𝑒1+𝛼 .

We design an optional SR module to improve image resolution
by using accumulated temporal samples. To construct the SR frame
𝐼𝑠𝑟1 , we warp the history SR frame 𝐼𝑠𝑟0 to align with the current
frame (Fig. 2, right part), rectify invalid pixels in the warped history
frame, and blend it with the LR frame 𝐼1 to obtain our SR result. This
SR module can be seamlessly integrated into the frame generation
process as a replacement for the standard image warping module.

3.3 MVs Reconstruction
In the absence of rendered MVs from deferred rendering or op-
tical flow estimates, our method begins by estimating MVs for
B/P-frames using available I-frame data. We introduce a fast splat-
based motion estimation method that leverages depth and MVs
from rendered I-frames to construct MVs for generated frames. By
analyzing two consecutive frames, our method is able to estimate
precise pixel motions that depict linear and nonlinear trajectories
with uniform acceleration (quadratic motion). As shown in Fig. 3,
considering a thrown green ball and its trajectory, we mark its
positions at I-frames -1, 0, and 1 as 𝑝−1, 𝑝0, and 𝑝1, respectively.
I-frame 1 is treated as the current frame. Utilizing MVs m0 and
m1 in image space as input, we derive positions 𝑝𝛼 and 𝑝1+𝛼 for
desired interpolated time 𝛼 or extrapolated time 1 + 𝛼 , following
the formulas in Fig. 3. The motions of pixels in generated frames
are then obtained, with vectorsm0→𝛼 andm1→𝛼 for interpolation,
and m1→1+𝛼 for extrapolation. Detailed formula derivations are
provided in the supplementary materials.

Mob-FGSR: Frame Generation and Super Resolution for Mobile Real-Time Rendering SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA

Interpolation Projection

p
0

Trajectory

Extrapolation Projection

p
α p

1

p
-1

p
1+α

m0

m 1

() ()
2

1 1 1 0 1 0
2 2

= − + + + −p p m m m m m

() ()
2

1 1 1 0 1 03
2 2

p p

+ = + − + −m m m m

m0 α→
m1 α→

m 1 1+α→

Figure 3: Motion estimation process. A green ball is thrown,
tracing a trajectory marked at 𝑝−1, 𝑝0, and 𝑝1 in temporal
frames. Taking 𝑝1 in frame 1 as the reference, we estimate the
ball’s positions 𝑝𝛼 in the interpolated frame and 𝑝1+𝛼 in the
extrapolated frame. By modeling the motion as uniformly
accelerated, 𝑝𝛼 and 𝑝1+𝛼 are deduced from prescribed formu-
las. The resulting motions,m0→𝛼 andm1→𝛼 , andm1→1+𝛼 are
then accurately splatted onto their respective positions.

(a) Color image (b) Splatted MVs (c) Refined MVs (d) Reference MVs

Figure 4: MVs refinement. From left to right: the color image,
splatted MVs prior to refinement, MVs post-refinement, and
the ground truth MVs for reference.

The MVs construction process continues by embedding the com-
puted vectors into their respective pixels. This process involves as-
signingm0→𝛼 at position 𝑝𝛼 , a process known as ‘splatting’ [Shade
et al. 1998]. Given that the estimated position 𝑝𝛼 usually does not
align exactly with a pixel’s center, we utilize the nearest neighbor
method to identify the closest pixel for writing vectors. This splat-
ting is applied to each pixel in I-frame 1 to generate the projected
MVs 𝑀0→𝛼 , 𝑀1→𝛼 , and 𝑀1→1+𝛼 . Note that conflicts can occur
during the splatting process, particularly at object edges where
multiple vectors are projected onto a single pixel. To address this,
we implement depth-aware MVs splatting along with atomic oper-
ations [Khronos 2022], ensuring that the MVs with minimal depth
(i.e., foreground pixels) are written when conflicting. Furthermore,
due to the nearest neighbor approach used during splatting, the
projected MVs frequently have grid-like gaps, as shown in Fig. 4(b).
Hence, we use a thin-object detection method inspired by FSR
2 [AMD 2022] to identify gaps and then fill them with a mean filter.
This method identifies thin objects by examining each pixel’s 3×3
area to detect the absence of any 2×2 pixel block with similar fea-
tures. Our tests have shown that it is both efficient and robust. The
refinement step yields the repaired MVs shown in Fig. 4 (c).

In general, the quadratic motion assumption is particularly apt
for our task due to its low computational overhead and satisfac-
tory visual outcomes. Xu et al. [2019] also propose using quadratic
motion estimation in video interpolation tasks to enhance visual

(a) Warped I-frame 0 (b) Warped I-frame 1 (c) Constructed B-frame (d) Reference

∆𝐷 𝑟 > 𝑇𝐷

∆𝐷 𝑟 < −𝑇𝐷

Figure 5: B-frame reconstruction. From left to right are the
warped two I-frames 𝐼𝑤0→𝛼

and 𝐼𝑤1→𝛼
, our reconstructed B-

frame 𝐼𝛼 , and the reference image.

effects. However, their method estimates quadratic “flow” at time 0,
neglecting the quadratic motion during the splatting phase (from
time 0 to time 𝛼); in contrast, our method directly calculates the
quadratic “position” at time 𝛼 , which is theoretically more accurate.
Additionally, the Gaussian-based splatting used by Xu et al. [2019] is
computationally intensive and ineffective at detecting disoccluded
regions essential for subsequent image reconstruction. Therefore,
we prefer using our approach to reconstruct MVs for generated
frames due to its superior efficiency and accuracy.

3.4 Frame Generation
Interpolation. After obtaining the derived MVs, we can use them

and the rendered I-frames to construct B/P-frames. For interpo-
lation, two adjacent I-frames are warped using MVs 𝑀0→𝛼 and
𝑀1→𝛼 , respectively. The warped two frames, 𝐼𝑤0→𝛼

and 𝐼𝑤1→𝛼
, are

then blended to create the B-frame 𝐼 𝑖𝛼 . During this blending pro-
cess, we face two major challenges. First, slight inaccuracies in the
estimated bidirectional MVs can lead to blurring when directly av-
eraging the two warped frames. To mitigate this, we preferentially
sample color from the temporally closer frame when the color and
depth of the two warped frames are similar. Second, it is crucial
to address artifacts that emerge as disocclusions and regions with
shading changes in the warped two frames. For disocclusions, we
select the appropriate pixels from both frames to avoid ghosting
artifacts (see Fig. 5). For shading changes, we use a simple linear
interpolation (lerp) of the two frames to provide a smooth transition.
The above strategy is expressed as follows:

𝐼 𝑖𝛼 (𝑟) =

𝐼𝑤0→𝛼
(𝑟), Δ𝐷 (𝑟) > 𝑇𝐷 ,

𝐼𝑤1→𝛼
(𝑟), Δ𝐷 (𝑟) < −𝑇𝐷 ,

𝐼𝑤0→𝛼
(𝑟), 𝛼 ⩽ 0.5 & |Δ𝐷 (𝑟) | ⩽ 𝑇𝐷 & |Δ𝐵(𝑟) | ⩽ 𝑇𝐵 ;

𝐼𝑤1→𝛼
(𝑟), 𝛼 > 0.5 & |Δ𝐷 (𝑟) | ⩽ 𝑇𝐷 & |Δ𝐵(𝑟) | ⩽ 𝑇𝐵 ;

lerp(𝐼𝑤0→𝛼
(𝑟), 𝐼𝑤1→𝛼

(𝑟), 𝛼), |Δ𝐷 (𝑟) | ⩽ 𝑇𝐷 & |Δ𝐵(𝑟) | > 𝑇𝐵 ;
(1)

where 𝑟 denotes regions that meet the specified conditions, Δ𝐷
represents the depth difference between the warped depth maps
𝐷𝑤
0→𝛼

and 𝐷𝑤
1→𝛼

, Δ𝐵 signifies the brightness difference between
images 𝐼𝑤0→𝛼

and 𝐼𝑤1→𝛼
, and 𝑇𝐷 and 𝑇𝐵 are thresholds. Typically,

disocclusions are indicated by large depth differences, whereas
shading changes are indicated by significant brightness differences
despite similar depths. Thresholds 𝑇𝐷 and 𝑇𝐵 are calibrated using a
data-driven approach, as described in Sec. 4.

Extrapolation. The absence of subsequent frame references cre-
ates difficulties in addressing disocclusions in the construction of

SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA Yang et al.

the extrapolation frame 𝐼𝑒1+𝛼 . To address this issue, several solu-
tions have been proposed, such as background filling [Andreev
2010; Schollmeyer et al. 2017], occlusion MVs [Zeng et al. 2021],
and G-buffer guided warping [Wu et al. 2023a]. However, all these
methods will incur considerable computational overhead, impeding
the realization of high frame rates on mobile platforms. Therefore,
we present a simplified disocclusion filling approach that directly
uses the MVs of I-frame 1 for filling disocclusions in the MVs of ex-
trapolated frames. This method strikes an effective balance between
runtime efficiency and image quality (see performance compari-
son in Sec. 4). It should be noted that considerations of shading
changes are omitted in our extrapolation approach because they
typically necessitate a large amount of computational power. This
compromise may result in lower frame rates in areas with moving
shadows [Guo et al. 2021] (see our supplementary video).

3.5 SR Integration
Following the generation of interpolated or extrapolated frames,
we introduce a standalone SR module to enhance image resolution.
As depicted in Fig. 2, this lightweight SR module can replace the
image warping module to increase spatial resolution. This module
adopts a common framework, reusing samples from history frames
to construct the HR current image 𝐼𝑠𝑟1 .

To begin, we use backward warping to align the history frame
𝐼𝑠𝑟0 with the current one. Bilinear or bicubic interpolations are fre-
quently used for image warping. However, during multiple resam-
pling of the frame reusing process, bilinear interpolation frequently
produces blurred results [Yang et al. 2020], and bicubic interpola-
tion is computationally intensive for mobile devices. As a result, we
introduce a lookup table (LUT)-based method for efficient image
warping on mobile platforms, which achieves the same quality as
bicubic interpolation while incurring less computational overhead.
The LUT stores resampling weights, which are based on sampling
positions. To create this LUT, we pre-train a neural network to
predict pixel weights during the iterative resampling process, aim-
ing for the best warping results. These weights are then quantized
and saved in the LUT for quick access during inference on mo-
bile devices. Section 4 provides additional experimental details and
comparisons to bilinear and bicubic interpolation methods.

After that, we rectify invalid pixels in areas of disocclusion and
shading changes in the warped history frame before blending it
with the current I-frame 𝐼1. As the detection process is similar to
that described in Eq. 1, we use the thresholds 𝑇𝐷 and 𝑇𝐵 directly to
detect invalid pixels. Pixels within disocclusion regions are directly
rejected. Similar to the TAA method, history colors are clamped
against the AABB of the current frame to address shading changes.
Finally, the LR I-frame 𝐼1 is blended with the warped and rectified
history frame 𝐼𝑠𝑟0 to create the SR result 𝐼𝑠𝑟1 by:

𝑞 = 𝑎 ·
∑
𝑠∈Ω𝑝

(1 − 𝑏 · 𝑑𝑠) · 𝑠
𝑛

+ (1 − 𝑎) · 𝑞𝑤 , (2)

where 𝑞 ∈ 𝐼𝑠𝑟1 is the constructed pixel, 𝑞𝑤 ∈ 𝐼
𝑠𝑟,𝑤
0 is the corre-

sponding warped history pixel, 𝑠 ∈ 𝐼1 denotes pixel samples near 𝑞
within range Ω𝑝 (a radius of one LR pixel width), 𝑛 is the number
of samples 𝑠 in Ω𝑝 , and 𝑑𝑠 is the distance from 𝑠 to 𝑞. The tunable
parameters 𝑎 and 𝑏 are discussed in Sec. 4.

We use low-latency solutions to perform SR for generated B/P
frames. In the interpolation and SR method, SR I-frame 0 (𝐼𝑠𝑟0) and
LR I-frame 1 (𝐼1) are used to generate frame 𝐼𝑠𝑟𝛼 . In the extrapolation
and SR method, the history SR I-frame 𝐼𝑠𝑟1 is directly employed to
construct the HR extrapolated frame 𝐼𝑒𝑠𝑟1+𝛼 . Except for the required
upsampling of corresponding depth maps and MVs, the remaining
operations are carried out in a manner similar to our interpolation-
only and extrapolation-only methods.

4 DATA-DRIVEN OPTIMIZATION
This section delves into the parameter tuning in our framework. We
set up six game scenes in the Unity Engine [Unity 2023] to create an
evaluation environment. Images rendered with 9× SSAA serve as
the ground truth for SR. The tests are carried out on a Snapdragon
8 Gen 3 smartphone with a 1080P resolution.

s

dx
dy

Figure 6: Sam-
pling.

Learning LUT. In Sec. 3.5, we introduced
learned resampling weights for repeated im-
age warping on mobile platforms. This ap-
proach employs a data-driven strategy to
learn the most effective filters for repeated
sampling. Specifically, we train a multilayer
perceptron (MLP) to learn pixel weights
based on offsets 𝑑𝑥 and 𝑑𝑦 from a sample
𝑠 to its nearest upper-left pixel, as shown in
Fig. 6. After training, 𝑑𝑥 and 𝑑𝑦 are quan-
tized into 32 discrete levels, and the sampling
weights derived from the MLP are stored in
a 32×32×16 LUT. During inference, this LUT provides quick ac-
cess to the weights of 16 pixels based on their sampling positions.
The LUT does not require retraining for each scene but needs to
be trained for different upscaling factors. More details about the
training process can be found in the supplementary material. Our
experimental results show that the LUT-based method achieves a
high mean SSIM of 0.933 (compared to bilinear’s 0.907 and bicubic’s
0.931), while maintaining a short runtime of 0.905ms (faster than
bicubic’s 1.145ms). More importantly, the LUT-based method can
be introduced more information, such as color gradients, in the
lookup process, potentially improving results.

Parameters calibration. In Sec. 3.4, thresholds 𝑇𝐷 and 𝑇𝐵 are
utilized in Eq. 1 to validate history pixels for the reuse of previous SR
images. We adopt a data-driven approach, treating these thresholds
as learnable parameters and optimizing them using a deep learning
framework. Our tests across various scenes indicate that the model
performs optimally at 𝑇𝐷 = 0.0028 and 𝑇𝐵 = 0.13. Additionally, the
method for calculating pixel blending weights is detailed in Eq. 2.
In our testing environment, we calibrate the coefficients 𝑎 = 0.34
and 𝑏 = 0.81 to ensure optimal blending results.

5 RESULTS AND COMPARISONS
This section evaluates the performance of our method compared to
existing solutions. To prevent test data leakage, we create four new
Unity scenes for our evaluation, distinct from the six previously
used. PSNR and SSIM are employed as metrics for quantitative
assessment. It is worth noting that some supersampling techniques
are unique to Unreal Engine 5 (UE) [Epic Games 2023] and its

Mob-FGSR: Frame Generation and Super Resolution for Mobile Real-Time Rendering SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA

deferred rendering process. Therefore, we also develop two UE
scenes for a direct and fair comparison with these specific methods.

5.1 Comparisons on Unity scenes
The performance of our method is first assessed across four Unity
scenes: Street View (SV),Meadows (ME),Hilly Area (HA), andDragon
Park (DP). Evaluations are divided into three parts: frame gener-
ation, SR, and combined operations. Unless otherwise specified,
experiments are set to "single frame generation" and "×2 resolution
upscaling" for frame generation and SR, respectively.

Frame Generation. We compare our models, Ours-I and Ours-E,
with existing frame generation methods, including 3DWarp [Mark
et al. 1997], BSR [Yang et al. 2011] and AFME1 [Holmes and Wicks
2020]. Note that all these methods are potentially for real-time
execution on mobile platforms. The quantitative evaluation results,
as reported in Tab. 2 (rows in cornsilk), clearly demonstrate that our
frame generationmodels significantly outperform other lightweight
methods, achieving a minimum improvement of 0.049 in mean
SSIM and 4.22dB in mean PSNR. Visual comparisons are illustrated
in Fig. 7. It is observable that AFME, which relies on LR optical
flow estimation, often leads to noticeable distortion artifacts in the
output. In cases of fast-moving thin objects or disoccluded regions,
3DWarp and BSR yield incorrect motion estimations, resulting in
unsatisfactory results. In contrast, our method provides accurate
pixel-level motion estimation, achieving markedly better results.

SR. For the comparison with real-time SR methods, we evaluate
the I-frames SR results of our method (Ours-SR) against the deep
learning-based solutions NSR [Xiao et al. 2020] and MNSS [Yang
et al. 2023]. The quantitative and qualitative results, as shown in
Tab. 2 (rows in light pink) and Fig. 7, indicate that our results are
marginally lower but competitive with these deep learning methods.

Joint Solution. In Tab. 2 (rows in Alice blue), we present evalua-
tions of our joint frame generation and SR models. Compared to
Ours-SR, Ours-ISR and Ours-ESR show slight performance reduc-
tions. This is mainly due to the misalignment of generated frames
with reference images, arising from minor variances between our
estimated motion and the ground truth. In fact, the image quality
of Ours-ISR and Ours-ESR is closely comparable to that of Ours-SR,
as shown in the lower part of Fig. 7.

5.2 Comparisons on UE scenes
We also extend our comparisons to two new UE scenes with de-
ferred shading: Bunker (BK) and Western Town (WT). We collect
essential data for ExtraNet [Guo et al. 2021] to facilitate its model
training. Our evaluations include comparisonswith TSR [Epic 2022],
FSR 2 [AMD 2022], and DLSS 2 [Liu 2020]. Tab. 3 shows the quanti-
tative results. In terms of frame generation, Ours-I and Ours-E lag
behind ExtraNet. This gap is primarily caused by ExtraNet’s direct
acquisition of MVs and the generated frame’s base color, which
ensures perfect alignment between the generated frame and the
reference image. In contrast, our estimated MVs have minor devia-
tions compared to ground truth, reasonably resulting in lower PSNR
1Qualcomm’s Adreno Frame Motion Engine (AFME) is engineered for Adreno GPUs
to increase video frame rates. This is achieved by analyzing motion across consecutive
frames and synthesizing additional frames, thereby enhancing visual fluidity.

Table 2: Comparisons with existing methods on Unity scenes.
Our approach is compared separately for frame generation
(cornsilk), SR (light pink), and their joint solutions (Alice
blue). The evaluation metrics used are PSNR and SSIM.

Methods PSNR↑ SSIM↑
SV HA ME DP SV HA ME DP

3DWarp 22.70 26.62 29.21 29.19 0.792 0.912 0.906 0.893
BSR 21.91 26.07 27.14 27.90 0.771 0.907 0.897 0.875
AFME 20.87 24.81 25.79 26.98 0.732 0.875 0.832 0.814
Ours-E 26.60 30.85 31.53 30.65 0.854 0.934 0.945 0.908
Ours-I 27.57 31.78 32.47 32.77 0.878 0.948 0.952 0.922
NSR 29.07 33.56 34.22 30.41 0.896 0.922 0.941 0.917
MNSS 28.95 32.90 32.17 30.87 0.890 0.929 0.934 0.923
Ours-SR 28.42 31.73 32.36 30.62 0.887 0.910 0.932 0.915
Ours-ESR 25.47 29.85 30.61 30.03 0.843 0.898 0.916 0.904
Ours-ISR 26.94 31.03 31.89 30.49 0.861 0.902 0.927 0.912

Table 3: Comparisons with existing methods on UE scenes.

Scenes ExtraNet Ours-E Ours-I TSR Ours-SR Ours-ESR Ours-ISR

PS
N
R BK 31.19 28.19 29.47 29.07 30.85 27.91 28.57

WT 28.97 25.63 26.22 28.54 28.89 25.52 26.80

SS
IM BK 0.950 0.902 0.914 0.910 0.923 0.881 0.894

WT 0.912 0.887 0.891 0.874 0.885 0.849 0.863

and SSIM performance. In metrics, the Ours-SR method slightly
outperforms TSR for SR tasks. The visual comparisons in Fig. 8
support these findings. Predicting optical flow using deep learning
models (or implicit alternatives derived from history frames, as
demonstrated by ExtraNet) does improve shading variation pre-
diction. It is noteworthy that TSR, FSR2, and our method achieve
comparable SR results; however, these non-NN methods tend to
produce rough edges at fast-moving and newly emerged objects. In
contrast, by employing deep NNs for image reconstruction, DLSS 2
consistently delivers superior SR results with smoother edges. The
superiority of DLSS 2, as well as NSR and MNSS methods, stems
from the trained NNs’ ability to suppress noise at low sampling
rates and to predict high-quality edges and textures. This capability
demonstrates the benefits of deep learning and identifies potential
areas for future research on non-NN solutions.

5.3 Performance
We perform a thorough analysis of our models’ runtime on devices
equipped with modern mobile processors, specifically the Qual-
comm Snapdragon 8 Gen 3. As shown in Tab. 4, our models are
extremely efficient. Ours-I and Ours-E achieve frame generation
runtimes of 2.2 ms and 1.9 ms, respectively, at 720P resolution.
Ours-SR, Ours-ISR, and Ours-ESR achieve runtimes of 1.7 ms, 2.3
ms, and 1.8 ms, respectively, for frame generation and SR from 540P
to 1080P. Compared to other methods listed at the bottom of Tab. 4,
3DWarp is slower due to additional rasterization, while BSR and
AFME, though faster, yield less satisfactory results (see Fig. 7). De-
spite MNSS’s use of model quantization and hardware acceleration,
Ours-SR remains nearly seven times faster. Overall, our method
provides high-quality frame generation and SR in a very short time,
making it ideally suited for improving current mobile real-time
rendering applications.

SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA Yang et al.

Table 4: Runtime performance analysis. We report the in-
ference times of our models on a modern mobile SoC (Snap-
dragon 8 Gen3) and compare themwith alternative solutions.

Frame generation (720P) Frame generation & SR (1080P)
Modules Ours-I Ours-E Ours-SR Ours-ISR Ours-ESR

MVs Splatting 0.75 0.67 - 0.43 0.38
Refinement 0.57 0.49 - 0.32 0.29

Disocc. Filling - 0.20 - - 0.18
Warping 0.77 0.56 1.24 1.35 0.90
Blending 0.12 - 0.42 0.24 -
Total 2.21ms 1.92ms 1.66ms 2.34ms 1.75ms

Frame generation (720P) SR (1080P)
Alternative Methods 3DWarp BSR AFME MNSS

Runtime 24.16ms 3.11ms <1ms 12.84ms

6 CONCLUSIONS
We presented a lightweight supersampling framework that boosts
mobile real-time rendering. By combining frame generation and
SR, we significantly reduce rendering overhead, increase frame
rates, and maintain high visual quality. Our framework introduces
an MVs reconstruction method based on splats, which ensures
precise motion estimation for generated frames at desired times.
Furthermore, fast frame generation and SR models are intended to
generate high-fidelity interpolated and extrapolated frames, as well
as their SR variants, providing users with a variety of options. Fi-
nally, after extensive research, we identified appropriate framework
designs for mobile platforms, ensuring optimal model performance.
Comprehensive tests show that our framework outperforms other
lightweight methods and approaches the performance of algorithms
designed specifically for high-end GPUs. Our models are highly
efficient, and they are useful for a wide range of mobile devices such
as smartphones, handheld consoles, and head-mounted displays.

Our method has limitations. 1) We ignore shading changes dur-
ing frame generation due to computational constraints, resulting
in low frame rate effects on shadows, reflections, and transparent
objects (see Fig. 9). We can partly mitigate this issue by using soft
shadows and avoiding large reflections and transparent materials.
On the other hand, directly using deep NNs to predict shading
changes on mobile hardware remains a difficult task. 2) Our MVs
reconstruction method supports extrapolation to reduce frame gen-
eration latency but may introduce ghosting artifacts in disoccluded
areas. We recommend an effective two-frame generation strategy:
the first frame utilizes extrapolation for low latency, while the
second frame uses interpolation to reduce artifacts. This approach
maximizes the benefits of extrapolation and minimizes artifacts (see
the demo video for improvements). Future research could address
this issue by exploring lightweight disocclusion filling methods
akin to G-buffer guided warping [Wu et al. 2023a].

7 ACKNOWLEDGMENTS
Xiaogang Jin was supported by Key R&D Program of Zhejiang (No.
2024C01069), the National Natural Science Foundation of China
(Grant No. 62036010), and the FDCT under Grant 0002/2023/AKP.

REFERENCES
Kurt Akeley. 1993. Reality engine graphics. In Proceedings of the 20th Annual Conference

on Computer Graphics and Interactive Techniques. 109–116.
Tomas Akenine-Mo, Eric Haines, Naty Hoffman, et al. 2018. Real-time rendering.

(2018).
AMD. 2022. FidelityFX Super Resolution 2.0. https://gpuopen.com/fidelityfx-

superresolution-2/.
AMD. 2023. AMD FSR 3 Now Available. https://community.amd.com/t5/gaming/amd-

fsr-3-now-available/ba-p/634265.
Dmitry Andreev. 2010. Real-time frame rate up-conversion for video games: or how

to get from 30 to 60 fps for" free". In ACM SIGGRAPH 2010 Talks. 1–1.
Connelly Barnes, Eli Shechtman, Dan B Goldman, and Adam Finkelstein. 2010. The

generalized patchmatch correspondence algorithm. In Computer Vision–ECCV 2010:
11th European Conference on Computer Vision, Heraklion, Crete, Greece, September
5-11, 2010, Proceedings, Part III 11. Springer, 29–43.

Huw Bowles, Kenny Mitchell, Robert W Sumner, Jeremy Moore, and Markus Gross.
2012. Iterative image warping. In Computer graphics forum, Vol. 31. Wiley Online
Library, 237–246.

Karlis Martins Briedis, Abdelaziz Djelouah, Mark Meyer, Ian McGonigal, Markus Gross,
and Christopher Schroers. 2021. Neural frame interpolation for rendered content.
ACM Transactions on Graphics (TOG) 40, 6 (2021), 1–13.

Karlis Martins Briedis, Abdelaziz Djelouah, Raphaël Ortiz, Mark Meyer, Markus Gross,
and Christopher Schroers. 2023. Kernel-Based Frame Interpolation for Spatio-
Temporally Adaptive Rendering. In ACM SIGGRAPH 2023 Conference Proceedings.
1–11.

Robert L Cook. 1986. Stochastic sampling in computer graphics. ACM Transactions on
Graphics (TOG) 5, 1 (1986), 51–72.

Andrew Edelsten, Paula Jukarainen, and Anjul Patney. 2019. Truly next-gen: Adding
deep learning to games and graphics. In Game Developers Conference.

Epic. 2022. Temporal Super Resolution. https://docs.unrealengine.com/5.2/en-US/
temporal-super-resolution-in-unreal-engine/.

Epic Games. 2023. The most powerful real-time 3D creation tool - Unreal Engine. https:
//www.unrealengine.com/en-US

Jie Guo, Xihao Fu, Liqiang Lin, Hengjun Ma, Yanwen Guo, Shiqiu Liu, and Ling-Qi
Yan. 2021. Extranet: Real-time extrapolated rendering for low-latency temporal
supersampling. ACM Transactions on Graphics (TOG) 40, 6 (2021), 1–16.

Johannes Hanika, Lorenzo Tessari, and Carsten Dachsbacher. 2021. Fast temporal
reprojection without motion vectors. Journal of Computer Graphics Techniques Vol
10, 3 (2021).

Sam Holmes and Jonathan Wicks. 2020. QCOM Frame Extrapolation. https://registry.
khronos.org/OpenGL/extensions/QCOM/QCOM_frame_extrapolation.txt

Yinlin Hu, Rui Song, and Yunsong Li. 2016. Efficient coarse-to-fine patchmatch for
large displacement optical flow. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 5704–5712.

Jorge Jimenez, Jose I Echevarria, Tiago Sousa, and Diego Gutierrez. 2012. SMAA:
Enhanced subpixel morphological antialiasing. Computer Graphics Forum 31, 2pt1
(2012), 355–364.

Khronos. 2022. OpenGL 4 Reference Pages - imageAtomicMin. https://registry.khronos.
org/OpenGL-Refpages/gl4/html/imageAtomicMin.xhtml.

Sungkil Lee, Younguk Kim, and Elmar Eisemann. 2018. Iterative depth warping. ACM
Transactions on Graphics (TOG) 37, 5 (2018), 1–13.

Zhan Li, Carl S Marshall, Deepak S Vembar, and Feng Liu. 2022. Future Frame Synthesis
for Fast Monte Carlo Rendering. In Graphics Interface.

Edward Liu. 2020. DLSS 2.0-Image Reconstruction for Real-time Rendering with Deep
Learning. In GPU Technology Conference (GTC).

William RMark, LeonardMcMillan, and Gary Bishop. 1997. Post-rendering 3Dwarping.
In Proceedings of the 1997 Symposium on Interactive 3D Graphics. 7–16.

NVIDIA. 2023. DLSS 3: AI-Powered Neural Graphics Innovations. https://www.nvidia.
com/en-sg/geforce/news/dlss3-ai-powered-neural-graphics-innovations/.

Qualcomm. 2023. Mobile Gaming. https://developer.qualcomm.com/solutions/mobile-
gaming

Alexander Reshetov. 2009. Morphological antialiasing. In Proceedings of the Conference
on High Performance Graphics 2009. 109–116.

Iain E Richardson. 2004. H. 264 and MPEG-4 video compression: video coding for next-
generation multimedia. John Wiley & Sons.

Andre Schollmeyer, Simon Schneegans, Stephan Beck, Anthony Steed, and Bernd
Froehlich. 2017. Efficient hybrid image warping for high frame-rate stereoscopic
rendering. IEEE Transactions on Visualization and Computer Graphics 23, 4 (2017),
1332–1341.

Jonathan Shade, Steven Gortler, Li-wei He, and Richard Szeliski. 1998. Layered depth
images. In Proceedings of the 25th Annual Conference on Computer Graphics and
Interactive Techniques. 231–242.

Manu Mathew Thomas, Karthik Vaidyanathan, Gabor Liktor, and Angus G Forbes.
2020. A reduced-precision network for image reconstruction. ACM Transactions on
Graphics (TOG) 39, 6 (2020), 1–12.

Unity. 2023. Unity Engine. https://unity.com/products/unity-engine

https://gpuopen.com/fidelityfx-superresolution-2/
https://gpuopen.com/fidelityfx-superresolution-2/
https://community.amd.com/t5/gaming/amd-fsr-3-now-available/ba-p/634265
https://community.amd.com/t5/gaming/amd-fsr-3-now-available/ba-p/634265
https://docs.unrealengine.com/5.2/en-US/temporal-super-resolution-in-unreal-engine/
https://docs.unrealengine.com/5.2/en-US/temporal-super-resolution-in-unreal-engine/
https://www.unrealengine.com/en-US
https://www.unrealengine.com/en-US
https://registry.khronos.org/OpenGL/extensions/QCOM/QCOM_frame_extrapolation.txt
https://registry.khronos.org/OpenGL/extensions/QCOM/QCOM_frame_extrapolation.txt
https://registry.khronos.org/OpenGL-Refpages/gl4/html/imageAtomicMin.xhtml
https://registry.khronos.org/OpenGL-Refpages/gl4/html/imageAtomicMin.xhtml
https://www.nvidia.com/en-sg/geforce/news/dlss3-ai-powered-neural-graphics-innovations/
https://www.nvidia.com/en-sg/geforce/news/dlss3-ai-powered-neural-graphics-innovations/
https://developer.qualcomm.com/solutions/mobile-gaming
https://developer.qualcomm.com/solutions/mobile-gaming
https://unity.com/products/unity-engine

Mob-FGSR: Frame Generation and Super Resolution for Mobile Real-Time Rendering SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA

Songyin Wu, Sungye Kim, Zheng Zeng, Deepak Vembar, Sangeeta Jha, Anton Ka-
planyan, and Ling-Qi Yan. 2023a. ExtraSS: A Framework for Joint Spatial Super
Sampling and Frame Extrapolation. In Proceedings of the 2023 SIGGRAPH Asia
Conference. 1–11.

Zhizhen Wu, Chenyu Zuo, Yuchi Huo, Yazhen Yuan, Yifan Peng, Guiyang Pu, Rui
Wang, and Hujun Bao. 2023b. Adaptive recurrent frame prediction with learnable
motion vectors. In SIGGRAPH Asia 2023 Conference Papers. 1–11.

Lei Xiao, Salah Nouri, Matt Chapman, Alexander Fix, Douglas Lanman, and Anton
Kaplanyan. 2020. Neural supersampling for real-time rendering. ACM Transactions
on Graphics (TOG) 39, 4 (2020), 142–1–12.

Xiangyu Xu, Li Siyao, Wenxiu Sun, Qian Yin, and Ming-Hsuan Yang. 2019. Quadratic
video interpolation. Advances in Neural Information Processing Systems 32 (2019).

Lei Yang, Shiqiu Liu, and Marco Salvi. 2020. A survey of temporal antialiasing tech-
niques. Computer Graphics Forum 39, 2 (2020), 607–621.

Lei Yang, Yu-Chiu Tse, Pedro V Sander, Jason Lawrence, Diego Nehab, Hugues Hoppe,
and Clara L Wilkins. 2011. Image-based bidirectional scene reprojection. In Pro-
ceedings of the 2011 SIGGRAPH Asia Conference. 1–10.

Sipeng Yang, Yunlu Zhao, Yuzhe Luo, He Wang, Hongyu Sun, Chen Li, Binghuang Cai,
and Xiaogang Jin. 2023. MNSS: Neural Supersampling Framework for Real-Time
Rendering on Mobile Devices. IEEE Transactions on Visualization and Computer
Graphics (2023), 1–14.

Zheng Zeng, Shiqiu Liu, Jinglei Yang, Lu Wang, and Ling-Qi Yan. 2021. Temporally
Reliable Motion Vectors for Real-time Ray Tracing. Computer Graphics Forum 40, 2
(2021), 79–90.

Zhihua Zhong, Jingsen Zhu, Yuxin Dai, Chuankun Zheng, Guanlin Chen, Yuchi Huo,
Hujun Bao, and Rui Wang. 2023. FuseSR: Super Resolution for Real-time Rendering
through EfficientMulti-resolution Fusion. In SIGGRAPHAsia 2023 Conference Papers.
1–10.

SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA Yang et al.

Ours-I Input I0 Input I1 BSR AFME Ours-E Ours-I Reference

Ours ISR FSR 1 Ours ESR Ours ISROurs SRMNSS NSR TAA (HR)

3DWarp

Input (LR)- - - -

Figure 7: Comparison of our method to supersampling baselines in Unity scenes, including frame generation methods (3DWarp,
BSR, AFME) and SR methods (FSR 1, MNSS, NSR). MSAA and TAA serve as frame generation and SR references, respectively.
In frame generation (upper section), the Ours-I model provides accurate motion estimation while maintaining high image
quality. The Ours-E model also produces comparable quality, but it occasionally deviates in motion estimation (see the dragon’s
wingtip in the orange box) and produces artifacts in disocclusions (see the right region of dragon’s wingtip in the blue box).
Baseline methods have several limitations, including ‘rubber sheet’ artifacts in 3DWarp, motion loss of thin objects in BSR,
and frequent distortions in AFME. In SR (lower section), the Ours-SR, Ours-ISR, and Ours-ESR models consistently produce
high-quality results, trailing deep learning-based methods MNSS and NSR but outperforming FSR 1.

Mob-FGSR: Frame Generation and Super Resolution for Mobile Real-Time Rendering SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA

Ours-I Input I0 Input I1 BSR ExtraNet Ours-E Ours-I Reference

Ours-ISR TSR Ours-ESR Ours-ISROurs-SRFSR 2 DLSS 2 TAA (HR)

3DWarp

Input (LR)

Figure 8: Comparison of our method to supersampling baselines in UE scenes, including frame generation methods (3DWarp,
BSR, ExtraNet) and SR methods (TSR, FSR 2, DLSS 2). In frame generation (upper section), ExtraNet employs a deep learning
model to predict shading changes, offering more accurate shadow predictions (see red line indicators). On the contrary, other
lightweight methods do not effectively handle dynamic shadows. In the SR task (lower section), TSR, FSR2, and our method all
produce comparable improvements in image resolution. However, they have difficulty with the edges of fast-moving objects. In
contrast, the deep learning approach (DLSS 2) generates smoother edges, resulting in higher visual quality.

(a) Dynamic shadow (b) Reflection (c) Translucent object

Ours-E Reference Ours-E Reference Ours-E Reference

Figure 9: Example results of our extrapolation method on dynamic shadow (a), metal reflection (b), and a translucent object (c),
with each compared to the reference image for clearer visibility. Our lightweight approach ignores costly shading calculations,
which can cause low frame rate effects such as misaligned shadows, reflections, and translucent objects comparing with the
reference (refer to red line indicators). Avoiding low frame rate inputs before frame generation can mitigate these issues. We
recommend an input frame rate greater than 30 fps.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Antialiasing and Supersampling
	2.2 Frame Generation for Rendering

	3 Method
	3.1 Definitions
	3.2 Method Overview
	3.3 MVs Reconstruction
	3.4 Frame Generation
	3.5 SR Integration

	4 Data-Driven Optimization
	5 Results and Comparisons
	5.1 Comparisons on Unity scenes
	5.2 Comparisons on UE scenes
	5.3 Performance

	6 Conclusions
	7 Acknowledgments
	References

