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Fig. 1. We render a shop window scene featuring challenging caustics and complex visibility, using our pipeline based on specular polynomials. The caustics
stem from colored point light sources placed inside a dielectric object, and the whole scene is viewed through a transparent window. Such a configuration
makes most existing rendering algorithms fail, while our method succeeds in reproducing the stunning light transport effect. The insets show equal-time (10
min) comparisons against Stochastic Progressive Photon Mapping (SPPM) [Hachisuka and Jensen 2009] and Manifold Path Guiding (MPG) [Fan et al. 2023].

Finding valid light paths that involve specular vertices in Monte Carlo
rendering requires solving many non-linear, transcendental equations in
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high-dimensional space. Existing approaches heavily rely on Newton itera-
tions in path space, which are limited to obtaining at most a single solution
each time and easily diverge when initialized with improper seeds.

We propose specular polynomials, a Newton iteration-free methodology
for finding a complete set of admissible specular paths connecting two arbi-
trary endpoints in a scene. The core is a reformulation of specular constraints
into polynomial systems, which makes it possible to reduce the task to a
univariate root-finding problem. We first derive bivariate systems utilizing
rational coordinate mapping between the coordinates of consecutive vertices.
Subsequently, we adopt the hidden variable resultant method for variable
elimination, converting the problem into finding zeros of the determinant
of univariate matrix polynomials. This can be effectively solved through
Laplacian expansion for one bounce and a bisection solver for more bounces.

Our solution is generic, completely deterministic, accurate for the case
of one bounce, and GPU-friendly. We develop efficient CPU and GPU im-
plementations and apply them to challenging glints and caustic rendering.
Experiments on various scenarios demonstrate the superiority of specular
polynomial-based solutions compared to Newton iteration-based counter-
parts. Our implementation is available at https://github.com/mollnn/spoly.

CCS Concepts: • Computing methodologies→ Ray tracing.
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1 INTRODUCTION
Although Monte Carlo (MC) rendering algorithms have made enor-
mous strides in reducing noise [Christensen and Jarosz 2016; Fas-
cione et al. 2018; Keller et al. 2015], they are still inadequate for
handling certain kinds of light paths. Paths containing specular
chains (i.e., multiple consecutive specular scattering events) are
extremely difficult to sample for existing MC rendering algorithms.
The bottleneck is that a light path satisfying all physical constraints
at specular reflective/refractive vertices has an infinitely small prob-
ability for sampling. To alleviate this issue, prior methods resort to
some kind of multivariate Newton solver: seed paths are heuristi-
cally generated or randomly sampled first and then undergo Newton
iterations in path space (e.g., manifold walk) to reach admissible
paths [Jakob and Marschner 2012; Zeltner et al. 2020].
Unfortunately, Newton solvers do not always converge and are

highly sensitive to the selection of initial seed paths. Improper seed
paths can lead to divergence and hence introduce substantial bias
or variance to the final rendering [Hanika et al. 2015; Wang et al.
2020; Zeltner et al. 2020]. Several recent works design dedicated
strategies to carefully and intelligently select seed paths leveraging
historical samples [Fan et al. 2023; Xu et al. 2023; Yu et al. 2023].
Even so, missing high-frequency optical details (e.g., glints and caus-
tics) and producing severe outliers happen frequently in complex
scenes. Moreover, Newton solvers that walk on the whole specular
manifolds [Jakob and Marschner 2012] will also fail when facing
scenes containing small specular geometries and complex visibility
[Otsu et al. 2018], since they rely heavily on local continuity.

In this paper, we endeavor to remove the Newton solver from spec-
ular chain sampling, thereby fundamentally avoiding the aforemen-
tioned issues. Our key insight is that Newton’s iteration-based meth-
ods rely solely on information about a single point at a time. While
this aligns seamlessly with manifold-based techniques [Hanika et al.
2015; Jakob and Marschner 2012; Zeltner et al. 2020], there are also
quite a few cases in which we possess comprehensive information
about an entire region. Specifically, when considering paths passing
through a tuple of triangles in Fig. 2, we can express the specular
constraints in closed-form equations using vertex positions and nor-
mals [Walter et al. 2009; Wang et al. 2020]. Can we therefore obtain
all of the solutions directly from these closed-form equations?
To this end, we derive specular polynomials, a polynomial

formulation of specular constraints, and solve these polynomials
directly, bypassing the use of multivariate Newton’s method. Here, a
significant challenge arises due to the high dimensionality involved.
A specular chain with 𝑘 vertices requires solving the problem in
a space of 2𝑘 dimensions. To reduce the number of variables, we
recursively apply rational mapping to vertex coordinates along
a specular chain, resulting in bivariate specular polynomials.
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Fig. 2. Illustration of our problem setup and important symbols.

Leveraging the hidden variable resultant method tailored for poly-
nomial equations [Nakatsukasa et al. 2015], we further convert them
into univariate specular polynomials. This allows us to adopt
a wide variety of methods in mathematics, such as root isolation
[Collins and Loos 1976], bisection, and eigenvalue decomposition
[Golub and Van Loan 2012], to effectively solve the simplified prob-
lem with only one variable.
When applied to the rendering of glints and caustics, our solver

can be run on the triangle tuples selected using existing techniques
[Wang et al. 2020] that prune non-contributing regions of the path
space. This pipeline can simulate these challenging effects, con-
suming even less time than previous methods for one bounce and
achieving comparable performance for more bounces. As a direct
and deterministic method, it naturally handles discontinuities raised
by small specular geometries and complex visibility, producing fewer
artifacts such as strong outliers and energy loss.

In summary, our main contributions include:
• A polynomial formulation of specular constraints, de-
rived by combining vertex constraint polynomials and ratio-
nal coordinate mappings between barycentric coordinates.

• A specular path solver using hidden variable resultant
method combined with direct or eigenvalue solvers, which is
deterministic and free from multivariate Newton iterations.

• Applications to glints and caustics rendering, which
achieves fast and almost noise-free rendering of specular
light transport effects.

2 RELATED WORKS
Specular light transport. Since caustics and glints can not be ro-

bustly handled by (bidirectional) path tracing [Kajiya 1986; Veach
and Guibas 1995] even when properly guided [Müller et al. 2017;
Rath et al. 2023; Reibold et al. 2018; Ruppert et al. 2020; Vorba et al.
2019] or using Metropolis sampling [Veach and Guibas 1997], nu-
merous specialized rendering methods have emerged. One line of
approaches involves searching and root-finding techniques to iden-
tify all specular chains connecting two endpoints. Mitchell and
Hanrahan [1992] utilize Fermat’s principle with interval Newton’s
method to identify specular reflection paths including non-specular
vertices. Chen and Arvo [2000] examine the reflection geometry
by employing Fermat’s principle to establish a path Jacobian and
path Hessian, which addresses perturbations in the endpoint of a
path and enhances the rendering of reflections on curved surfaces.
Walter et al. [2009] introduce a pruning strategy and employ New-
ton’s method to discover refractive specular paths. Loubet et al.
[2020] analytically estimate the contribution of each specular trian-
gle under far-field assumptions, enabling importance sampling of
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specular vertices, though requiring recursive subdivision to reduce
bias for pure specular cases. However, these methods are tailored
for a single specular bounce. Wang et al. [2020] extend Walter et al.
[2009]’s method to multi-bounce specular chains. To mitigate per-
formance degradations, they resort to using the regular Newton’s
method instead of the interval variant, sacrificing some solutions
for computational efficiency and practicality.

Alternatively, other methods alleviate the computational burden
through stochastic sampling. Manifold Exploration Metropolis Light
Transport (MEMLT) [Jakob and Marschner 2012] facilitates random
walks on a specular manifold using Newton’s method, which then
extends to the half-vector space [Kaplanyan et al. 2014] and inte-
grates into regular Monte Carlo sampling as Manifold Next-Event
Estimation (MNEE) [Hanika et al. 2015]. MNEE augments both
unidirectional and bidirectional techniques [Speierer et al. 2018].
However, with fixed initialization, MNEE can only identify at most
one specular chain connecting a given pair of endpoints, resulting
in energy loss. Specular Manifold Sampling (SMS) [Zeltner et al.
2020] tackles this challenge by employing random initialization,
coupled with an unbiased reciprocal probability estimator. The con-
vergence rate of SMS is subsequently improved by introducing a
large jump [Jhang and Chang 2022]. Additionally, for the volumet-
ric counterparts, Pediredla et al. [2020] and Fraboni et al. [2023]
apply gradient-based optimizations to the problem of refractive ra-
diative transfer. Nevertheless, the variance remains unbounded, as
the convergence basin for each solution can become uncontrollably
small, even when properly guided by reconstructed importance seed
distributions [Fan et al. 2023].
In stark contrast to the gradient-based iteration methods that

operate in path space, we introduce the first generic framework for
computing all solutions without reliance on multivariate Newton
iterations. The proposed framework combines analytical derivation
with numerical computation, robustly handling the intricacies of
specular constraints.

Specialized methods for rendering glints and caustics. Industrial
caustics rendering has conventionally employed photon-based ap-
proaches [Hachisuka and Jensen 2009; Hachisuka et al. 2008; Jensen
and Christensen 1995] or regularization [Jendersie and Grosch 2019;
Kaplanyan and Dachsbacher 2013; Weier et al. 2021]. However, the
inherent bias caused by spatial relaxation in these methods fre-
quently results in issues such as light leaking and unexpected blur-
ring, while our method solves the original, unrelaxed problem.

Specialized glint-rendering methods are mostly limited to a single
reflection event and are designed exclusively for surfaces with nor-
mal maps [Yan et al. 2014; Zhu et al. 2022]. Alternatively, someworks
concentrate on rendering procedurally generated glints [Jakob et al.
2014]. In contrast, our approach handles actual geometric primitives,
accommodating multiple bounce reflections and refractions, which
successfully addresses both glints and caustic rendering tasks.

Polynomial root-finding techniques. Many mathematical tools for
elimination and root-finding are tailored for polynomials. For uni-
variate polynomials, real root isolation [Collins and Loos 1976] by
differentiation can be used to develop robust solvers [Yuksel 2022].
Another approach involves solving the eigenvalues of the compan-
ion matrices through QR decomposition [Golub and Van Loan 2012].

Table 1. List of important symbols. By default, a vector with a hat means it
is normalized.

Symbol Description

𝒙0, 𝒙𝑘+1 Position of non-specular separators
𝒙𝑖 Position of specular vertices
𝑷𝑖 Position matrix (𝒑𝑖,0,𝒑𝑖,1,𝒑𝑖,2)
𝒆𝑖,1, 𝒆𝑖,2 Vector of triangle edges
𝒏𝑖 Un-normalized linearly interpolated normal of 𝒙𝑖
𝒏̂𝑖 Normal vector of 𝒙𝑖
𝑵𝑖 Normal matrix (𝒏𝑖,0, 𝒏𝑖,1, 𝒏𝑖,2)
𝒉𝑖 Generalized half-vector of 𝒙𝑖
𝒕𝑖,1, 𝒕𝑖,2 Tangent vectors of 𝒙𝑖 , computing from 𝒏𝑖 and 𝒆𝑖,1/2
𝒅𝑖 Position difference of vertices 𝒙𝑖+1 and 𝒙𝑖
𝒅𝑖 Direction from 𝒙𝑖 to 𝒙𝑖+1
𝒖𝑖 Barycentric coordinate of 𝒙𝑖

Elimination methods can be employed to handle polynomial sys-
tems involving two or more variables [Buchberger 1992; Hilton
et al. 1996]. The resultant method is efficient for discovering all
solutions of multivariate polynomials systems [Nakatsukasa et al.
2015], which is widely embraced in many fields [Kajiya 1982; Kapur
et al. 1994; Sadeghimanesh and England 2022].
Substantial research has focused on the resultant. Various resul-

tant matrices, such as Sylvester [Sylvester 1853] and Bézout [Bézout
1779] for bivariate polynomial systems and Dixon [Dixon 1908]
for multivariate (three or more) polynomial systems, have been
explored. Fast algorithms with low time complexity for computing
the resultant matrix have been developed [Chionh et al. 2002; Emiris
and Pan 2005; Grenet et al. 2013; Qin et al. 2017].
In this work, we formulate the constraints as polynomials for

elimination. We employ the Bézout resultant for bivariate polyno-
mial systems predominantly due to its numerical stability and low
computational complexity [Chionh et al. 2002]. Although existing
works also mention some polynomial forms of specular constraints
[Glaeser and Schröcker 2000], they are in a very different context.

3 POLYNOMIAL FORMS OF SPECULAR CONSTRAINTS
In this section, we convert the specular constraints into polynomial
systems, starting with the definition of our problem setup.

3.1 Problem definition
Formally, we denote two fixed separators as 𝒙0 and 𝒙𝑘+1, where 𝒙0
could be a vertex on the camera or a non-specular shading point, and
𝒙𝑘+1 could be a vertex on the light source or another non-specular
shading point in bidirectional techniques [Fan et al. 2023; Jakob and
Marschner 2012; Speierer et al. 2018]. A specular chain connecting
𝒙0 and 𝒙𝑘+1 is represented by 𝒙 , which is comprised of specular
vertices 𝒙1, 𝒙2, . . . , 𝒙𝑘 . Important symbols used in this paper are
summarized in Table 1 and illustrated in Fig. 2.

Existing pruning techniques [Walter et al. 2009; Wang et al. 2020]
can be used to select the triangle tuples that may contain a spec-
ular chain connecting the two separators. Thus, our problem be-
gins with a given tuple of 𝑘 triangles T1, . . . ,T𝑘 , each consisting
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of three vertices with positions1 𝑷𝑖 =
(
𝒑𝑖,0,𝒑𝑖,1,𝒑𝑖,2

)
and normals

𝑵𝑖 =
(
𝒏𝑖,0, 𝒏𝑖,1, 𝒏𝑖,2

)
, our objective is to determine the set of all

possible tuples of specular vertices (𝒙1, . . . , 𝒙𝑘 ) that forms admissi-
ble specular chains, where each vertex 𝒙𝑖 lies on a triangle T𝑖 with
interpolated normal vectors 𝒏̂𝑖 . To make the problem tractable, we
resort to the barycentric coordinates 𝒖𝑖 = (1 − 𝑢𝑖 − 𝑣𝑖 , 𝑢𝑖 , 𝑣𝑖 )⊤ to
represent the positions of these vertices:

𝒙𝑖 = (1 − 𝑢𝑖 − 𝑣𝑖 )𝒑𝑖,0 + 𝑢𝑖𝒑𝑖,1 + 𝑣𝑖𝒑𝑖,2 = 𝑷𝑖𝒖𝑖 . (1)

Similarly, the normal vector 𝒏̂𝑖 of specular vertices is also deter-
mined by the barycentric interpolation from the vertex normals:

𝒏̂𝑖 =
𝒏𝑖
∥𝒏𝑖 ∥

, 𝒏𝑖 = (1 − 𝑢𝑖 − 𝑣𝑖 )𝒏𝑖,0 + 𝑢𝑖𝒏𝑖,1 + 𝑣𝑖𝒏𝑖,2 = 𝑵𝑖𝒖𝑖 . (2)

Here, 𝒏𝑖 is un-normalized and is linear to 𝒖𝑖 . Normalizing 𝒏𝑖 results
in 𝒏̂𝑖 which is no longer linear to 𝒖𝑖 . For simplicity, we introduce
dummy barycentric coordinates 𝒖0 and 𝒖𝑘+1 for separators. Eq.
(1) still holds for 𝒑0,0 = 𝒑0,1 = 𝒑0,2 = 𝒙0 and 𝒑𝑘+1,0 = 𝒑𝑘+1,1 =

𝒑𝑘+1,2 = 𝒙𝑘+1, and 𝒖0 and 𝒖𝑘+1 will not appear in the final equations.
Ideal specular reflection or refraction occurs at each vertex, im-

posing constraints on the positions of consecutive vertices and their
normal vectors. Specifically, for each specular vertex 𝒙𝑖 , the con-
straint can be characterized by [Hanika et al. 2015; Kaplanyan et al.
2014; Wang et al. 2020; Zeltner et al. 2020]

𝒉𝑖 × 𝒏𝑖 = 0, 1 ≤ 𝑖 ≤ 𝑘. (3)

Here, 𝒉𝑖 = 𝜂𝑖𝒅𝑖 − 𝜂𝑖−1𝒅𝑖−1 is the generalized half vector [Walter
et al. 2007], where

𝒅𝑖 =
𝒅𝑖
∥𝒅𝑖 ∥

, 𝒅𝑖 = 𝒙𝑖+1 − 𝒙𝑖 , (4)

and 𝜂𝑖 represents the index of refraction of the outgoing side of 𝒙𝑖 .
Both 𝒉𝑖 and 𝒏𝑖 vary with respect to 𝑢𝑖 and 𝑣𝑖 .
Our problem is to solve the above constraint equations for vari-

ables 𝒖𝑖 = (𝑢𝑖 , 𝑣𝑖 ), which forms a system of 2𝑘 independent equa-
tions on 2𝑘 variables𝑢𝑖 and 𝑣𝑖 (𝑖 = 1, . . . , 𝑘). This has been proven to
have only a finite number of solutions [Wang et al. 2020]. Unfortu-
nately, these equations are not polynomials due to the existence of
square roots and fractions. Thus, the rest of this section is devoted to
transforming them into specular polynomials. Furthermore, we will
attempt to maintain the degree and number of variables as low as
possible, as this is critical to the performance of the solving process.

3.2 Vertex constraints
To convert the aforementioned constraint equations into polynomi-
als, we first consider expressing the specular constraint on vertex
𝒙𝑖 as a polynomial in variables 𝒖𝑖−1, 𝒖𝑖 , and 𝒖𝑖+1. Because these
constraints solely deal with the reflection/refraction behavior on a
single vertex, they are referred to as vertex constraints. To clarify
the derivation, we treat vertex constraints as two separate condi-
tions: the coplanarity constraint and the angularity constraint.

1Here, we simplify the representation by using matrices (position matrix 𝑷𝑖 and normal
matrix 𝑵𝑖 ) to express the positions of the three vertices of a triangle. Thus, interpola-
tions in Eq. (1) and Eq. (2) can be written as matrix-vector multiplications.

Coplanarity constraint. The reflection/Snell’s law states that the
normal vector 𝒏̂𝑖 , the outgoing direction 𝒅𝑖 , and the incident direc-
tion 𝒅𝑖−1 all reside in the same plane, i.e.,

(𝒅𝑖−1 × 𝒅𝑖 ) · 𝒏𝑖 = 0. (5)

Note that we have excluded the normalization factors, so this is
already a polynomial equation in 𝒖𝑖−1, 𝒖𝑖 , and 𝒖𝑖+1. We can simplify
it further using 𝒅𝑖−1 + 𝒅𝑖 = 𝒙𝑖+1 − 𝒙𝑖−1 and 𝒅𝑖−1 × 𝒅𝑖−1 = 0:

(𝒅𝑖−1 × (𝒙𝑖+1 − 𝒙𝑖−1)) · 𝒏𝑖 = 0. (6)

Angularity constraint. The incident and reflected/refracted angle
values must satisfy the reflection/Snell’s law:

𝜂𝑖−1∥𝒅𝑖−1 × 𝒏𝑖 ∥ = 𝜂𝑖 ∥𝒅𝑖 × 𝒏𝑖 ∥. (7)

Since the coplanarity condition implies that 𝒅𝑖−1, 𝒅𝑖 , and 𝒏𝑖 lies on
the same plane, 𝒅𝑖−1 × 𝒏𝑖 and 𝒅𝑖 × 𝒏𝑖 are parallel to each other, i.e.,

𝒅𝑖−1 × 𝒏𝑖

∥𝒅𝑖−1 × 𝒏𝑖 ∥
=

𝒅𝑖 × 𝒏𝑖

∥𝒅𝑖 × 𝒏𝑖 ∥
. (8)

Therefore, Eq. (7) becomes

𝜂𝑖−1𝒅𝑖−1 × 𝒏𝑖 = 𝜂𝑖𝒅𝑖 × 𝒏𝑖 (9)

with 𝜂𝑖 = 𝜂𝑖−1 handling the reflection case.
Unfortunately, the square roots in 𝒅𝑖−1 and 𝒅𝑖 indicate that Eq. (9)

is not a polynomial. We propose two polynomialization techniques
to resolve this issue.

3.3 Polynomialization
Making the aforementioned angularity constraint a polynomial re-
quires removing the square roots in the denominators. To achieve
this goal, we propose two ways by computing squares or construct-
ing common factors, respectively: The square form handles both
reflection and refraction, but the product form, which has a lower
degree than the square form, only works for reflection. Therefore,
these two forms are used jointly in our final pipeline.

Square form. A straightforward way to remove the square roots
is by performing squaring. To convert it into a scalar equation, we
project2 Eq. (9) onto an arbitrary vector 𝒃 . Then, we eliminate the
square roots by squaring both sides and remove the denominators
by multiplying the common denominator 𝒅2

𝑖
𝒅2
𝑖−1, resulting in

3:

𝜂2𝑖−1𝒅
2
𝑖 ((𝒅𝑖−1 × 𝒏𝑖 ) · 𝒃)2 = 𝜂2𝑖 𝒅

2
𝑖−1 ((𝒅𝑖 × 𝒏𝑖 ) · 𝒃)2 . (10)

This equation represents a polynomial in terms of 𝒖𝑖−1, 𝒖𝑖 , and
𝒖𝑖+1. In practice, we choose 𝒃 = (1, 0, 0)⊤ by default and switch to
(0, 0, 1)⊤ if the equation degenerates. Note that the square opera-
tions may introduce additional solutions with positive and negative
signs, so we have to check the original constraints, Eq. (3), to remove
such superfluous solutions.

Product form. An alternative method is to remove the normaliza-
tion operation directly. This requires constructing two equations
2Projection means computing the dot product of Eq. (9) with the basis 𝒃 . It should
also be noted that Eq. (10) is merely a necessary condition of Eq. (9). Yet, even if
some superfluous solutions are discovered, they will be immediately filtered out after
checking the specular constraints in path space. The same goes for Eq. (13).
3Here, we use the notation 𝒙2 to represent the dot product 𝒙 · 𝒙 of a vector 𝒙 .
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(a)                                                           (b)

Fig. 3. (a) Product form of vertex constraints requires decomposing the ray
in the local tangent frame of 𝒙𝑖 . (b) Recursive rational mappings represent
𝒖𝑖+1 using a rational expression of 𝒖𝑖 .

both with factors ∥𝒅𝑖−1∥ and ∥𝒅𝑖 ∥. As illustrated in Fig. 3(a), for a
reflective vertex 𝒙𝑖 , we can exploit the symmetry property that the
angle between 𝒅𝑖−1 and 𝒏𝑖 equals the angle between −𝒅𝑖 and 𝒏𝑖 :

𝒅𝑖−1 · 𝒏𝑖 = −𝒅𝑖 · 𝒏𝑖 . (11)

Supposing that an arbitrary direction 𝒕𝑖 is perpendicular to 𝒏𝑖 , the
angle between 𝒅𝑖−1 and 𝒕𝑖 also equals the angle between 𝒅𝑖 and 𝒕𝑖 :

𝒅𝑖 · 𝒕𝑖 = 𝒅𝑖−1 · 𝒕𝑖 . (12)

These equations can be viewed as decomposing the incident and
outgoing directions in the local tangent frame of 𝒙𝑖 . Afterward, to
eliminate the square root in the normalization factors of 𝒅𝑖−1 and
𝒅𝑖 in the above equations, we multiply them together. This results
in a polynomial equation in terms of 𝒖𝑖−1, 𝒖𝑖 , and 𝒖𝑖+1:

(𝒅𝑖−1 · 𝒏𝑖 ) (𝒅𝑖 · 𝒕𝑖 ) + (𝒅𝑖−1 · 𝒕𝑖 ) (𝒅𝑖 · 𝒏𝑖 ) = 0. (13)

In practice, we choose 𝒕𝑖 = 𝒏𝑖×𝒆𝑖,1 by default, where 𝒆𝑖,1 = 𝒑𝑖,1−𝒑𝑖,0.
We switch to 𝒕𝑖 = 𝒏𝑖 × 𝒆𝑖,2 if the equation degenerates.

Multivariate specular polynomials. Using the above two polyno-
mialization algorithms, we can directly construct a multivariate
polynomial system with 2𝑘 variables 𝒖1, . . . , 𝒖𝑘 . We refer to this
system asmultivariate specular polynomials. Table 2 summa-
rizes these polynomials. The maximum degree is 6 for refraction
and 4 for reflection when using interpolated shading normals. Our
proposed formulation still applies to specular triangles with face
normals, where 𝒏𝑖 = 𝒏𝑖,0 is a constant. In this case, the maximum
degree is 4 for refraction and 2 for reflection.

Due to numerical instability and computational burden [Noferini
and Townsend 2016; Qin et al. 2017], directly solving these multi-
variate formulations with many variables is not recommended. In
mathematics, the most reliable solvers for polynomial systems are
designed for two variables [Nakatsukasa et al. 2015]. Inspired by
this, we further transform all multivariate formulations into bivari-
ate ones, making the method much more practicable. Fortunately,
this conversion can be accomplished through a change of variables
leveraging the light transport behavior of specular paths.

3.4 Variable reduction
Our key idea for variable reduction lies in expressing the barycentric
coordinates of all specular vertices using that of the first vertex in a
given specular chain. This is achieved recursively: Each vertex is
represented by its preceding neighbor, as illustrated in Fig. 3(b).

Specifically, we compute the intersection of the reflected/refracted
ray with the 𝑖+1-th triangle T𝑖+1 using the Möller–Trumbore algo-
rithm [Akenine-Möller and Trumbore 1997], which represent 𝒖𝑖+1
as a function of 𝒖𝑖 and 𝒖𝑖−1 in the following rational form named
rational coordinate mapping in this paper:

𝒖𝑖+1 (𝒖𝑖 , 𝒖𝑖−1) =
(𝑢̃𝑖+1 (𝒖𝑖 , 𝒖𝑖−1), 𝑣𝑖+1 (𝒖𝑖 , 𝒖𝑖−1))⊤

𝜅𝑖+1 (𝒖𝑖 , 𝒖𝑖−1)
, (14)

where
𝑢̃𝑖+1 (𝒖𝑖 , 𝒖𝑖−1) = (𝒅𝑖 × 𝒆𝑖+1,2) · (𝒙𝑖 − 𝒑𝑖+1,0), (15)

𝑣𝑖+1 (𝒖𝑖 , 𝒖𝑖−1) = ((𝒙𝑖 − 𝒑𝑖+1,0) × 𝒆𝑖+1,1) · 𝒅𝑖 , (16)

𝜅𝑖+1 (𝒖𝑖 , 𝒖𝑖−1) = (𝒅𝑖 × 𝒆𝑖+1,2) · 𝒆𝑖+1,1 . (17)

Here, 𝒅𝑖 is a special and unnormalized version of 𝒅𝑖 , which is deter-
mined by the scattering type at 𝒙𝑖 . To keep the expression of 𝒖𝑖+1
rational, 𝒅𝑖 is also expected to be rational. These rational expres-
sions are beneficial for polynomialization since rational equations
can be easily converted into polynomial equations.

Reflection. The reflected direction at 𝒙𝑖 can be written as

𝒅𝑖 = −2(𝒅𝑖−1 · 𝒏̂𝑖 )𝒏̂𝑖 + 𝒅𝑖−1 . (18)

To eliminate the square roots in 𝒏̂𝑖 and 𝒅𝑖−1, we introduce a scaled
direction vector 𝒅𝑖 through multiplying 𝒅𝑖 by 𝒏2

𝑖

√︃
𝒅2
𝑖−1:

𝒅𝑖 = −2(𝒅𝑖−1 · 𝒏𝑖 )𝒏𝑖 + 𝒅𝑖−1𝒏2𝑖 , (19)

which is a polynomial in 𝒖𝑖−1 and 𝒖𝑖 .

Refraction. The expression of the refracted direction at 𝒙𝑖 is much
more complicated:

𝒅𝑖 = 𝜂′𝑖 (𝒅𝑖−1 − (𝒅𝑖−1 · 𝒏̂𝑖 )𝒏̂𝑖 ) −
√︃
1 − 𝜂′2

𝑖
(1 − (𝒅𝑖−1 · 𝒏̂𝑖 )2)𝒏̂𝑖 , (20)

where 𝜂′
𝑖
= 𝜂𝑖−1/𝜂𝑖 . Similarily, we also multiply the above equation

by 𝒏2
𝑖

√︃
𝒅2
𝑖−1, yielding

𝒅𝑖 = 𝜂′𝑖 (𝒅𝑖−1𝒏
2
𝑖 − (𝒅𝑖−1 · 𝒏𝑖 )𝒏𝑖 ) −

√︁
𝛽𝑖𝒏𝑖 , (21)

where

𝛽𝑖 = 𝒏2𝑖 𝒅
2
𝑖−1 − 𝜂′2𝑖

(
𝒏2𝑖 𝒅

2
𝑖−1 − (𝒅𝑖−1 · 𝒏𝑖 )2

)
. (22)

The square root operation in Eq. (21) forbids it to be rationalized
accurately. Thus, we provide the following cheap piecewise rational
approximation to

√
𝑥 in the range of [0, 1]. We subdivide the the

range [0, 1] into 6 consecutive pieces. In each piece,
√
𝑥 is fit by the

following rational function:

𝑐0,𝑖 + 𝑐1,𝑖𝑥
𝑑0,𝑖 + 𝑑1,𝑖𝑥

, 𝑖 = 0, 1, 2..., 5. (23)

The details of the coefficents 𝑐0,𝑖 , 𝑐1,𝑖 , 𝑑𝑖,0, 𝑑1,𝑖 are included in the
supplemental material. The approximation provides an error less
than 10−3, which bounds the angular error within a threshold [Wang
et al. 2020; Zeltner et al. 2020] and is sufficient for most cases.
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Table 2. Summary of vertex constraint polynomials. We show the degree when using interpolated shading normals (I) and face normals (F).

Constraints Formulation I Degree Formulation II Degree
Equation I/F Equation I/F

Coplanarity Consecutive difference form 3/2 Endpoint difference form 2/1
(𝒅𝑖−1 × 𝒅𝑖 ) · 𝒏𝑖 = 0 (𝒅𝑖−1 × (𝒙𝑖+1 − 𝒙𝑖−1)) · 𝒏𝑖 = 0

Angularity Square form (for reflection/refraction) 6/4 Product form (for reflection) 4/2
𝜂2
𝑖−1𝒅

2
𝑖
((𝒅𝑖−1 × 𝒏𝑖 ) · 𝒃)2 − 𝜂2

𝑖
𝒅2
𝑖−1 ((𝒅𝑖 × 𝒏𝑖 ) · 𝒃)2 = 0 (𝒅𝑖−1 · 𝒏𝑖 ) (𝒅𝑖 · 𝒕𝑖 ) + (𝒅𝑖−1 · 𝒕𝑖 ) (𝒅𝑖 · 𝒏𝑖 ) = 0

3.5 Bivariate specular polynomials
Until now, for any specular chain, we can use rational coordinate
mapping (Sec. 4.4) to express all 𝒖𝑖 in the chain using 𝒖1. By putting
them into the vertex constraint (Sec. 4.3) on the last vertex 𝒙𝑘 , we
arrive at a bivariate form of specular polynomials:{

𝑎(𝒖1) = 𝑎(𝑢1, 𝑣1) = 0,
𝑏 (𝒖1) = 𝑏 (𝑢1, 𝑣1) = 0,

(24)

with 𝒖1 = (𝑢1, 𝑣1) being the only variable4. This allows us to design
practical solutions to simulate specular light transport with different
types. We show three special cases in what follows. The notations
follow Heckbert’s tradition [Heckbert 1990]: 𝑅 denotes reflection
and 𝑇 denotes refraction.

R. For specular reflection with a single bounce, Eq. (6) and Eq.
(13) show that
𝑎(𝒖1) =((𝑷1𝒖1 − 𝒙0) × (𝒙2 − 𝒙0)) · 𝑵1𝒖1 = 0,

𝑏 (𝒖1) = ((𝑷1𝒖1 − 𝒙0) · 𝑵1𝒖1)
(
(𝒙2 − 𝑷1𝒖1) · (𝑵1𝒖1 × 𝒆1,1)

)
+

((𝒙2 − 𝑷1𝒖1) · 𝑵1𝒖1)
(
(𝑷1𝒖1 − 𝒙0) · (𝑵1𝒖1 × 𝒆1,1)

)
= 0.
(25)

The above two polynomials are of degree 2 and 4, respectively.

T. The derivation of the refractive case is analogous, using Eq. (6)
and Eq. (10):

𝑎(𝒖1) =((𝑷1𝒖1 − 𝒙0) × (𝒙2 − 𝒙0)) · 𝑵1𝒖1 = 0,

𝑏 (𝒖1) =𝜂20 (𝒙2 − 𝑷1𝒖1)2 (((𝑷1𝒖1 − 𝒙0) × 𝑵1𝒖1) · 𝒃)2 −
𝜂21 (𝑷1𝒖1 − 𝒙0)2 (((𝒙2 − 𝑷1𝒖1) × 𝑵1𝒖1) · 𝒃)2 = 0.

(26)

The above two polynomials are of degree 2 and 6, respectively.

RR. For the angularity relationship, we replace 𝒅𝑖−1 in Eq. (13)
with 𝒅𝑖−1 defined in Eq. (19). Combined with the coplanarity con-
straint, we obtain{

𝑎(𝒖1) = ((𝑷2𝒖2 − 𝑷1𝒖1) × (𝒙3 − 𝑷1𝒖1)) · 𝑵2𝒖2 = 0,

𝑏 (𝒖1) = (𝒅1 · 𝒏2) (𝒅2 · 𝒕2) + (𝒅1 · 𝒕2) (𝒅2 · 𝒏2) = 0.
(27)

Here, 𝒅1 is a polynomial in 𝒖1, while 𝒏2, 𝒅2, and 𝒕2 are all linear to
𝒖2. Recall that 𝒖2 is a rational expression of 𝒖1. Therefore, we can
easily obtain polynomial systems in 𝒖1 from the above equations.

4Again, 𝒖0 and 𝒖𝑘+1 are dummy variables since 𝒙0 and 𝒙𝑘+1 are fixed.

Table 3. Summary of various forms of specular polynomials. Note that the
time cost of solving a bivariate system is proportional to the cubic of the
product degree of the two polynomials.

Type Equation #Var. Degree

𝑅𝑘 Eqs. (6), (13) 2𝑘 2, 4
Multivar. 𝑇𝑘 Eqs. (6), (10) 2𝑘 2, 6

(𝑅 |𝑇 )𝑘 Eq. (3) 3𝑘 + 1 2

𝑅 Eqs. (6), (13) 2 2, 4
𝑇 Eqs. (6), (10) 2 2, 6

Bivar. 𝑅𝑅 Eqs. (6), (13), (14) 2 10, 16
𝑅𝑇,𝑇𝑅 Eqs. (6), (10), (14) 2 10, 24
𝑇𝑇 Eqs. (6), (13), (14) 2 18, 48

Other cases. Table 3 summarizes the above theoretical results.
The first three lines list the multivariate formulations of specular
polynomials, while the other lines show the bivariate versions for
one or two reflection/refraction bounces via rational coordinate
mapping. The generalization to bounces over two is straightforward.

4 AN EFFICIENT POLYNOMIAL SOLVER
In this section, we develop a practical pipeline that effectively con-
structs and solves the aforementioned specular polynomials.

4.1 Variable elimination using resultants
Although we have converted specular constraints into simplified
polynomials only containing two variables, finding the roots of the
system is still challenging due to the high degree. However, many
techniques exist in mathematical literature that can well solve the
univariate polynomial with a high degree [Nakatsukasa et al. 2017;
Yuksel 2022]. This inspires us to further eliminate one variable in
our bivariate specular polynomials.
In this paper, we resort to the hidden variable resultant method

[Nakatsukasa et al. 2015] due to its efficiency and robustness. Specif-
ically, we eliminate one variable 𝑢1, and convert the problem into
finding the zeros of the Bézout resultant [Bézout 1779] 𝑟 (𝑣1), a uni-
variate polynomial in terms of 𝑣1. In this case, 𝑣1 is called the hidden
variable. The resultant 𝑟 (𝑣1) is defined as the determinant of the
resultant matrix 𝑹 (𝑣1) [Stiller 2004]:

𝑟 (𝑣1) = det 𝑹 (𝑣1) . (28)
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Here, for the Bézout resultant, the (𝑖, 𝑗)-th element of the 𝑛 × 𝑛

matrix 𝑹 (𝑣1) is given by5 [Bézout 1779]
min(𝑖,𝑛−1− 𝑗 )∑︁

𝑘=0

(
𝑎𝑖−𝑘 (𝑣1)𝑏 𝑗+1+𝑘 (𝑣1) − 𝑏𝑖−𝑘 (𝑣1)𝑎 𝑗+1+𝑘 (𝑣1)

)
, (29)

where 𝑛 is the degree of bivariate specular polynomials. We call
𝑟 (𝑣1) the univariate specular polynomial. It connects to bivariate
specular polynomials via 𝑎𝑖 (𝑣1) and 𝑏𝑖 (𝑣1), which represent the
coefficient of 𝑢𝑖1 in 𝑎(𝑢1, 𝑣1) and 𝑏 (𝑢1, 𝑣1):

𝑎(𝑢1, 𝑣1) =
𝑛∑︁
𝑖=0

𝑎𝑖 (𝑣1)𝑢𝑖1 = 0,

𝑏 (𝑢1, 𝑣1) =
𝑛∑︁
𝑖=0

𝑏𝑖 (𝑣1)𝑢𝑖1 = 0.
(30)

This allows us to solve for one variable 𝑣1 first and put it back
into the original bivariate system to solve for the other variable 𝑢1.
We provide a running example to demonstrate how the resultant
method works in the supplemental document.

4.2 Solving the univariate problem
The last building block of our whole pipeline is an efficient solver
to the univariate equation:

𝑟 (𝑣1) = det 𝑹 (𝑣1) = 0. (31)

We perform Laplacian expansion for the determinant det 𝑹 (𝑣1) to
obtain the coefficients of the resultant polynomial explicitly, and
subsequently solve the univariate polynomial equations 𝑟 (𝑣1) = 0.
Then we find the roots of univariate polynomials in a recursive
manner: The derivative of a polynomial of degree 𝑑 is a polynomial
of degree 𝑑 − 1, and the zeros of the latter determine the monotonic
pieces of the former. On each monotonic piece, only a single root
exists and can be found through a bisection solver. Consistency is de-
termined by checking whether the length of the bisection interval is
smaller than a threshold, which is set to 10−9 in our implementation.
However, a significant drawback of Laplacian expansion is its

exponential time complexity, making it only practical in the case of a
single bounce. For large matrices produced by two or more bounces,
we found it not practical to obtain the resultant coefficients explicitly.
Instead, we opt to directly find the zeros by uniformly dividing [0, 1]
and running bisection on each piece of which the determinant on the
two endpoints are with different signs. We evaluate the determinant
using Gaussian elimination and find that 100 pieces and 10 bisection
iterations work well in our test scenes.

Discussion. The piecewise bisection solver requires a large num-
ber of pieces in the case that solutions are clustered. However, our
experiments show that the errors are negligible and have little influ-
ence on our test scenes. An alternative and theoretically comprehen-
sive approach is by employing linearization [Golub and Van Loan
2012], which converts the above root-finding problem into a gener-
alized eigenvalue problem. In mathematics, this can be well solved
by QZ decomposition. Unfortunately, the computational burden of
5Different algorithms can be used for constructing the Bézout resultant matrix. In
our implementation, we adopt a fast computation method [Chionh et al. 2002]. The
pseudo-code is presented in the supplemental document.

ቊ
𝑎 𝑢1, 𝑣1 = 0

𝑏 𝑢1, 𝑣1 = 0

𝒙0

Coefficient Elimination Phase

𝑣1 = ⋯

Path Phase

Phase

𝒙1

𝒙𝑘

𝒙𝑘+1

𝑟 𝑣1 = det 𝑹 𝑣1 = 0

⇓𝒖1

Fig. 4. Overview of the pipeline. Taking vertex positions and normals as
inputs, our pipeline systematically constructs specular polynomials, con-
verts the multivariate systems into a univariate problem via constructing
resultant matrices, and subsequently solves the univariate problem. Finally,
it validates the solutions and generates admissible paths.

QZ decomposition is prohibitively high since the time complexity
is O(𝑘𝑛6), where 𝑛 is the degree of the bivariate polynomial system
and 𝑘 is the number of iterations. Developing a fast and accurate
solver to Eq. (31) with an arbitrarily high degree is still an open
problem in mathematics.

4.3 The whole pipeline
In summary, the whole pipeline of our method consists of three
phases shown in Fig. 4. Please refer to the supplemental document
for more details and pseudo-code snippets.

Coefficient phase. We first convert the vertex positions and nor-
mals of triangles along a specular chain into bivariate polynomials
on 𝑢1 and 𝑣1, according to the steps described in Sec. 4. The major
task in this phase is to determine the coefficients of each specular
polynomial.

Elimination phase. This phase converts the bivariate system on𝑢1
and 𝑣1 into a univariate problem using the hidden variable resultant
method introduced in Sec. 5.1. Here, each element of the resultant
matrix 𝑹 (𝑣1) is now a univariate polynomial in 𝑣1. We only need to
find all zeros of the determinant of the resultant matrix det 𝑹 (𝑣1).
Then, we find all zeros of the matrix polynomial determinant using
the method introduced in Sec. 5.2.

Path phase. As we have determined the solutions for 𝑣1, we rein-
tegrate them into the original polynomial 𝑎(𝑢1, 𝑣1) and solve for the
other variable 𝑢1, which only requires solving an univariate equa-
tion 𝑎(𝑢1) |𝑣1 with explicitly known coefficients. Finally, we generate
the path utilizing the solved barycentric coordinates, check the spec-
ular constraints in the path space [Wang et al. 2020; Zeltner et al.
2020], and conduct the visibility test. An admissible path will be
rejected when the ray from any vertex 𝒙𝑖 towards the next vertex
𝒙𝑖+1 is blocked. If all the checks pass, our pipeline reports a valid
solution and evaluates its contribution [Jakob and Marschner 2012;
Wang et al. 2020]. Note that when there are multiple connections
between two separators, we sum the contributions from all of them.

Complexity analysis. The time complexity for solving all chains
given two separators is O(𝑡 (𝑛4 +𝐶𝑛3)). Here, 𝐶 is the product of
the number of intervals and bisection iterations. 𝑡 is the number of
triangle tuples, which depends on pruning techniques [Walter et al.
2009; Wang et al. 2020]. 𝑛 is the degree of bivariate polynomials,
which is approximately 4𝑘2𝑟 with 𝑟 being the number of refractive
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Newton (Path Cuts) Ours Difference

Newton (Path Cuts) Ours Difference

Newton (Path Cuts) Ours Difference

Fig. 5. Glints rendering featuring different types of specular chains. Top: R
chains on a metal brush.Middle: RR chains in a scene with two specular
dragons and a mirror. Bottom: TT chains passing through a relief, for which
we also show glint-only images in the supplemental material.

vertices in the specular chain. The space complexity is O(𝑛3 +𝐶).
Please refer to the supplemental material for a detailed discussion.

5 RESULTS
We have implemented our method on top of the Mitsuba renderer
[Jakob 2010], and apply it on both glints rendering and caustics
rendering. In the current implementation, we run our solver to find
admissible specular paths for each tuple of triangles that passed the
pruning of non-contributing tuples following Wang et al. [2020],
which is based on a path space hierarchy and interval arithmetic
bounds. For caustics rendering, we integrate our method into a
conventional path tracer and perform our solver independently
for each pair of separators. We sample the separators similarly

to Fan et al. [2023]; Zeltner et al. [2020]. The reference images of
caustics rendering are generated by the unbiased variant of Specular
Manifold Sampling (SMS) [Zeltner et al. 2020] with a very high
sample rate. All timing measurements were conducted on a PC with
a Core i9-13900KF processor and an RTX 4080 graphics card.

5.1 Glints rendering
In this task, we aim to find all admissible specular chains connecting
a camera sample and a light sample in a deterministic way. We take
Path Cuts [Wang et al. 2020], another deterministic method based on
Newton iterations, as the competitor. The rendered images are post-
processed by a bloom filter, to better show the high-frequency glints.
As a state-of-the-art method in simulating pure specular paths, Path
Cuts can find many challenging paths that are not affordable by
conventional path tracers. However, it still runs the risk of missing
some important admissible paths, since Newton’s method involved
in Path Cuts uses the center of triangles to construct seed paths and
does not always converge, resulting in loss of glints as highlighted
in the difference maps of Fig. 5. In these figures, we show glints
stemming from different types of specular chains.
Instead, our method utilizes comprehensive information about

each tuple of triangles along a specular path, converting the challeng-
ing light transport problem losslessly into a polynomial root-finding
problem. Using the numerical tools discussed above, our method
succeeds in producing rendering results that include significantly
more glints than the existing method in our test scenes.

We do not compare our method to the interval Newton’s method
[Mitchell and Hanrahan 1992; Walter et al. 2009] since it requires
several orders of magnitudes more time than the non-interval one,
making it impractical for most scenes [Wang et al. 2020]. Instead,
through polynomialization and variable reduction, we can solve the
original problem very efficiently. The run-time cost of our method
is generally in the same order of magnitude as the regular Newton’s
method, and is even faster than Newton’s method in the case of a
single bounce, while simultaneously finding more solutions.

5.2 Caustics rendering
For caustic rendering, we compare our method to conventional Path
Tracing (PT) [Kajiya 1986], Practical Path Guiding (PPG) [Müller
et al. 2017], the unbiased variant of Specular Manifold Sampling
(SMS) [Zeltner et al. 2020] and Manifold Path Guiding (MPG) [Fan
et al. 2023]. In particular, SMS and MPG are the state-of-the-art
methods for caustics rendering. Unlike ours, both methods involve
stochastic sampling to search specular chains. We show equal-time
comparisons in Fig. 6.

Traditional guiding approaches face challenges when confronted
with specular interactions due to the high-frequency variations
inherent in the radiance distribution. Visual comparisons distinctly
reveal the limitations of a typical guided path tracer, such as PPG, in
handling complex light paths featuring tiny area light and specular
vertices, resulting in outliers and energy loss. Similar issues will
also happen with more advanced guiding approaches [Dodik et al.
2022; Rath et al. 2020, 2023; Ruppert et al. 2020].
SMS often exhibits noticeable noise, primarily due to its uni-

form sampling of seed chains. Moreover, an important issue with
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71, 0.1073
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37, 0.0854

PPG

4, 0.0690

SMS

7, 0.0169

MPG

4, 0.0046

Ours

SPP, MSE

Reference

Fig. 6. Equal-time comparisons (10 sec) on caustics rendering with Path Tracing (PT) [Kajiya 1986], Practical Path Guiding (PPG) [Müller et al. 2017], the
unbiased variant of Specular Manifold Sampling (SMS) [Zeltner et al. 2020] and Manifold Path Guiding (MPG) [Fan et al. 2023] on the Plane and Pool scenes.
We report the samples per pixel (SPP) and quantitative errors in terms of mean square error (MSE).

Plane MEMLT

0.0076

Ours

0.0019

Reference

MSE

Plants SPPM

0.0113

UPSMCMC

0.0015

Ours

0.0003

Fig. 7. Top: Equal-time (30 sec) comparison with Manifold Exploration Me-
tropolis Light Transport (MEMLT) [Jakob and Marschner 2012]. Bottom:
Equal-time comparison (10 sec) with Stochastic Progressive Photon Map-
ping (SPPM) [Hachisuka and Jensen 2009] and Metropolised Bidirectional
Estimator (UPSMCMC) [Šik et al. 2016].

manifold-based methods is that they have an unbounded proba-
bility of finding a solution, which may be very small and lead to
significantly high variance. This becomes particularly apparent in
regions associated with admissible chains featuring extremely small
convergence basins, such as the boundary of the water in the pool.
While MPG mitigates this issue by employing importance sam-

pling of seed chains, the learned distribution requires a fairly long
time to become accurate enough to perfectly fit the target function.
As a result, some regions in the image rendered using MPG still
exhibit high variance and outliers. Additionally, for manifold-based
methods, the introduction of reciprocal probability estimation con-
tributes to variance. Consequently, even in simple scenes (e.g., Plane)
where the importance distributions are easy to fit, the rendering
result is still with visible noise.
Our method is free from stochastic sampling, thus avoiding the

noise and outliers faced by manifold-based methods. Consequently,
our method generates results with very low variance and succeeds
in finding all solutions in both two scenes.
In Fig. 7, we compare our method with Manifold Exploration

Metropolis Light Transport (MEMLT) [Jakob and Marschner 2012;
Veach and Guibas 1997]. Admissible chains are required by MEMLT
as their seed paths. For SDS paths, it is inefficient to just rely on
PT or BDPT for finding seed paths. This leads to either over-bright
artifacts when Markov chains become trapped in small regions,
or energy loss if no seed path exists for a given region. Working
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32, 0.0037
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14, 0.0030

Newton
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Reference

Fig. 8. Equal-time (30 sec) comparison between Newton’s method and our
specular polynomials on caustics rendering.

as a deterministic method integrated into a standard Monte Carlo
sampling framework such as path tracing, our approach eliminates
blotchy energy loss in the images.
Additionally, we compare our method with photon-based ap-

proaches, in particular, Stochastic Progressive Photon Mapping
(SPPM) [Hachisuka and Jensen 2009] and Metropolised Bidirec-
tional Estimator (UPSMCMC) [Šik et al. 2016]. For SPPM, we reduce
the photon lookup radius to achieve a balance between bias and
variance. Besides visible noise, SPPMwill cause over-blurriness (e.g.,
the cyan inset) due to the nature of density estimation. This prob-
lem also exists in UPSMCMC, which struggles to preserve the sharp
edge of shadows in the cyan inset and simultaneously produces
noticeable noise. In contrast, our deterministic approach solves for
admissible paths directly and accurately, thus avoiding the issues
of density estimation and yields almost noise-free rendering with
detailed patterns of caustics.

5.3 Validations
Newton’s method vs. specular polynomials on caustics rendering.

To further verify that our deterministic method works well on caus-
tics rendering, we replace our solver based on specular polynomials
with the regular Newton’s method. We adopt the Path Cuts frame-
work to ensure that no stochastic sampling is involved, and the seed
chain of Newton’s method is heuristically generated by connect-
ing the center of each triangle [Wang et al. 2020]. Therefore, both
methods work in a deterministic way. From the comparison in Fig.
8, we see that regular Newton’s method with deterministic heuristic

Newton Ours Difference

Fig. 9. Equal-sample (1 spp) comparison of caustics rendering featuring
specular chains of RR type.

Bisection Eigenvalue Difference

Fig. 10. Comparison of the bisection and eigenvalue solver. The eigenvalue
solver uses 275× more time than our bisection solver.

initialization is inadequate in identifying all solutions when a tuple
of triangles encompasses multiple admissible paths. If the seed sig-
nificantly deviates from the solution, Newton’s method will diverge.
Consequently, the rendering results suffer from energy loss and
visual artifacts (e.g., the bottom of the plane), as shown in Fig. 8. In
comparison, our method finds all the admissible paths in our test
scenes, producing results that are nearly identical to the reference
images.
We also apply our method to render caustics featuring specular

chains of length two in Fig. 9. Since the dimensionality is high,
the convergence basin of each solution for Newton’s method may
become extremely small. Simply relying on a heuristic initialization
hardly finds the admissible paths in some regions, missing many
caustics. Again, our method, using the bisection-based solver, works
well, yielding caustics with complete shape and fine details.

Bisection solver vs. eigenvalue solver. In Fig. 10, we compare our
direct solver using bisection with an eigenvalue-based solver using
QZ decompositions. Eigenvalue solver in theory can ensure global
convergence of the polynomial eigenvalue problem. However, its
computational burden is extremely unaffordable. Our bisection-
based solver finds almost all the solutions, generating rendering
results of the same quality as QZ, consuming significantly less time.
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10 pieces 100 pieces 1000 pieces

           0.3×            1.0×            9.2×

Fig. 11. Impact of the number of pieces in the bisection solver. The number
shows the relative running time of our solver. Our choice of 100 pieces
achieves an appropriate balance between accuracy and speed.

Impact of the number of pieces for bisection. Additionally, we verify
the influence of the pieces on the bisection solver in Fig. 11. Using 10
pieces misses many solutions, whereas 1000 pieces greatly reduces
performance. Our choice of 100 pieces works well in this complex
scene of glints rendering.

5.4 Performance
In Table 4, we report the rendering statistics of glints rendering. For
specular chains with type 𝑅, our CPU-based solver is 3.3× faster
than regular Newton iterations. For type 𝑇 , ours is also 2.5× faster.
It is important to note that in both cases, the bottleneck, which takes
nearly half of the time, is spent on finding the root of the univariate
polynomial, which is dependent on the choice of the underlying
solver. The construction of our bivariate specular polynomials and
the conversion to univariate polynomials only takes a quite small
amount of time.
For two specular bounces, we develop an efficient GPU imple-

mentation. Most parts of our method are polynomial arithmetics
and determinant evaluations, which is GPU-friendly since the com-
putation steps of each thread are the same. Thanks to the strong
parallelization capability of GPU, our method achieves comparable
performance with regular Newton’s method, while finding signifi-
cantly more solutions.

6 DISCUSSIONS AND LIMITATIONS
Accurate rational coordinate mapping for refraction. When dealing

with refraction, polynomials naturally have limitations. It is chal-
lenging to polynomialize the square roots in the refracted direction
expression. To address this problem, we employ first-order rational
approximation. Nonetheless, this may lead to inaccuracy as shown
in Fig. 12. Future works are required to find better approaches.

Better numerical methods for root-finding. Our primary focus in
this work revolves around the derivation and simplification of spec-
ular polynomials. The bisection solver we used may find fewer
solutions than the slow but comprehensive eigenvalue solver. Nev-
ertheless, finding accurate and comprehensive solutions to high-
order polynomial equations poses challenges due to their high time

Table 4. Time usage (μs) per triangle of Newton’s method and our solver
measured on glints rendering scenes. We show the time usage of construct-
ing bivariate polynomials and the matrix 𝑹 (Poly.), expanding determinants
(Det.), and solving for 𝑣1 and 𝑢1 (Sol.). The timing for the bisection solver is
divided into choosing intervals (Det.) and performing bisections (Sol. 𝑣1).

Type Ours Newton
Poly. Det. Sol. 𝑣1 Sol. 𝑢1 Total Total

R (CPU) 0.039 0.155 0.234 0.121 0.549 1.817
T (CPU) 0.221 0.329 0.283 0.157 0.990 2.427
RR (GPU) 0.649 1.617 1.931 0.739 4.936 0.306

Newton (Path Cuts) Ours Ours (Refined)

Fig. 12. Limitations of the rational approximation for refraction. Small
differences in the refracted direction amplify when the specular surfaces
are far away from each other. Yet, simply refining our solutions with only
one iteration of Newton’s method leads to much better accuracy.

complexity and numerical instability. Notably, our polynomial sys-
tems exhibit specific characteristics. For instance, the coefficients
are predominantly large only for low-order terms, as shown in Fig.
13. Employing better numerical tools tailored for such tasks remains
a prospect for future exploration.

Long specular chains. While we primarily investigate small specu-
lar chains, our approach can also be applied to longer ones. However,
because of the combinatorial explosion issue, it is not feasible to find
all the specular chains in these situations. Combining our method
with some stochastic method would be useful since unbiased specu-
lar transport involving three or more specular vertices can currently
only be resolved through stochastic sampling utilizing reconstructed
importance distributions.

Theoretical unbiasedness. Our specular polynomials are accurate
except for the approximated rational expansion of refraction. How-
ever, comprehensive solving for two or more bounces requires a
computationally expensive eigenvalue solver or a bisection solver
with the number of pieces that tend to infinity. In our test scenes, our
finite piece bisection solution performs well. Nonetheless, integrat-
ing a stochastic approach can be helpful if one wishes to guarantee
unbiasedness [Misso et al. 2022; Zeltner et al. 2020].

Superfluous solutions. The use of the resultant method introduces
superfluous solutions, i.e., solutions of the univariate polynomials
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Fig. 13. Examples of the coefficients of bivariate specular polynomials. We
show the absolute value of coefficients.

may not correspond to a valid specular path. For example, in the
brush scene of Fig. 5, 52285 solutions of resultants are found, but
only 6710 (13%) passes the check of path space constraints. However,
this only influences the performance of solving for 𝑣1, which is a
relatively small part of the total computation time.

Handling near-specular vertices. Extending our method to support
glossy chains is straightforward. After sampling the normal offset
for glossy vertices, the admissible chains corresponding to the offset
remain finite, and the problem reduces to pure specular situations.
Thus, we sample the offset normal from the microfacet distribution
before solving the specular chains connecting two separators, as in
previous work [Fan et al. 2023; Hanika et al. 2015; Kaplanyan et al.
2014; Zeltner et al. 2020].

Surface representations. We have derived specular polynomials for
triangles with interpolated normals, which are commonly utilized
in existing rendering pipelines. Supporting other surface represen-
tations is a good avenue for future works.

7 CONCLUSION
Specular light transport, with the underlying multivariate root-
finding problem, is a long-standing challenge for physically-based
rendering. Existing methods simply perform Newton’s method in
the high-dimensional path space, which heavily relies on a proper
seed sampling strategy and easily introduces high variance or bias.

As a fundamentally new methodology, specular polynomials pro-
posed in this paper reformulate this problem into a univariate poly-
nomial root-finding problem on a given interval, by applying poly-
nomialization of vertex constraints, rational coordinate mapping,
and the hidden variable resultant method. This makes the chal-
lenging light transport problem tractable and offers many benefits
when integrated into existing rendering pipelines. Evaluations on
the rendering of glints and caustics demonstrate our superiority in
terms of accuracy and performance when compared to prior Newton
iteration-based solutions.
We believe our work has made an important advance in dealing

with unbounded convergence of Monte Carlo rendering and sto-
chastic sampling for specular light transport, which may open up
new research avenues for rendering intricate optical effects.
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