
Extended Path Space Manifolds
for Physically Based Differentiable Rendering

Jiankai Xing
xjk21@mails.tsinghua.edu.cn
BNRist, Department of CS&T,

Tsinghua University
Beijing, China

Xuejun Hu
huxj19@mails.tsinghua.edu.cn
BNRist, Department of CS&T,

Tsinghua University
Beijing, China

Fujun Luan
fluan@adobe.com
Adobe Research

USA

Ling-Qi Yan
lingqi@cs.ucsb.edu

University of California, Santa
Barbara

USA

Kun Xu∗

xukun@tsinghua.edu.cn
BNRist, Department of CS&T,

Tsinghua University
Beijing, China

Extended Path Space Manifolds
for Physically Based Di�erentiable Rendering

Jiankai Xing
xjk21@mails.tsinghua.edu.cn
BNRist, Department of CS&T,

Tsinghua University
Beijing, China

Xuejun Hu
huxj19@mails.tsinghua.edu.cn
BNRist, Department of CS&T,

Tsinghua University
Beijing, China

Fujun Luan
luanfj11@gmail.com

Adobe Research
USA

Ling-Qi Yan
lingqi@cs.ucsb.edu

University of California, Santa
Barbara

USA

Kun Xu∗

xukun@tsinghua.edu.cn
BNRist, Department of CS&T,

Tsinghua University
Beijing, China

Scene B������� Target PRB
derivatives

PRB PRB.mul.res PRDPT

Initial Our
derivatives Ours Ours+hybrid

-1 1

Figure 1: Optimizing the 2D translation vectors of eight specimen objects via physically based di�erentiable rendering. Note that
the specimen objects are placed inside a glass box and are viewed through nested re�ection and refraction. Given the target image
and initial scene parameters, state-of-the-art methods including Path Replay Backpropagation with reparameterization [Vicini
et al. 2021] (short as PRB), PRB with a multi-scale scheme (short as PRB.mul.res), and Plateau-reduced Di�erentiable Path
Tracing [Fischer and Ritschel 2022] (short as PRDPT) fail to correctly recover the scene parameters. In contrast, our method
successfully recovers the positions of all specimen objects due to the e�ectiveness of extended path space manifolds. Our
hybrid optimization scheme (ours+hybrid) is able to further re�ne the results. We also show the close-up views of the color
derivatives of PRB and our geometric derivatives with respect to a single scene parameter, respectively. Note that the two
derivatives are inherently of di�erent types — they are not computing the same quantities. The optimization is performed
using a rendering resolution of 128 ⇥ 128 and 32 spps, while the images displayed in the �gure are re-rendered in a higher
resolution of 512 ⇥ 512 and 8192 spps. The scene is modi�ed from [Bitterli 2016].

ABSTRACT
Physically based di�erentiable rendering has become an increas-
ingly important topic in recent years. A common pipeline computes
local color derivatives of light paths or pixels with respect to arbi-
trary scene parameters, and enables optimizing or recovering the
scene parameters through iterative gradient descent by minimizing
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the di�erence between rendered and target images. However, exist-
ing approaches cannot robustly handle complex illumination e�ects
including re�ections, refractions, caustics, shadows, and highlights,
especially when the initial and target locations of such illumination
e�ects are not close to each other in the image space.

To address this problem, , we propose a novel data structure
named extended path space manifolds. The manifolds are de�ned
in the combined space of path vertices and scene parameters. By
enforcing geometric constraints, the path vertices could be implic-
itly and uniquely determined by perturbed scene parameters. This
enables the manifold to track speci�c illumination e�ects and the
corresponding paths, i.e., specular paths will still be specular paths
after scene parameters are perturbed. Besides, the path derivatives
with respect to scene parameters could be computed by solving
small linear systems.

Figure 1: Optimizing the 2D translation vectors of eight specimen objects via physically based differentiable rendering. Note that
the specimen objects are placed inside a glass box and are viewed through nested reflection and refraction. Given the target image
and initial scene parameters, state-of-the-art methods including Path Replay Backpropagation with reparameterization [Vicini
et al. 2021] (short as PRB), PRB with a multi-scale scheme (short as PRB.mul.res), and Plateau-reduced Differentiable Path
Tracing [Fischer and Ritschel 2022] (short as PRDPT) fail to correctly recover the scene parameters. In contrast, our method
successfully recovers the positions of all specimen objects due to the effectiveness of extended path space manifolds. Our
hybrid optimization scheme (ours+hybrid) is able to further refine the results. We also show the close-up views of the color
derivatives of PRB and our geometric derivatives with respect to a single scene parameter, respectively. Note that the two
derivatives are inherently of different types — they are not computing the same quantities. The optimization is performed
using a rendering resolution of 128 × 128 and 32 spps, while the images displayed in the figure are re-rendered in a higher
resolution of 512 × 512 and 8192 spps. The scene is modified from [Bitterli 2016].

ABSTRACT
Physically based differentiable rendering has become an increas-
ingly important topic in recent years. A common pipeline computes
local color derivatives of light paths or pixels with respect to arbi-
trary scene parameters, and enables optimizing or recovering the
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scene parameters through iterative gradient descent by minimizing
the difference between rendered and target images. However, exist-
ing approaches cannot robustly handle complex illumination effects
including reflections, refractions, caustics, shadows, and highlights,
especially when the initial and target locations of such illumination
effects are not close to each other in the image space.

To address this problem, we propose a novel data structure
named extended path space manifolds. The manifolds are defined
in the combined space of path vertices and scene parameters. By
enforcing geometric constraints, the path vertices could be implic-
itly and uniquely determined by perturbed scene parameters. This
enables the manifold to track specific illumination effects and the
corresponding paths, i.e., specular paths will still be specular paths
after scene parameters are perturbed. Besides, the path derivatives
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with respect to scene parameters could be computed by solving
small linear systems.

We further propose a physically based differentiable rendering
method built upon the theoretical results of extended path space
manifolds. By incorporating the path derivatives computed from
the manifolds and an optimal transport based loss function, our
method is demonstrated to be more effective and robust than state-
of-the-art approaches in inverse rendering applications involving
complex illumination effects.
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1 INTRODUCTION
Physically based forward rendering has been a central research
topic in computer graphics for decades, with a focus on robust and
accurate light transport simulation in virtual scenes with specified
shapes, illumination and materials. Recently, significant progress
has been made on its inverse problem with advances in theoretical
frameworks, sampling algorithms and system pipelines of differen-
tiable rendering, which offers the capability of evaluating deriva-
tives of the rendered image with respect to arbitrary scene pa-
rameters and being used to facilitate gradient-based optimization
problems [Bangaru et al. 2020; Li et al. 2018; Loubet et al. 2019;
Nimier-David et al. 2019; Vicini et al. 2021, 2022; Zeltner et al. 2021;
Zhang et al. 2020].

Physically based differentiable rendering pipelines generally cal-
culate the local color derivatives of light paths or pixels with respect
to arbitrary scene parameters. These computations facilitate the
optimization or reconstruction of these arbitrary scene parameters
through the iterative process of gradient descent which minimizes
the discrepancy between the rendered image and the target image.
However, current methods often struggle with robustly handling
complex illumination effects including reflections, refractions, caus-
tics, shadows, and highlights, especially when the initial and target
locations of such illumination effects are not close to each other in
the image space.

On the other hand, significant efforts have been dedicated to
exploring methods for efficiently rendering these complex light
transport effects within the scope of forward rendering, especially
the methods involving the exploration of path space manifolds
(PSMs) [Jakob and Marschner 2012; Jakob 2013; Kaplanyan et al.
2014; Veach and Guibas 1997; Zeltner et al. 2020]. In this work,
drawing inspiration from these approaches, we bridge the gap by
introducing the mathematical formulation of extended path space
manifolds (EPSMs) in the context of physically based differentiable

rendering, which are defined in the combined space of path vertices
and scene parameters.

Concretely, our contributions include:
• We present extended path space manifolds. By enforcing geo-

metric constraints, the manifolds implicitly define a mapping
from scene parameters to path vertices. We further derive
path derivatives that measure how path vertices change with
respect to scene parameters under constraints.

• Built upon the extended path space manifolds, we present
a physically based differentiable rendering method. Exper-
iments show it is more effective and robust than state-of-
the-art methods in inverse rendering applications involving
complex illumination effects, including specular and glossy
reflections, refractions, highlights, caustics, and shadows.
Such an example is given in Fig. 1.

2 RELATED WORK
2.1 Path Space Manifolds
Physically based light transport algorithms are built on top of the
path integral formulation [Veach 1998] using (Markov chain) Monte
Carlo techniques. Veach and Guibas [1997] partitions the path space
into submanifolds and designs several light path perturbation strate-
gies for efficient sampling of difficult light paths, such as lens per-
turbation, caustic perturbation and multi-chain mutations.

Manifold exploration [Jakob and Marschner 2012; Jakob 2013]
further improves the efficiency of MLT algorithms with manifold
walks on the path space manifolds (PSMs), addressing the challenges
posed by specular and near-specular light paths, which often lead
to slow convergence rates in traditional light transport simulations.
To navigate these complexities, manifold exploration leverages the
inherent structure of these paths as manifolds in path space. A
simple equation-solving iteration allows for efficient exploration
on these path manifolds, resulting in an effective method to per-
turb specular paths using available geometric constraints in the
path tracer. Kaplanyan et al. [2014] proposed to mutate paths by
explicitly modeling the ray differentials [Igehy 1999] in half vector
space manifold, yielding better rendering performance on glossy
scenes. Zeltner et al. [2020] further improved the specular manifold
constraints for rendering high-frequency caustics and glints.

Unlike aforementioned PSMs that are primarily tailored for for-
ward rendering, we present extended path space manifolds (EPSMs)
for physically based differentiable rendering, which differ mainly
in two ways — First, PSMs are defined on the space of paths, while
our EPSMs are defined on the combined space of paths and optimiz-
able scene parameters. Second, PSMs compute the derivatives of
paths with respect to the positions of endpoints, while our EPSMs
compute the derivatives of paths with respect to scene parameters.
Similar to PSMs where we could implicitly determine the positions
of all specular vertices from the positions of diffuse endpoints, in
EPSMs, we could also uniquely find the updated positions of all
path vertices when scene parameters are slightly changed.

2.2 Differentiable Rendering
Inverse rendering typically requires both the development of an
advanced forward parametric model and the computation of its
corresponding derivatives. This process is often approached via
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analysis-by-synthesis techniques [Gkioulekas et al. 2013; Khungurn
et al. 2015; Zhao et al. 2016]. Recently, there has been a surge in in-
terest for fully-differentiable forward rendering techniques, known
as differentiable rendering. It enables practical inverse rendering
applications, such as object capture and material estimation [Cai
et al. 2022; Deng et al. 2022; Gao et al. 2019; Guo et al. 2020; Luan
et al. 2021; Lyu et al. 2020; Munkberg et al. 2021; Shi et al. 2020].

The pioneer general-purpose differentiable rendering frame-
works, including OpenDR [Loper and Black 2014] and Neural 3D
Mesh Renderer [Kato et al. 2018], leveraged analytical differentia-
tion with approximate forward models. A variety of differentiable
rasterization techniques have been developed to efficiently render
primitives within a scene [Laine et al. 2020; Liu et al. 2019; Ravi
et al. 2020]. Although capable of handling primary visibility, these
frameworks encountered difficulties with complex illumination
effects.

Physically based differentiable rendering has been focused on
differentiating a path tracer to handle global illumination through
light transport simulation [Bangaru et al. 2020; Li et al. 2018; Loubet
et al. 2019; Vicini et al. 2021, 2022; Yan et al. 2022; Zeltner et al. 2021;
Zhang et al. 2020, 2021]. Generally, physically based differentiable
rendering involves estimating two main components: (i) the inte-
rior integrals derived from differentiating the integrands associated
with the forward-rendering models, and (ii) the boundary integrals
determined over the discontinuities present in those integrands.
Previously, the estimation of interior integrals primarily leveraged
path sampling methods originally conceived for forward rendering,
while reparameterization techniques [Bangaru et al. 2020; Loubet
et al. 2019] apply suitable changes of variables to the integrands to
avoid computing boundary integrals. Recently, Zeltner et al. [2021]
and Vicini et al. [2021] investigated how reparameterization tech-
niques and different sampling strategies such as “attached sampling”
and “detached sampling” influence the performance of Monte Carlo
estimations. Some of the directional and positional derivatives com-
puted in these attached sampling methods are indeed somewhat
similar to our proposed manifold derivatives, while our method
focuses on computing geometric derivatives (i.e., the change of
path geometries w.r.t. scene parameters) instead of per-pixel color
derivatives (i.e., how per-pixel color contributions change w.r.t.
scene parameters). More precisely, contemporary differentiable ren-
dering methods that compute per-pixel image derivatives often
encounter limitations in inverse rendering tasks. In particular, they
are ineffective in aiding global and long-range optimization (when
initial and target objects/shadows/caustics are not close to each
other, i.e., are not overlapping in the image space) during inverse
rendering.

Recently, Xing et al. [2022] linked screen-space pixels to their
corresponding visible 3D points and derived 5D RGBXY deriva-
tives, assessing how color and screen position change with scene
parameters. However, it is based on differentiable rasterization and
cannot handle inverse rendering applications involving complex
global illumination effects such as reflections and caustics. Fischer
and Ritschel [2022] convolved the rendering function with a kernel
that blurs the scene parameter space. The method could capture
long-range relationships to some extent, however, its gradients
have relatively high variance and will become less effective when
the number of scene parameters grows larger.

3 BACKGROUND: PATH SPACE MANIFOLDS
Path space manifolds (short as PSMs), or specular manifolds, are first
proposed by Jakob and Marschner [2012] to address the problem of
rendering scenes with difficult specular light transport. A general
length-𝑛 light path could be represented as x = x0x1 · · · x𝑛 where
the two endpoints are the positions of the eye x0 and a point x𝑛 on
a light source, and the middle bouncing vertices x𝑖 (1 ≤ 𝑖 ≤ 𝑛 − 1)
could be either diffuse or specular.

Without loss of generality, let’s consider a simpler case of a path
x = x1 · · · x𝑘 , and we assume that the two endpoints x1 and x𝑘
are diffuse and all other vertices are specular. While the dimension
of the path space is relatively large (i.e., 2𝑘), the path in fact lies
in a lower dimensional subspace (i.e., 4). Since all middle specu-
lar vertices need to satisfy the law of reflection or Snell’s law, to
formulate it, Jakob and Marschner [2012] introduced a half-vector
constraint function to each specular vertex x𝑖 , i.e., constraining the
half-vector to be parallel to surface normal:

c𝑖 (x𝑖−1, x𝑖 , x𝑖+1) = 𝑇 (x𝑖 )𝑇ℎ(−−−−−→x𝑖x𝑖−1,
−−−−→x𝑖x𝑖+1) = 0, (1)

where 𝑇 (x𝑖 ) is a 2 × 3 matrix that represents the local tangent
vectors, and the half vector function ℎ(·) is defined as [Walter et al.
2007]:

ℎ(i, o) = h
∥h∥ , where h =

{
i + o if reflection,
𝜂𝑖 i + 𝜂𝑜o if refraction.

(2)

𝜂𝑖 and 𝜂𝑜 denote the index of refraction of the two sides, respec-
tively.

By putting together the half-vector constraints on all specular
vertices, we could get a stacked constraint function C : R2𝑘 →
R2(𝑘−2) , expressed as:

C(x) = [c2 (x), · · · , c𝑘−1 (x)] = 0, (3)

and the PSMs are defined as the set of paths that satisfy the con-
straints:

{x | C(x) = 0} (4)
The Implicit Function Theorem [Spivak 1965] tells that the whole

path x is a function of two endpoints x1 and x𝑘 in a neighborhood
of a current path. In other words, all middle specular vertices x𝑖
(2 ≤ 𝑖 ≤ 𝑘 − 1) could be implicitly determined by the positions of
the two diffuse endpoints. Besides, the partial derivatives of the
path x with respect to the two endpoints could be computed by
solving a linear system derived from the Jacobian matrix of C.

4 EXTENDED PATH SPACE MANIFOLDS
Inspired by existing works of PSMs, we present extended path space
manifolds (EPSMs) in order to handle differentiable rendering prob-
lems involving difficult light paths. Currently, we focus on global
illumination with surface interactions, while volumetric effects are
left for future works.

4.1 Definition of EPSMs
Given a length-𝑛 light path x = x0x1 · · · x𝑛 which starts from the
position of the eye x0, follows with multiple diffuse or specular
bounces inside the scene, and ends at a point x𝑛 on a light source,
we define an extended path by associating it with scene parameters
of interest 𝜃 = [𝜃1, · · · , 𝜃𝑚], simply as a combined vector of path
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Figure 2: A motivating example of extended path space man-
ifolds.

vertices and scene parameters: (x, 𝜃 ). So that the extended path
space is an Euclidean space (i.e., R2(𝑛+1)+𝑚) defined as:

{(x, 𝜃 ) | x ∈ R2(𝑛+1) , 𝜃 ∈ R𝑚}. (5)
Analogous to PSMs, we also introduce constraints to the ex-

tended path space so that its actual dimension could be reduced.
Specifically, we always introduce 𝑛 + 1 2D vector valued constraint
functions, i.e., the same number as path vertices. The constraint
functions could be stacked as C : R2(𝑛+1)+𝑚 → R2(𝑛+1) , in the
form:

C(x, 𝜃 ) = [c1 (x, 𝜃 ), · · · , c𝑛+1 (x, 𝜃 )] = 0, (6)
where c𝑖 denotes the 𝑖-th constraint function (1 ≤ 𝑖 ≤ 𝑛 + 1).
Therefore, the extended path space manifolds (EPSMs) could be
defined as the set of extended paths satisfying the above constraints:

{(x, 𝜃 ) | C(x, 𝜃 ) = 0} (7)
The EPSMs essentially give a mapping from scene parameters

𝜃 ∈ R𝑚 to the path x ∈ R2(𝑛+1) , i.e., the positions of all path
vertices could be implicitly determined by scene parameters 𝜃 . The
Implicit Function Theorem ensures that the mapping exists in the
neighborhood of a current extended path.

A motivating example of EPSMs is given in Fig 2. It shows an
extended path (x, 𝜃 ), where x = x0x1x2x3x4 starts from the eye,
then sequentially bounces at two mirrors and a diffuse surface, and
ends at a light source. The associated scene parameters 𝜃 = [𝜃1, 𝜃2]
indicate the rotating angles of the two mirrors respectively. Half-
vector constraints are enforced on the specular vertices and fixed
position constraints are enforced on other vertices (will be explained
in Sec. 4.2). As shown in the figure, if we slightly rotate the mirrors,
the path will be perturbed and uniquely determined, i.e., x1 and x2
will be moved accordingly to satisfy the law of reflection, and x3
will keep fixed since it is a diffuse vertex.

4.2 Constraint Functions
As mentioned in Sec. 4.1, in order to define the EPSMs, we need to
enforce 𝑛 + 1 constraint functions on the extended paths. Below,
we introduce the 4 types of constraint functions we have used in
EPSMs. Note that all constraint functions are 2D vector valued.

4.2.1 Half-vector constraint. It constrains the half-vector of incom-
ing and outgoing ray directions in the local frame of a specific
vertex x𝑖 to be unchanged when scene parameter changes:

𝑇 (x𝑖 , 𝜃 )𝑇ℎ(−−−−−→x𝑖x𝑖−1,
−−−−→x𝑖x𝑖+1, 𝜃 ) = const, (8)

where 𝑇 (·) is a 2 × 3 matrix representing the local tangent vectors,
and ℎ(·) is the half vector. Different from the one used in Jakob

and Marschner [2012] which strictly constrains the half-vector
to be parallel to surface normal, we constraint the half-vector in
the local frame to be fixed during scene parameter perturbation.
This makes the constraint function applicable to both specular and
glossy surfaces.

4.2.2 Fixed position constraint. This constraint enforces the posi-
tion of a path vertex x𝑖 to be locally unchanged. Specifically, we
constrain the barycentric weights of a vertex x𝑖 with respect to its
belonging surface triangle to be unchanged:

𝑤 (x𝑖 , v1 (𝜃 ), v2 (𝜃 ), v3 (𝜃 )) = const, (9)

where vk (𝜃 ) (1 ≤ 𝑘 ≤ 3) denotes the three vertices of the surface
triangle, and 𝑤 (x, a, b, c) computes the barycentric coordinates of
point xwith respect to a triangle △abc. The fixed position constraint
is usually applied to diffuse vertices and the two endpoints, i.e., the
eye point and the point on the light source.

4.2.3 Fixed direction constraint. This constraint enforces a ray
direction −−−−−→x𝑖x𝑖−1 to be locally unchanged in the local frame of its
neighboring vertex x𝑖 :

𝑇 (x𝑖 , 𝜃 )𝑇 · −−−−−→x𝑖x𝑖−1 = const. (10)

It is usually used to constrain the outgoing ray from the light source
(i.e., −−−−−−→x𝑛x𝑛−1) when dealing with caustic effects.

4.2.4 Colinear constraint. The colinear direction constraint is used
to constrain two neighboring ray directions of a path vertex x𝑖 to
be always colinear:

−−−−−→x𝑖−1x𝑖 × −−−−→x𝑖x𝑖+1 = 0, (11)

where × denotes the cross product operator. The colinear constraint
is only used for shadow rays (will be explained in Sec. 4.3.3).

4.3 Construction of EPSMs
EPSMs are built by enforcing constraints to the space of extended
paths (x, 𝜃 ). To effectively handle different rendering effects, we
have designed 3 different types of EPSMs, as illustrated in Fig. 4.
Different EPSMs use different combinations of constraint functions,
but the number of applied constraint functions is always 𝑛 + 1, the
same as the number of path vertices. This ensures that the positions
of all path vertices x = x0x1 · · · x𝑛 ∈ R2(𝑛+1) could be implicitly
determined from scene parameters 𝜃 = [𝜃1, · · · , 𝜃𝑚] ∈ R𝑚 . Below,
we explain how each type of EPSM is constructed.

4.3.1 General EPSMs. We apply the following constraints to an
extended path (x = x0x1 · · · x𝑛, 𝜃 ) to construct a general EPSM:

(1) enforcing the half-vector constraint (Sec. 4.2.1) on specular
vertices;

(2) enforcing the fixed position constraint (Sec. 4.2.2) on all dif-
fuse vertices and the two endpoints x0 and x𝑛 .

The general EPSM uses a combination of constraint functions simi-
lar to Jakob and Marschner [2012]. It is the most general type of
EPSM and could be used in handling a wide range of rendering
effects including reflections, refractions, and highlights. Note that
it could also handle glossy or semi-glossy surfaces, diffuse indirect
illumination and direct lighting as well.
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4.3.2 Caustic EPSMs. Caustic EPSMs are specifically designed for
handling caustic effects. We construct caustic EPSMs only for caus-
tic light paths in the form of ES∗DS+L [Heckbert 1990], by applying
the following constraints (as illustrated in Fig. 4 (b)):

(1) enforcing the fixed position constraint (Sec. 4.2.2) on the two
endpoints x0 and x𝑛 ;

(2) enforcing the fixed direction constraint (Sec. 4.2.3) on the
outgoing ray from the light source −−−−−−→x𝑛x𝑛−1;

(3) enforcing the half-vector constraint (Sec. 4.2.1) on all 𝑛 − 2
specular vertices except the diffuse vertex.

Compared to general EPSMs, caustic EPSMs additionally enforce the
fixed direction constraint on the light ray while removing the fixed
position constraint on the diffuse vertex x1. This enables a caustic
EPSM to effectively track the caustic pattern cast on diffuse surfaces,
which will move accordingly when light sources or specular objects
on the path move.

4.3.3 Shadow EPSMs. Shadow EPSMs are specifically designed for
handling shadows in direct illumination. In forward rendering, we
will trace shadow rays from shading points towards light sources. If
the shadow ray hits an occluder before arriving at the light source,
we consider that the shading point is inside shadow. As shown in
Fig. 4 (c), we construct a shadow EPSM for each shadow ray that
hits an occluder. Since it only considers direct illumination, the
path is short and consists of only 4 vertices (i.e., the eye point x0,
shading vertex x1, the occluder vertex x2, and the light source point
x3). Note that we only record the first hit point on the shadow ray
as the occluder vertex. We apply the following constraints to the
shadow EPSMs:

(1) enforcing the fixed position constraint (Sec. 4.2.2) on the two
endpoints x0 and x3 and the occluder vertex x2;

(2) enforcing the colinear constraint (Sec. 4.2.4) on rays −−−→x1x2 and−−−→x2x3 since the shadow ray (x1 → x2 → x3) needs to be a
straight line by definition.

Note that no constraints are applied to the shading vertex x1 so
that the shadow EPSMs could effectively capture moving shadows.

4.4 Computation of Path Derivatives
In this subsection, we show how to compute the path derivatives,
i.e., how path geometries x change with respect to scene parameters
𝜃 under the constraints of an EPSM:

𝜕x
𝜕𝜃

=

[
𝜕x0
𝜕𝜃

,
𝜕x1
𝜕𝜃

, · · · , 𝜕x𝑛
𝜕𝜃

]
. (12)

The Implicit Function Theorem [Spivak 1965] guarantees the exis-
tence of the derivatives in the neighborhood of a current extended
path (x, 𝜃 ). The derivatives could be computed through implicit
partial differentiation of the stacked constraint function C(x, 𝜃 ) in
Eq. 6:

dC(x, 𝜃 )
d𝜃 =

𝜕C
𝜕𝜃

+ 𝜕C
𝜕x

· 𝜕x
𝜕𝜃

= 0. (13)

Hence, the path derivatives 𝜕x/𝜕𝜃 could be obtained through solv-
ing the following linear system:

𝜕x
𝜕𝜃

= −
(
𝜕C
𝜕x

)−1
· 𝜕C
𝜕𝜃

, (14)

where 𝜕C/𝜕x is a (2𝑛+2)×(2𝑛+2) matrix, and 𝜕C/𝜕𝜃 is a (2𝑛+2)×𝑚
matrix. The two matrices are actually two sub-matrices of the sparse
Jacobian matrix ∇C.

5 OUR DIFFERENTIABLE RENDERING
METHOD

In this section, we introduce our physically based differentiable
rendering method based on the theoretical results of the EPSMs.

5.1 Method Overview
5.1.1 Motivation. Our goal is to address the difficult problem of
effectively and robustly handling complex illumination effects in
the context of physically based differentiable rendering, such as re-
covering the position and orientation of a mirror from its reflected
image, optimizing the location of a light source through optimizing
the shape of the caustics, or recovering the positions of occluder ob-
jects by its shadows. While existing physically based differentiable
rendering methods (such as Mitsuba 2 [Nimier-David et al. 2019])
support such effects, they usually require that the initial and target
images are already well-aligned. In particular, they are ineffective in
handling global and long-range optimization, i.e., when initial and
target objects/shadows/caustics are not close to each other in the
image space, since the per-pixel color derivatives are intrinsically
local and sparse.

In contrast, our method could handle such long-range optimiza-
tion in a more robust way. First, our proposed EPSMs are rather
suitable for tracking those illumination effects. For example, consid-
ering a specular path (i.e. ES+DL) causing a reflection, the updated
path implicitly determined by perturbed scene parameters will still
be a specular path. Second, different from previous works which
consider color derivatives at fixed pixel locations, our manifold
derivatives are essentially geometric derivatives, i.e., computing
how path geometries change with respect to scene parameters,
which are denser and potentially lead to more stable optimization
(see visualization in Fig. 1). Finally, our employed optimal trans-
port could help find long-range matching and could be directly
connected and combined with our manifold derivatives.

5.1.2 Method pipeline. Let’s consider a typical setting of inverse
rendering: given initial scene parameters and target image(s) from
one or multiple viewpoints, we aim to recover desired scene param-
eters through iterative gradient descent by minimizing a predefined
loss function between the rendered and target images. At each
iteration, we perform the following steps:

(1) Forward rendering. We use Monte Carlo path tracing for
rendering images and we record all sampled light paths.

(2) Construction of EPSMs. For each sampled light path, we
associate it with scene parameters of interest to obtain an
extended path and build an EPSM for it.

(3) Path-pixel matching. We utilize optimal transport to obtain
a pixel-to-pixel mapping between the rendered images and
the target reference images. For each pair of matched pix-
els, we record all sampled paths in the rendered pixel as
corresponding to the target pixel.

(4) Optimization of scene parameters. We define a loss function
according to the path-pixel correspondences, then perform
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Figure 3: Illustrations. (a) simplification of a general EPSM;
(b) loss function.

backpropagation to minimize the loss function using the
path derivatives computed from EPSMs.

We will further describe the details in Sec. 5.2.

5.2 Method Details
5.2.1 Forward rendering. We use Monte Carlo path tracing for
forward rendering to produce rendered images. We record part of
sampled light paths and also record shadow paths in direct illumi-
nation. The recorded paths will be used to build EPSMs and the
rendered images will be used to find path-pixel matching.

5.2.2 Construction of EPSMs. For each recorded path, we associate
it with scene parameters of interest to obtain an extended path and
then construct an EPSM of a specific type for the extended path.
Specifically, we would like to construct shadow EPSMs and caustic
EPSMs for shadow paths and for caustic paths, respectively, and
construct general EPSMs for other types of paths. While it is easy to
automatically determine shadow paths, it is non-trivial to automat-
ically distinguish caustic paths (i.e., caustic paths must be in the
form of ES∗DS+L, but ES∗DS+L-paths are not necessarily caustic
paths). Hence, we manually specify whether or not the rendered
scene is a caustic scene. For non-caustic scenes, we construct gen-
eral EPSMs for all paths except shadow paths. For caustic scenes,
we construct caustic EPSMs for ES∗DS+L-paths and general EPSMs
for other paths.

Note that the number of associated scene parameters could be
different for different paths. Let’s imagine a scene with two mirrors
where the optimizable scene parameters are their rotating angles.
Paths that only hit one mirror just need to be associated with a
single scene parameter (i.e., the rotating angle of the hit mirror).
Paths that hit neither of two mirrors could be directly discarded
and will not be used in constructing EPSMs.

Furthermore, the general EPSMs could be potentially simplified.
Since our loss function (Eq. 16, will be explained later) only de-
pends on the first two vertices (x0 and x1) of a path and the fixed
position constraint applied to diffuse vertices cuts the relationship
between vertices before and after a diffuse vertex, we could sim-
plify a general EPSM by removing the path vertices after the first
diffuse vertex. Fig. 3 (a) shows such an example: the general EPSM
(x0x1x2x3x4, [𝜃1, 𝜃2]) could be simplified to (x0x1x2, [𝜃1]) since
the vertex x2 is diffuse.

5.2.3 Path-pixel matching. In this step, first, we follow the work
of Xing et al. [2022] to use optimal transport to obtain a one-to-one
pixel matching between rendered and target images. We choose

optimal transport since it could capture long-range relationships.
We define the unit transportation loss between a pixel pi in the
rendered image and a pixel tj in the target image as follows:

𝜆1
(
Ir (pi) − It (tj)

)2 + 𝜆2
(
pi − tj

)2
, (15)

where Ir (·), It (·) denote pixel color values of the rendered image
and the target image, respectively, and the balancing weights are
set as 𝜆1 = 𝜆2 = 0.5. Note that the unit transportation loss considers
both color and positional differences between pixels.

The optimal transport algorithm will find the optimal one-to-one
pixel matching with the minimal sum of unit transportation losses
between matched pixels. To achieve a trade-off between accuracy
and efficiency, we also follow Xing et al. [2022] to use the Sinkhorn
divergences [Cuturi 2013; Feydy et al. 2019] with parameter 𝜖 = 0.01
to compute an approximated optimal transport.

After that, we build correspondences between sampled paths
and pixels in the target image. For each pair of matched pixels, i.e. a
pixel pi in the rendered image and a pixel tj in the target image, we
simply set all sampled paths at pixel pi as corresponding to pixel tj.

5.2.4 Loss function and optimization. As shown in Fig. 3 (b), given
path-pixel correspondences, in order to drive a path to move to-
wards the corresponding pixel location, we define the loss function
𝐿 of each path x as follows:

𝐿(𝜃 ) = (𝑃 (x, 𝜃 ) − t)2 = (𝑃 (x0, x1, 𝜃 ) − t)2, (16)

where 𝑃 (x0, x1, 𝜃 ) denotes the ray-plane intersection point of ray−−−→x0x1 and the image plane, t denotes the corresponding pixel po-
sition in the target image. The total loss is simply the sum of the
losses in Eq. 16 over all paths. The formulation of our loss is similar
to the refraction loss in [Lyu et al. 2020].

The derivative of the loss function 𝐿 with respect to scene pa-
rameters 𝜃 could be simply obtained through the chain rule:

d𝐿
d𝜃 =

(
𝜕𝐿

𝜕x

)
·
(
𝜕x
𝜕𝜃

)𝑇
+ 𝜕𝐿

𝜕𝜃
, (17)

where 𝜕x/𝜕𝜃 is the path derivative with respect to scene parameters
under the constraints of an EPSM, which is computed by solving
the small linear system in Eq. 14.

Furthermore, since the loss function (Eq. 16) only depends on the
first two vertices (x0 and x1) of the path, we only need to compute
the derivatives involving the first two vertices:

d𝐿
d𝜃 =

[
𝜕𝐿

𝜕x0
,
𝜕𝐿

𝜕x1

]
·
[
𝜕x0
𝜕𝜃

,
𝜕x1
𝜕𝜃

]𝑇
+ 𝜕𝐿

𝜕𝜃
. (18)

By using the above loss derivatives, the scene parameters 𝜃 could
be optimized through iterative backpropagation.

5.2.5 Implementation details. We implement our method entirely
on GPU using Mitsuba 3 [Jakob et al. 2022b,a] and PyTorch [Paszke
et al. 2019]. Thanks to the interoperability of the two frameworks,
mixed computations, data transmission, and data synchronization
between them can be easily achieved. Specifically, forward ren-
dering and backpropagation are implemented using Mitsuba 3.
Optimal transport based matching, solving linear systems for path
derivatives (Eq. 14) are implemented using PyTorch. The Jacobian
matrix of the constraint functions ∇C are computed through auto-
differentiation with a mixed use of PyTorch and Dr.Jit [Jakob et al.
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2022a]. Taking the fixed position constraint (Eq. 9) as an example,
the derivatives of the barycentric weights with respect to vertex
positions 𝜕𝑤/𝜕v𝑘 (1 ≤ 𝑘 ≤ 3) are computed in PyTorch, while the
derivatives of vertex positions with respect to scene parameters
𝜕v𝑘/𝜕𝜃 (1 ≤ 𝑘 ≤ 3) are computed in Dr.Jit. They are combined to
obtain 𝜕𝑤/𝜕𝜃 through the chain rule.

6 EXPERIMENTS
All experiments are performed on a PC with an NVIDIA RTX 3090
GPU (24G memory). In our experiments, the paths are recorded
using a rendering resolution of 128 × 128 and 32 samples per pixel
(spps). For better quality of matching, we render images with a
resolution 512 × 512 and 64 spps and downsample the rendered
images to 128 × 128 to perform optimal transport. For all examples,
we run our EPSM based method for 500 iterations. Typically, one
iteration takes about 4.3 - 7.2 seconds. The main bottleneck lies
in the computation of the path derivatives which costs about 70%
time budget, since it requires solving a small linear system for
each path. We use the Adam optimizer [Kingma and Ba 2014] for
backpropagation.

6.1 Scene Configurations
In order to demonstrate the robustness and effectiveness of our
method, we test our method on inverse rendering applications over
four representative scenes. The tested scenes cover various types
of complex illumination effects including reflections, refractions,
caustics, shadows, and glossy highlights.

The Bathroom scene in Fig. 1 contains eight specimen objects
inside a glass box, which are viewed through reflection paths via
the mirror followed by refraction paths via the glass. We aim at re-
covering the 2D translation vectors of the specimen objects through
tracking the reflected (and refracted) images.

The Shadow scene in Fig. 5 (a) contains an area light, a floor, and
400 spheres. The light is put above the spheres and casts shadows
onto the floor. The camera is put below the spheres and towards
the floor so that the camera can see shadows. The goal is to recover
the 2D translation vectors of all occluder spheres by their shadows.

The CornellBox scene in Fig. 5 (b) presents a challenging mix of
intricate and colorful caustics originating from a glass ball, testing
the robustness of caustics path derivatives estimation with respect
to the rotation angles of six area lights.

The Highlight scene in Fig. 5 (c) serves to assess the ability to
differentiate through glossy and near-specular light paths. Starting
with five parallel glossy planes reflecting vibrant, out-of-view emit-
ters, we would like to simultaneously optimize the plane rotations
and horizontal translation offsets of the emitters.

6.2 Results and Analysis
6.2.1 Visual comparisons. We compare the results of our method
with three baselines, including Path Replay Backpropagation [Vicini
et al. 2021] with reparameterization [Bangaru et al. 2020] (short as
PRB), PRB with a multi-scale scheme (short as PRB.mul.res) and
Plateau-reduced Differentiable Path Tracing [Fischer and Ritschel
2022] (short as PRDPT). In the multi-scale scheme (PRB.mul.res),
we always render images with a resolution of 512×512, while using
progressively downsampled rendered images with a resolution from

8 × 8 to 512 × 512 for computing derivatives. For each scene, we
run each method for 500 iterations. The results are given in Fig. 1
and Fig. 5.

However, neither PRB nor PRDPT converges to the correct re-
sults on all these scenes. While PRB is effective in optimizing various
types of scene parameters under complex illumination, it usually
requires that the initial rendered image is sufficiently aligned with
the target image since it relies on local color derivatives, which lim-
its PRB in handling rendering effects with long-range relationships.
The multi-scale scheme could alleviate this problem (see Fig. 5 (a),
the 4th column), but still cannot solve it robustly. While PRDPT is
able to capture long-range relationships to some extent, however,
due to the increase of sampling variance in a higher dimensional
space, it will quickly become less effective when the number of
optimizable parameters grows larger.

In contrast, our method successfully produces nice convergence
to the target images on all the scenes. The results demonstrate
the robustness of our method in handling a range of complex il-
lumination effects and the superior effectiveness of EPSM-based
derivatives over baseline approaches.

6.2.2 Hybrid optimization scheme. Noticing that in scenes Bath-
room (Fig. 1) and Shadow (Fig. 5 (a)), our optimized results are
close to the target images but still have some subtle differences.
This is because the approximated optimal transport using Sinkhorn
divergences may produce inaccurate pixel matching when the ren-
dered and target images are already aligned well [Xing et al. 2022],
which may lead to less accurate loss derivatives and lower conver-
gence rate in the last iterations of optimization. To address this
issue, similar to [Xing et al. 2022], we could optionally employ a
hybrid optimization scheme to refine the results. This is done by
simply running the optimization for 100 iterations using PRB after
running our method for 500 iterations. As shown in Fig. 1 and Fig. 5
(a), the hybrid scheme generates better aligned results.

6.2.3 Error curves. Fig. 6 offers the error curves from the four
inverse rendering experiments discussed above. For the Bathroom,
CornellBox, and Highlight scenes, we opt for parameter loss, as
the target parameters are available. For the Shadow scene, featuring
400 spheres, we compute the image RMSE loss between the rendered
image and the target image. Our method converges quickly on all
the scenes.

6.2.4 Visualization of derivatives. In Fig. 1 (the middle column),
We visualize the derivatives of PRB [Vicini et al. 2021] and our
derivatives with respect to a single scene parameter (i.e., the verti-
cal movement of one specimen object), respectively. The derivatives
of PRB compute how pixel colors change with scene parameters,
which are sparse and only have non-zero values near object bound-
ary. In contrast, we compute a different type of derivatives — how
path geometries change with scene parameters. Our derivatives are
dense inside the object and could lead to more stable optimization.

6.2.5 Additional results. Fig. 7 showcases more inverse rendering
results. The tasks incorporate multiple types of optimizing goals —
light translation vector through caustics, object translation through
nested reflections, camera pose estimation, translation vectors of
three light sources via glossy highlights, normal map of a refractive
glass slab via the refracted image, and a 72-parameter human model
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(Skinned Multi-Person Linear, SMPL) [Loper et al. 2015] from its
curved shadow. These tasks further demonstrate the robustness of
our method in handling various scenes involving complex illumi-
nation effects and different types of optimizable scene parameters.

We will show the progressive optimization process for all exam-
ples in the supplemental video.

7 CONCLUSION
In this paper, we introduced a novel approach to physically based
differentiable rendering. Our key contribution lies in the formula-
tion of extended path space manifolds (EPSMs), designed to navi-
gate the complex non-local and long-range relationships that often
characterize intricate illumination effects in a scene. By enforcing
geometric constraints of EPSMs that implicitly enable a mapping
from scene parameters to path vertices, our approach significantly
enhances the robustness and efficacy of the optimization processes
involved in differentiable rendering. Through various experiments,
our method demonstrated marked improvements over existing
techniques, particularly in handling complex illumination effects.

While our method shows promise in inverse rendering appli-
cations, it still faces limitations in computation time and memory
consumption. The timing bottleneck lies in the computation of path
derivatives which requires solving small linear systems. Currently
we use PyTorch routine torch.linalg.inv. Since the Jacobian matrix
∇C is sparse, a possible way for acceleration would be using itera-
tive methods instead of direct methods to solve linear systems. As
for the usage of GPU memory, currently we store all sampled light
paths for the simplicity of implementation. In the future, we could
switch to a batch computation mode and only store light paths in a
batch to reduce memory consumption.

Furthermore, our method cannot handle “shadow in mirror” ef-
fect since it does not fit well with any EPSMs we have defined. To
handle it, we need to extend the definition of shadow EPSMs, where
the shadow path could contain zero or more specular vertices be-
tween the eye point and the shading point. Finally, the effectiveness
of our method depends heavily on the quality of matching. More
sophisticated matching algorithms beyond optimal transport are
also worth investigating.
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Figure 4: Three types of extended path space manifolds (EPSMs).

Target Initial PRB PRB.mul.res PRDPT Ours Ours+Hybrid

(a) Scene Shadow

Target Initial PRB PRB.mul.res PRDPT Ours

(b) Scene CornellBox
Target Initial PRB PRB.mul.res PRDPT Ours

(c) Scene Highlight

Figure 5: Visual comparisons between our method, Path Replay Backpropagation with reparameterization [Bangaru et al. 2020;
Vicini et al. 2021] (PRB), PRB with a multi-scale scheme (PRB.mul.res), and Plateau-reduced Differentiable Path Tracing [Fischer
and Ritschel 2022] (PRDPT). The Shadow scene also shows a result of our hybrid optimization scheme (ours+hybrid). The
optimization of all scenes is performed using a rendering resolution of 128 × 128 and 32 spps, while the images displayed in the
figure are re-rendered in a higher resolution of 512 × 512 and 8192 spps. (a) The Shadow scene contains an area light, a floor,
and 400 spheres. The area light is put above the spheres and casts shadows onto the floor. The camera is put below the spheres
and towards the floor so that the camera can see shadows on the floor. The optimizable scene parameters are the 2D translation
vectors of all occluder spheres; Initially the spheres are placed to make a circle and the goal is to cast desired shadows like text
‘SIGGRAPH ASIA’. (b) The CornellBox scene contains a refractive glass ball and six area light sources with different colors
around the ball. Each area light generates a caustic pattern on the wall. The optimizable scene parameters are the rotating
angles of the six light sources. (c) The Highlight scene contains five parallel glossy planes with microfacet GGX [Walter et al.
2007] of different roughness values, and five out-of-view area lights with different colors. The optimizable parameters are the
rotation angles of the planes and the 1D horizontal translation offsets of the lights.
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Figure 6: Error curves. We show how the errors change during the optimization of the 4 scenes shown in Fig. 1 and Fig 5. For the
Shadow scene featuring 400 spheres, since the target image is hand-drawn and no ground truth scene parameters are available,
we provide RMSE between the rendered and target images. For other scenes, we provide the MSE of optimized and target scene
parameters.

Target Initial Ours Target Initial Ours

(a) Scene Egg (b) Scene Bunny
Target Initial Ours Target Initial Ours

(c) Scene Bedroom (d) Scene Glossy Ball
Target Initial Ours Target Initial Ours

(e) Scene Glass Slab (f) Scene Human

Figure 7: Additional results of our method (without hybrid scheme). The optimization of all scenes is performed using a
rendering resolution of 128 × 128 and 32 spps, while the images displayed in the figure are re-rendered in a higher resolution of
512×512 and 8192 spps. Scenes Egg and Bedroom are modified from [Bitterli 2016]. (a) Scene Egg. Optimizing the 1D translation
offset of the light source through caustics. (b) Scene Bunny. Optimizing the 2D translation vector of the bunny object through
nested reflections. (c) Scene Bedroom. Optimizing the camera pose. (d) Scene Glossy Ball. Optimizing the 2D translation
vectors of three light sources via glossy highlights. (e) Scene Glass Slab. Optimizing the normal map with a 32 × 32 resolution
of a refractive glass slab via refraction. (f) Scene Human. Optimizing 72 parameters of an SMPL human model [Loper et al.
2015] from its curved shadows on a staircase.
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