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ABSTRACT
We introduce ExtraSS, a novel framework that combines spatial
super sampling and frame extrapolation to enhance real-time ren-
dering performance. By integrating these techniques, our approach
achieves a balance between performance and quality, generating
temporally stable and high-quality, high-resolution results. Lever-
aging lightweight modules on warping and the ExtraSSNet for
refinement, we exploit spatial-temporal information, improve ren-
dering sharpness, handle moving shadings accurately, and generate
temporally stable results. Computational costs are significantly re-
duced compared to traditional rendering methods, enabling higher
frame rates and alias-free high resolution results. Evaluation using
Unreal Engine demonstrates the benefits of our framework over
conventional individual spatial or temporal super sampling meth-
ods, delivering improved rendering speed and visual quality. With
its ability to generate temporally stable high-quality results, our
framework creates new possibilities for real-time rendering applica-
tions, advancing the boundaries of performance and photo-realistic
rendering in various domains.

CCS CONCEPTS
• Computing methodologies → Rendering; Image manipula-
tion; Antialiasing.

KEYWORDS
extrapolation, super resolution, low latency, warping

ACM Reference Format:
Songyin Wu, Sungye Kim, Zheng Zeng, Deepak Vembar, Sangeeta Jha,
Anton Kaplanyan, and Ling-Qi Yan. 2023. ExtraSS: A Framework for Joint

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0315-7/23/12.
https://doi.org/10.1145/3610548.3618224

Spatial Super Sampling and Frame Extrapolation. In SIGGRAPH Asia 2023
Conference Papers (SA Conference Papers ’23), December 12–15, 2023, Sydney,
NSW, Australia. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
3610548.3618224

1 INTRODUCTION
With the recent breakthrough of graphics hardware, real-time ren-
dering has made significant progress and is widely used in movies,
animations, and games. However, with the increasing demand for
photo-realism in quality, the challenge remains to achieve real-time
performance. Balancing quality and performance becomes a trade-
off – enhancing one aspect often leads to a deterioration in the
other aspect.

There are various methods trying to address this problem by de-
creasing the computation cost for a single frame to increase the per-
formance while keeping similar quality. One approach commonly
used in real-time rendering engines is spatial super sampling (Spa-
tial SS), which leverages temporal information from previous frames
to generate the current frame from a low-resolution rendered image.
Many commercial productions have already achieved great quality
in real-time rendering such as DLSS [Liu 2020], XeSS [Intel 2022]
and FSR [AMD 2021]. Although they utilize temporal information,
spatial super sampling only focuses on increasing spatial resolu-
tion. On the other hand, temporal super sampling (Temporal SS),
a technique also known as frame generation, reduces the compu-
tational cost by generating new frames based on existing frames.
Unlike spatial super sampling, temporal super sampling actually
hallucinates more frames over time.

Although these methods improve performance by employing
temporal or spatial super sampling individually, none of them have
attempted to unify them into a single framework1. Combining
extrapolation and spatial super sampling poses challenges. It uses
less rendered inputs comparing to individual spatial (fewer frames)
or temporal (smaller resolution) super sampling methods while

1Specifically note that DLSS 3’s details are not released to the general public. For
completeness, we still discuss with DLSS 3 in our work, treating it as spatial super
sampling plus optical flow interpolation as generally believed.
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Figure 1: We propose a framework for joint spatial super
sampling and frame extrapolation. With only low resolution
inputs every other frame, we are able to perform spatial su-
per sampling (for the frames shown on the left and right),
or joint spatial and temporal super sampling (for the frame
in the middle). Our method not only generates more frames
over time but also results in comparable quality against Tem-
poral Anti-Aliasing (TAA) at native high resolutions. The
resolution are 540P for Input and 1080P for Output and TAA
here. SS means spatial super sampling only frame and ESS
means joint extrapolation and spatial super sampling.

generating the same output. Additionally, simply combining spatial
super sampling methods with frame generation methods leads to
bad performance because of redundant computation.

We analyze the possibilities of building a unified pipeline for
both spatial super sampling and three modules to solve the problem.
Our key idea is using lightweight modules to provide a good extrap-
olated initialization and use a neural network to further refine the
results of extrapolation and generate final alias-free high resolu-
tion images. For initialization, we use motion vectors with G-buffer
guided information to re-use a large area of spatial-temporal infor-
mation to generate sharper warped results and solve the problem in
disoccluded areas2. Then we design a lightweight flow based model
to further refine the moving shading including shadows, highlights
and reflections, to ensure consistent movement on both geometries
and shading. Lastly, thank to our previous two designs, our ExtraSS
network takes unified inputs for the frames with low resolution
rendered images and without low resolution rendered images, to
generate high resolution rendered images and refine the warped
results.

2Disoccluded area refers to parts of the frame that were occluded but then, in the next
frame, are no longer occluded.

We evaluate our method on Unreal Engine 4 [Epic Games 2022]
and demonstrate better performance and comparable (or better)
quality comparing to traditional spatial or temporal only super
sampling methods.

2 RELATEDWORK
2.1 Motion Vectors and Warping
Since both spatial and temporal super sampling re-use the temporal
information in the existing frames, motion vectors and warping
algorithms are key parts of these methods. Similar to the optical
flow that tracks the movement of each pixel, motion vectors gener-
ated from the rendering engine are usually more accurate. Yang et
al. [2020] have studied on various warping methods in order to use
the temporal information more accurately. However, the warped
methods usually contain incorrect shading in disoccluded areas and
some indirect shadings, which causes ghosting and lagging artifacts.
To solve this problem, it requires additional information from cur-
rent rendered images to reject and rectify the pixels’ values, which
are not available in our extrapolated frames. Zeng et al. [2021]
proposed a more reliable motion vector to solve disoccluded areas
and shading movement. But it requires complex modification in
calculating the motion vectors, which is hard to be integrated into
a rendering engine, and it still fails in the disoccluded areas when
the background becomes complicated.

2.2 Spatial Super Sampling and Anti-aliasing
Spatial SS shows significant improvement in real-time rendering by
taking low resolution aliased input to generate high resolution alias-
free results. Heuristic methods such as TAAU [Yang et al. 2020],
FSR [AMD 2021] generate high resolution results by using handcraft
weights to blend low resolution jittered images with warped high
resolution images from previous output. Guo et al. [2022] train a
classification network and a composition network to more wisely
blend the results to have better temporal stability. Xiao et al. [2020]
directly use a trained neural network to predict the current high
resolution frame from five consecutive low resolution images. But
it usually generates flickering results. DLSS 2.0 [Liu 2020] and
XeSS [Intel 2022] are commercially deployed products for spatial
super sampling, but the details are not publicly available.

Anti-aliasing removes the aliasing of rendered image while keep-
ing in the same output resolution. It can be done by simply in-
creasing the sample numbers of each pixel (SSAA, MSAA [Akeley
1993; Sousa et al. 2011]), or using spatial information nearby (FXAA
and SMAA [Jimenez et al. 2011; Navarro and Gutierrez 2011]) or
re-using temporal information (TAA [Karis et al. 2014]). The spatial
super sampling usually removes the aliasing when increasing the
spatial resolution. Since our method contains both spatial and tem-
poral super sampling, unlike ExtraNet [Guo et al. 2021], we don’t
need additional anti-aliasing modules after our outputs.

2.3 Frame Interpolation
Frame interpolation is one approach of frame generation or tempo-
ral SS. It depends on previous frames and latter frames to generate
the new frames between them. There are several approaches to
generate a new frame including optical flow based methods[Baker
et al. 2011; Jiang et al. 2018; Shen et al. 2021; Xue et al. 2019], kernel
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based methods[Niklaus et al. 2017, 2021; Park et al. 2020], phase
based methods[Meyer et al. 2015; Vogels et al. 2018] and direct pre-
diction [Choi et al. 2020; Kalluri et al. 2023; Long et al. 2016]. Flow
based methods show some promising results in rendering pipelines
such as Neural Frame Interpolation (NFI) [Briedis et al. 2021] and
DLSS 3 [Liu 2020]. Some video interpolation methods [Bao et al.
2019; Kong et al. 2022; Reda et al. 2022] also have been proposed
to increase the frame rate but often have worse quality due to lack
of G-buffers information. Furthermore, since interpolation based
method rely on the latter rendered frames, it brings inevitable la-
tency when generating new frames.

2.4 Frame Extrapolation
Frame extrapolation is another way to increase the frame rate
by only using the information from prior frames. Li et al. [2022]
proposed an optical flow based method to predict flow based on
previous flows and then warp the current frame to the next frame.
ExtraNet [Guo et al. 2021] uses occlusion motion vectors with neu-
ral networks to handle disoccluded areas and shading changes with
G-buffers information. Their methods fail when the scene becomes
complex and generate artifacts in the disoccluded areas. Further-
more, it requires higher resolution inputs since they only generate
new frames. We are the first one to propose a joint framework to
solve both spatial super sampling and frame extrapolation together
while staying efficient and high quality.

Note that NVIDIADLSS 3 is a combination of super sampling and
interpolation since it generates intermediate frames3. The interpo-
lation based method will introduce extra latency for the rendering
pipeline, so it requires an additional modules NVIDIA Reflex to de-
crease the latency. However, NVIDIA Reflex decreases the latency
by reducing the bottleneck between CPU and GPU, and it doesn’t
eliminate the latency from the frame interpolation.

3 PROBLEM ANALYSIS
Before we introduce our approach for joint spatial super sampling
and frame extrapolation, we first specify the problems and goals
and analyze the challenges to motivate our design choices.

3.1 Design Choices
Problem Formulation. Our method aims to increase the spatial

resolution (spatial SS) and generate new extrapolated frames (tem-
poral SS) together in a single framework. Specifically, given a stream
of rendered images {𝑖𝑡 } and an optional auxiliary buffer (usually
refers to G-buffer) stream {𝑔𝑡 }, Spatial SS aims to generate higher
resolution image stream {𝐼𝑡 } where 𝐼𝑡 is 𝛿 times larger than 𝑖𝑡 in
both height and width, and Temporal SS aims to generate additional
frames among original frames {𝑖𝑡+𝜀 }. Temporal Super Sampling
can be categorized into frame interpolation if {𝑖𝑡+𝜀 } depends on
both previous and latter rendered frames, and frame extrapolation
if {𝑖𝑡+𝜀 } does not depend on the future rendered frames.

Our task here is jointly increasing spatial resolution and ex-
trapolating frames with twice larger in width and height, and one
extrapolated frame for every rendered frame. The input is the low
resolution rendered image stream {𝑖𝑡 } and the G-buffer stream

3https://www.nvidia.com/en-us/geforce/news/dlss3-ai-powered-neural-graphics-
innovations/

{𝑔𝑡 , 𝑔𝑡+1} and output is a stream of high resolution rendered im-
ages with extra frames {𝐼𝑡 , 𝐼𝑡+1}. Our extrapolated super sampled
results {𝐼𝑡+1} depends on previous rendered images {𝑖𝑡 }, warped
previous high resolution images {𝐼𝑡 } and current G-buffers {𝑔𝑡+1}.
And our spatial super sampled results {𝐼𝑡 } depend on warped previ-
ous high resolution images {𝐼𝑡−1} and current rendered low images
{𝑖𝑡 }. Since we don’t use any information from the next frames,
our method is an extrapolating method and we will discuss the
advantage of extrapolation below.

Interpolation vs. Extrapolation. Frame interpolation and extrapo-
lation are two key methods of Temporal Super Sampling. Usually
frame interpolation generates better results but also brings latency
when generating the frames. Note that there are some existing
methods such as NVIDIA Reflex [NVIDIA 2020] decreasing the
latency by using a better scheduler for the inputs, but they cannot
avoid the latency introduced from the frame interpolation and is
orthogonal to the interpolation and extrapolation methods. The
interpolation methods still have larger latency even with those
techniques. Frame extrapolation has less latency but has difficulty
handling the disoccluded areas because of lacking information from
the input frames. Our method proposes a new warping method
with a lightweight flow model to extrapolate frames with better
qualities to the previous frame generation methods and less latency
comparing to interpolation based methods.

G-buffers. Generating G-buffers is much cheaper than rendering
a frame and they provide strong clues in the extrapolation and the
use of G-buffer has been proven to increase the quality of frame
generation [Briedis et al. 2021]. But the time of generating them and
the memory cost cannot be ignored as discussed in ExtraNet [Guo
et al. 2021]. We only use low resolution G-buffers in our pipeline
for efficiency and better memory usage.

3.2 Challenges
Disoccluded and Out-of-screen Areas. Temporal Super Sampling

usually re-uses the information from the history frames by motion
vectors. Therefore, it becomes harder when the temporal informa-
tion is not available, where we call them disoccluded areas and
out-of-screen areas. Frame interpolation [Baker et al. 2011; Choi
et al. 2020; Kong et al. 2022; Meyer et al. 2015; Niklaus et al. 2017]
usually fills the disoccluded areas from the latter frames but it
increases the latency as discussed before. ExtraNet utilizes more
reliable occlusion motion vectors proposed by Zeng et al. [2021]
and an in-painting network to fill in those areas but still fails when
shading becomes complex. There are some other hole-filling meth-
ods for image in-painting which are usually too slow for real time
rendering as discussed by Guo et al [2021]. Although the exact
position in the previous frame is occluded, the shading information
nearby is still useful to predict the shading for the disoccluded
pixels. Therefore, we propose a G-buffer guided warping method
to re-use the temporal and spatial information to generate better
warped frames.

Temporal Stability. Temporal stability is a crucial part of render-
ing. Inconsistency between frames causes flickering artifacts in the
rendered results. Motion vectors can be used for tracking objects
to keep consistency but accurate shading and shadow’s motion
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tracking is not perfect. Optical flow based methods[Baker et al.
2011; Jiang et al. 2018; Xue et al. 2019] are able to track the motion
of shadows and some other shading changes but they are usually
interpolation based methods and require heavy computation to
estimate the optical flow per pixel which is not practical in real
time rendering. ExtraNet proposes a history encoder to handle the
shading and shadow’s movement but generates blurry shadows and
sometimes are inaccurate. Our method utilizes the G-buffer guided
warping to first decouple the motion of the shading directly corre-
sponding to the geometries and then use a lightweight flow-based
model to handle the remaining shading motions. Furthermore, we
design temporal constraints for our ExtraSS network to improve the
stability in our joint spatial and temporal super sampling process.

Joint Temporal and Spatial Super Sampling. Our method com-
bines both spatial and temporal super sampling to generate new
frames with high resolution. It requires two different types of inputs:
half frames with low resolution rendered images and the other half
frames only contain low resolution G-buffers. Simply using two
individual methods on frame generation and super resolution is
redundant, since both of them re-use temporal and spatial informa-
tion in the history. We design lightweight warping modules to unify
the different inputs and provide good extrapolated initialization for
our joint framework. Then, a neural network is used to generate
high resolution images and refine the extrapolated frame, which is
more efficient than a simple combination.

4 EXTRAPOLATION AND SUPER SAMPLING
4.1 System Overview
We propose a comprehensive framework aimed at concurrently
augmenting spatial resolution and frame rate while minimizing
latency. The overview is shown in Figure 2. Our method consists
of three main components: G-buffer guided warping (Sec. 4.2), de-
coupled shading refinement (Sec. 4.3) and joint Extrapolation and
Super Sampling (ExtraSS) network (Sec. 4.4). We will discuss the
details of each component in the following sections.

4.2 G-buffer Guided Warping
As discussed the challenges of disoccluded areas and out-of screen
areas in Sec. 3.2, the traditional motion vectors and occlusion mo-
tion vectors [Zeng et al. 2021] generate ghosting artifacts and blur
the warped images as shown in Figure 4. We propose a new warp-
ing method, G-buffer guided warping, to efficiently warp previous
frames to the current with better sharpness and less ghosting. To
begin with, the rendered images are first demodulated by the base
color to remove the high frequency shading from textures and then
modulated back after the warping. Sec. 3.1 addressed the impor-
tance of G-buffers and they can be used for calculating the similarity
of pixels that have similar radiance, which provides a good clue to
re-use the spatial information. Thus we propose using joint bilat-
eral filters [Kopf et al. 2007] with G-buffers’ similarity to re-use the
spatial shading information, as illustrated in Figure 3. Specifically,
it will consider a large area of pixels near the reprojected pixel
and use G-buffers’ similarity with screen space distance to blend
them together as the warped pixel. To handle the large disoccluded
and out-of-screen areas, we use an 𝐴-trous like hierarchy structure

with four levels for kernels and different stride size [Dammertz et al.
2010]. Then only 4 small kernels are needed for a large receptive
field in order to re-use distant pixels for disoccluded areas.

To calculate the warped pixels’ value, first we define the area of
candidate pixels in the previous frame. Let 𝑥 denotes the position
of current pixel in the previous frame by re-projection and 𝑁 (𝑥)
be the pixels set in the 𝐴-trous kernel around 𝑥 . It is defined as

𝑁 (𝑥) = {𝑥 + (𝑘 ∗ 𝑠, 𝑙 ∗ 𝑠) | 𝑘 ∈ {−𝑟, · · · , 𝑟 }, 𝑙 ∈ {−𝑟, · · · , 𝑟 },
𝑟 = 1, 𝑠 ∈ {1, 3, 5, 9}}. (1)

Then, similar to the joint bilateral filter, we use two Gaussian func-
tion 𝐺 (·|𝜇, 𝜎) to calculate the blending weight for every element 𝑦
in the kernel 𝑁 (𝑥). The blending weight is defined as

𝑤𝑥 (𝑦) = 𝐺 (𝑔𝑡 (𝑥) − 𝑔𝑡−1 (𝑦) | 𝜇0, 𝜎0) ×𝐺 (𝑥 − 𝑦 | 𝜇1, 𝜎1). (2)

where 𝑔𝑡 (·) refers to the G-buffers in the 𝑡 frame and we use base-
color and normal as the feature for weight calculation. Once we
calculate the blending weight for all pixels in 𝑁 (𝑥), we select 4 pix-
els (𝑁 ∗) with the largest blending weights and then normalize the
blending weights for these 4 pixels, denoted as �̄�𝑥 (𝑦). Let 𝑓 𝑡𝑔 (𝑖𝑡−1)
be the G-buffer guided warped frame from frame 𝑡 − 1 to frame 𝑡 ,
then the warped pixel values 𝑓 𝑡𝑔 (𝑖𝑡−1) [𝑥] are calculated by

𝑓 𝑡𝑔 (𝑖𝑡−1) [𝑥] =
∑︁

𝑦∈𝑁 ∗ (𝑥 )
�̄�𝑥 (𝑦) ∗ 𝑖𝑡−1 [𝑦] (3)

In Figure 4, our method not only keeps sharper boundaries and
details, but also fills disoccluded areas by using G-buffers’ informa-
tion to guide the spatial shading blending. Note that we only use
this for low resolution images since only low resolution G-buffers
are available.

4.3 Decoupled Shading Refinement with FRNet
As discussed in Sec. 3.2, our G-buffer guided warping can only
handle shading that directly corresponds to the geometries, leaving
some other shadingmotions unchanged such as shadows and glossy
reflections. Instead of using optical flow to directly predict all flows
from the previous frame to the current frame, we first use our
warping method to handle most shadings and decouple them from
the latter shading refinement part. Then, the remaining incorrect
shadings will be fixed by a lightweight flow based neural network
called Flow-based Refinement network (FRNet).

The network’s input contains two consecutive down-sampled
frames [𝑖−

𝑡−1, 𝑖
−
𝑡−3] and the down-sampled roughness 𝑟−𝑡 which is

a hint to tell whether an area is easy to have glossy or specular
reflections. The two consecutive frames are first warped to the
current frame by using the G-buffer guided warping. The warped
frames have almost correct shading and more importantly fill the
disoccluded and some out-of-screen areas. The FRNet only predicts
the flow to warp the 𝑓 𝑡𝑔 (𝑖−𝑡−1) with correct shading.

𝑖−𝑡 = FRNet(𝑓 𝑡𝑔 (𝑖−𝑡−1), 𝑓
𝑡
𝑔 (𝑖−𝑡−3), 𝑟

−
𝑡 ) (4)

The use of down-sampled frames for the FRNet is to accelerate our
shading refinement process. Figure 5 shows the lower resolution
output of FRNet can be upscaled back to the original resolution
with correct shadings and details. It can be done by blending with
G-buffer guided warping results 𝑖𝑡 = 𝑓 𝑡𝑔 (𝑖𝑡−1). Let 𝑈 (·) be the
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Figure 2: An overview of our pipeline. The left part shows the workflow of our shading refinement part and the right part
shows the workflow of the whole pipeline. REFINE module in the right refers to the shading refinement process (the left part).
GG Warp refers to G-buffer guided warping and Warp refers to regular warping. For two consecutive frames, ESS frames will
use G-buffer guided warp and shading refinement module to get low resolution rendered images and SS frames directly take
ground truth low resolution rendered images from rendering engine.

Frame i-1

Frame i Frame i Frame i

Frame i-1 Frame i-1

Trad. Bilinear Warp Occlusion MV Warp G-buffer Guided Warp

Figure 3: DifferentWarpingmethods, either using traditional
or occlusion motion vectors (using objects’ motion to refine
the traditionalmotion vector (shorter arrow) ), performpoint-
to-point matches and can result in wrong shading re-use. We
propose an 𝐴-trous like kernel to explore a larger area to
better estimate the shading in the disoccluded area.

nearest upsampling operation, refine results with correct shading
is calculated by

𝑖𝑡 = 𝑈 (𝑖−𝑡 ) · �̂�(𝑈 (𝑖−𝑡 ), 𝑖𝑡 ) + 𝑖𝑡 · (1 − �̂�(𝑈 (𝑖−𝑡 ), 𝑖𝑡 )) (5)

where �̂� is the blending mask which will be introduced later. Since
most shading of the scene has already been done by G-buffer guided
warping, we only need to design the mask �̂� to blend refined low
resolution shadings with warped results to keep both refined shad-
ing and other details. Thus, we propose following blending strategy.

To generate high quality blending results, it requires two aspects:
keeping details while resolving incorrect shading, and they lead to
two criterion when we design the blending mask. The first one is

Trad. MV Warp Occ. MV Warp Ours Ground Truth

Figure 4: Comparison of different warping methods. Our
method generates better warping results without ghosting
artifact while both traditional warping and occlusionmotion
vectors generate incorrect shading in the disoccluded areas.

Warp Only FRNet Output Mask Blend Ground Truth

Figure 5: Output of FRNet and the blended result. The blended
result contains shading details as well as correct shadow
position.

low resolution shading is used only when the G-buffers are simi-
lar, which will keep the shading details in the original resolution.
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We use basecolor and normal to calculate the G-buffers similarity.
Second, the low resolution shading is only used for correcting the
incorrect shadings in the warped results. Thus, only when differ-
ence is larger than a threshold, the low resolution shading will be
used. Specifically, for the mask �̂�, we define 𝑛 as normal and 𝛼 as
basecolor. Then the mask is calculated by

�̂�(𝑈 (𝑖−𝑡 ), 𝑖𝑡 ) =
(
(1 − 1

√
3
∥𝑈 (𝛼−

𝑡 ) − 𝛼𝑡 ∥2) ⊙ dot(𝑈 (𝑛−𝑡 ), 𝑛𝑡 ) > 𝛿1

)
∩ (∥𝑈 (𝑖−𝑡 ) − 𝑖𝑡 ∥/∥𝑈 (𝑖−𝑡 )∥ > 𝛿2),

(6)
where ⊙ refers to the element-wise product, and 𝛿1, 𝛿2 are set to
0.1. As shown in Figure 5, the blended image not only has correct
shadow position but also preserves more details of the thin wire
on the top comparing to the FRNet’s output.

As analyzed in the beginning of this section, since the most
shadings are decoupled by G-buffer guided warping, the FRNet
only handles a small part of incorrect shading. Therefore, only
a lightweight flow based neural network is needed to refine the
shadings. Please refer the details of FRNet in the supplementary.

Loss functions. We use image reconstruction loss L𝑟 and feature
space lossL𝑓 to train our FRNet. Image reconstruction loss consists
of Charbonnier loss 𝜌 (𝑥) [Charbonnier et al. 1994] and census loss
Lcen (𝑥,𝑦) [Meister et al. 2018].

L𝑟 = 𝜌 (𝑖𝑡 − 𝑖
gt
𝑡 ) + Lcen (𝑖𝑡 , 𝑖gt𝑡 ) (7)

Feature space loss calculates the census distance between extracted
features of ground truth frame and our predicted frame’s features:

L𝑓 =

3∑︁
𝑘=1

Lcen (𝜙𝑘𝑡 , 𝜙𝑘𝑡 ) (8)

where 𝜙𝑘𝑡 refers to the 𝑘-th feature of predicted frame from the
FRNet and 𝜙𝑘𝑡 refers to 𝑘-th feature of ground truth frame. Feature
space loss encourages the FRNet to learn high level features to
generate more accurate shadings. Combining previous two losses,
the final loss to train the FRNet is formulated as

LFR = L𝑟 + 𝜆L𝑓 , (9)

where 𝜆 is set to 0.001.

4.4 Joint Extrapolation and Super Sampling
Network

Previous two components in our framework already provide good
low resolution extrapolated images. Using them as inputs, we pro-
pose the Extrapolation Super Sampling (ExtraSS) network for joint
spatial super sampling and extrapolation.

4.4.1 Network Structure. The inputs for 𝑡-th frame (spatial super
sampling only (SS) frame) and (𝑡 + 1)-th frame (spatial super sam-
pling and extrapolation (ESS) frame) are different. We use separated
encoders 𝐸0 and 𝐸1 to extract high level features for spatial super
sampling only (SS) frames and joint extrapolation and spatial super
sampling (ESS) frames. Let 𝑓𝑟 (·) denotes the traditional warping.
For 𝑡-th frame, the encoder 𝐸0 takes current low resolution ren-
dered frame 𝑖𝑡 , scene depth 𝑑𝑡 and warped high resolution image
𝑓𝑟 (𝐼𝑡−1). For (𝑡 + 1)-th frame, the encoder 𝐸1 takes the G-buffer

guided warped results 𝑓 𝑡+1
𝑔 (𝑖𝑡 ), predicted results 𝑖𝑡+1 from FRNet,

warped high resolution frame 𝑓𝑟 (𝐼𝑡 ), the G-buffers including base
color 𝛼𝑡+1 and scene depth 𝑑𝑡+1. Then, a shared decoder 𝐷 is used
for generating the final high resolution results 𝐼𝑡 or 𝐼𝑡+1.

𝐼𝑡 = 𝐷 (𝐸0 (𝑖𝑡 , 𝑓𝑟 (𝐼𝑡−1), 𝑑𝑡 ))
𝐼𝑡+1 = 𝐷 (𝐸1 (𝑓 𝑡+1

𝑔 (𝑖𝑡 ), 𝑖𝑡+1, 𝑓𝑟 (𝐼𝑡 ), 𝛼𝑡+1, 𝑑𝑡+1))
(10)

With the design of the G-buffer guided warping and shading re-
finement, the structure and the number of the parameters of 𝐸0 and
𝐸1 could be similar, so we don’t need too much additional computa-
tion for the extrapolation frame. The networks follow the structure
of Unet [Ronneberger et al. 2015] and the features extracted from
the encoders will be added or concatenated to the features in the
decoder by skip connections. Please refer to the supplementary for
the details of ExtraSS network.

4.4.2 Losses Design. To preserve details and temporally stable joint
spatial and temporal super sampling, we separate our losses into
two parts to train our ExtraSS network.

The first part spatial loss L𝑠 aims to increase the quality of
spatial super sampling results. It contains occlusion loss L𝑜𝑐𝑐 , L1
loss and VGG loss [Johnson et al. 2016] Lvgg. We use occlusion loss
Locc to emphasize the ghosting areas, which is defined as

Locc =
∥𝑚(𝐼𝑡 ) · 𝐼𝑡 −𝑚(𝐼𝑡 ) · 𝐼gt𝑡 ∥1

sum(𝑚(𝑖𝑡 ))
. (11)

where𝑚(𝑖𝑡 ) is the disoccluded areas’ mask. Then, the full spatial
loss is defined as

L𝑠 = ∥𝐼𝑡 − 𝐼
gt
𝑡 ∥1 + 𝜆occLocc + 𝜆vggLvgg . (12)

We set 𝜆occ = 1 and 𝜆vgg = 0.01.
The second part temporal loss L𝑡 is used for generating tempo-

rally stable results. Instead of setting the losses on the final gener-
ated results, we use two encoder 𝐸0 and 𝐸1 to extract the features
for the same frame by taking two types of input. And then we use
𝑙1 loss to set constraints on these high level features. Specifically,
the temporal loss is defined as

L𝑡 = ∥𝐼𝑡 − 𝑓𝑟 (𝐼𝑡−1)∥1 +
4∑︁

𝑘=1
𝑙1 (Φ̄𝑘𝑡 ,Φ𝑘𝑡 ) (13)

where Φ̄𝑘𝑡 is the feature extracted from spatial super sampling only
input by 𝐸0, while Φ𝑘𝑡 is the feature extracted from extrapolation
and spatial super sampling input by 𝐸1. Note that these two groups
of inputs are from the same frame. We predict both ESS and SS
results in the training and use them in turn during inference. Our
final losses to train ExtraSS network are defined as

L = L𝑠 + 𝜆𝑡L𝑡 (14)

where 𝜆𝑡 is set to 1.

4.5 Training Configuration
Our system contains two networks: FRNet and ExtraSSNet, which
are trained separately with PyTorch framework [Paszke et al. 2019].
The Adam [Kingma and Ba 2014] optimizer with learning rate
0.0001, batch size 8 is used for training FRNet for 100 epochs. Then
the parameters of FRNet is frozen and just used for providing the
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Table 1: We compare with different spatial super sampling
quality in PSNR of TAAU, NSR, TAAwith our methods. Ours-
SS refers to spatial super sampling only results. Ours-ESS
refers to extrapolated and super sampled high resolution
results. Note that TAA is an additional reference instead of a
spatial SS method.

Scenes TAAU NSR Ours-SS Ours-ESS TAA
BUNKER (BK) 26.83 28.34 28.25 27.81 28.23
FOREST (FR) 19.21 18.76 19.89 19.86 20.16

SEQUENCER (SQ) 37.52 38.43 37.75 37.57 39.77
INFILTRATOR (IF) 30.03 30.26 30.04 29.91 32.05

input to the ExtraSSNet. ExtraSSNet also uses Adam optimizer with
learning rate 0.0004 and batch size 12 for 120 epochs.

5 EXPERIMENTS AND COMPARISON
Our data generation and experiments are conducted with an AMD
Ryzen9 5950X CPU and NVIDIA RTX 3090 GPU. Please refer to the
supplementary for the details of data generation.

5.1 Comparison with Super Sampling Methods
Our system contains both spatial super sampling only (SS) frames
and extrapolation with super sampled high resolution (ESS) frames,
so we will evaluate the quality of these two parts separately. For
fair comparison, we generate our results on the same test sequence
twice with one starting with spatial super sampling frame and the
other starting with extrapolated high resolution frame. In that case
we have both ESS and SS results for every frame.

We compare our method with the Temporal Anti-Alising Up-
sampling (TAAU) [Yang et al. 2020], neural network based super
sampling NSR [Xiao et al. 2020], commercial super samplingmethod
NVIDIA DLSS 2 [Liu 2020]. The NSR baseline is re-implemented
and trained on our dataset with the same configuration.

The reference images are generated by 64 SPP of super sampling
anti-alising (SSAA) which are usually difficult to achieve in real-
time rendering. We use temporal anti-aliasing (TAA) [Karis et al.
2014] running in the native resolution as an additional reference.
For NVIDIA DLSS, we use the Unreal engine plugin of DLSS 2.3
with performance mode to generate results in Unreal engine 4.26
since that’s the lowest version of Unreal engine supporting DLSS
plugin. There are some differences in shading behaviors between
Unreal 4.25 and Unreal 4.26 such as the shading at the back of the
character.

In Figure 6, we show the visual comparison among TAAU [Yang
et al. 2020], DLSS [Liu 2020], NSR [Xiao et al. 2020], ours, and two
reference TAA [Karis et al. 2014] and SSAA. The full frame of our
extrapolation with spatial super sampling (ESS) results are shown
in the left and we crop 3 zoom-in views for the comparison among
baselines. The quantitative results are reported in Table 1.

Note that our method only uses half of all the frames over
time as input unlike other SS only methods. This means a larger
stride/difference between the contents in consecutive input frames.
Even in this case, our method still shows comparable results due to

Table 2: PSNR (dB) values on different scenes. Ours-W refers
the results with only G-buffer guided warping. Ours-E refers
to Ours-W + shading refinement module. All method runs in
the same input and output resolution without anti-aliasing.

BK FR SQ IF Mean
ExtraNet 30.10 21.50 35.85 30.63 29.52
IFRNet 26.14 17.43 35.33 26.83 26.43
Ours-W 30.74 21.26 40.02 33.10 31.28
Ours-E 31.80 22.00 40.06 33.29 31.79

the good initialization provided by G-buffer guided warping and
shading refinement modules. Even using the target resolution as
inputs, TAA generates lagging glossy reflections while our ESS
has correct shadings. Besides TAAU tends to generate blurry re-
sults and NSR has bad temporal consistency. Please refer to the
supplementary materials for more results.

5.2 Comparison with Frame
Extrapolation/Interpolation Methods

To demonstrate our ability in both super sampling and extrapola-
tion, we compare our methods with recent temporal SS methods,
including frame interpolation and extrapolation. Note that inter-
polation methods will increase latency between user’s inputs and
rendering while extrapolation has less latency. Recently released
Nvidia DLSS 3 utilizes optical flow to increase the frame rate in the
game by interpolating frames, but the details of it are not available
and it requires specific hardware support, so we compare with an-
other optical flow based method IFRNet [Kong et al. 2022] as the
interpolation-based frame generation method. And we also com-
pare with ExtraNet [Guo et al. 2021] to show our better quality and
performance on the extrapolation.

Our G-buffer guided warping and shading refinement modules
provide a good extrapolated frame, which is before being SS-ed
and in low resolution with aliasing. Therefore, we compare frame
generation methods with two settings. The first setting compares
our extrapolated frames from G-buffer guided warping and shading
refinement modules with frame generation methods ExtraNet and
IFRNet. The other setting compares our full framework with Ex-
traNet and IFRNet with the same output resolution, which means
lower resolution of inputs is needed for our framework. We apply
temporal anti-aliasing on the output of ExtraNet and IFRNet in the
second setting for fair comparison.

In the visual comparison shown in Figure 7, all outputs in the
lower resolutions are upscaled to the same resolution as others by
nearest interpolation. Table 2 shows the quantitative results of our
warping method and shading refinement modules comparing to the
baselines without anti-aliasing, and Table 3 shows the quantitative
results of our full models with frame generation methods in the
same output resolution. In the first setting, our warping method
and shading refinement modules show better results in both quan-
titative results and visual comparison. IFRNet will miss geometries
when motion is large, and ExtraNet generates incorrect shading in
the disoccluded areas and worse shadows. Our methods not only
provide stable extrapolated frames, but also use much less time in
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Table 3: PSNR (dB) values on different scenes. We compare
with ExtraNet and IFRNet in the same output resolution. We
apply temporal anti-aliasing to ExtraNet and IFRNet so all
outputs are anti-aliased. Our input resolution is 2X smaller
than other baselines.

BK FR SQ IF Mean
ExtraNet 27.82 21.87 38.47 30.75 29.73
IFRNet 25.06 19.86 38.59 31.23 28.69

Ours-ESS 27.81 19.86 37.58 29.91 28.79

Table 4: We report the running time (milliseconds) for all
methods under different input resolutions. The time doesn’t
include G-buffers generation and frame rendering. Note that
for the same output resolution 1080p, Ours-ESS (4.1) is faster
than ExtraNet (12.0).

ExtraNet IFRNet NSR Ours-W Ours-E Ours-SS Ours-ESS
540p 3.3 5.8 17.1 0.4 1.6 2.5 4.1
1080p 12.0 19.5 67.6 1.7 4.6 9.1 13.7

the inference. For the second setting, we evaluate our model with
frame generation methods for the same output resolutions. Our
method shows comparable quantitative results, except in FOREST
scene, given the complex geometries. Although the PSNR values
are similar in other scenes, our method contains less artifacts in
disoccluded areas and more accurate shadows in the visual com-
parison. Since the input resolution of our method is 2X smaller, our
results are only slightly more blurry than baseline methods with
native resolution. For the temporal stability evaluation and other
results under these two settings, please refer to the supplementary
materials.

5.3 Performance
Table 4 reports the performance of our method and other baseline
methods. All neural networks are converted into TensorRT and
evaluated in FP16. We showmuch better performance than baseline
methods in the same output resolution while keeping comparable
or better quality as analyzed before. Note that the time reported in
Table 4 does not include the time of rendering and the baselines
usually take more time on rendering (higher resolution or more
frames). Please refer to the supplementary for more details about
our framework’s performance.

6 CONCLUSION AND FUTUREWORK
We have presented a framework for joint spatial super sampling
and frame extrapolation. With G-buffer guided warping and shad-
ing refinement module, our framework is able to provide accurate
extrapolated low resolution frames by utilizing G-buffers’ informa-
tion as well as spatial-temporal shading information. Furthermore,
ExtraSSNet generates temporally consistent high resolution results
by unifying the super sampling and extrapolation processes. Our
framework generates spatially super sampled extrapolated frames

effectively and achieves comparable quality and better performance
than previous individual methods.

Our method has some limitations. Scenes with extremely com-
plex geometries, such as FOREST, are challenging to almost all exist-
ing frameworks, including ours, with even less spatial and temporal
information. Our method sometimes generates flickering around
object boundaries and artifacts caused by error accumulation. Such
artifacts are not observed in the low resolution extrapolated results,
so it could be a limitation of our network design on the spatial super
sampling task. This could be resolved by incorporating insights
from other successful SS frameworks to our ExtraSS pipeline.

In the future, it would be interesting to explore the generalization
ability to our framework by training and testing on multiple scenes,
though the four scenes we currently select have already covered a
variety of different types of scenes. Another direct extension is to
verify the ability of multiple consecutive frame extrapolation and
different scales of spatial super sampling (1.5X, 4X, etc.) rather than
fixed.
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Ours-ESS full frame Input TAAU DLSS NSR Ours-SS Ours-ESS TAA SSAA

Figure 6: We compare our method with other super sampling baselines including TAAU, NSR and DLSS. We use TAA and SSAA
results as our reference. To demonstrate the quality of our SS and ESS results, we evaluate on the same sequence with 1 frame
offset of the start frame so we can generate SS and ESS results for the same frame. Our method achieves comparable results and
even better in some situations such as less ghosting artifacts and sharper results. Note that although the results of NSR look
good here, it has bad temporal stability. Please refer to the supplementary video for more details.
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Ours-ESS full frame ExtraNet-L IFRNet-L Ours-W Ours-E ExtraNet-H IFRNet-H Ours-ESS SSAA

Figure 7: We also compare our framework and our intermediate outputs with temporal SS methods including ExtraNet and
IFRNet. The comparison is in two different settings, as mentioned in Sec. 5.2, to evaluate our intermediate output and our joint
full framework. ExtraNet-L and IFRNet-L refers to the low resolution input and output without any anti-aliasing. ExtraNet-H
and IFRNet-H refers to the high resolution input and output with temporal anti-aliasing. Ours-W refers to our G-buffer guided
warping only results, Ours-E refers to Ours-W with shading refinement, and Ours-ESS refers to our full framework with joint
spatial SS and frame extrapolation. Our extrapolation methods show better quality than other frame generation methods and
our joint framework shows comparable results with native resolution as the input for baselines.
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