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Reproducing the appearance of arbitrary layered materials has long been
a critical challenge in computer graphics, with regard to the demanding
requirements of both physical accuracy and low computation cost. Recent
studies have demonstrated promising results by learning-based represen-
tations that implicitly encode the appearance of complex (layered) mate-
rials by neural networks. However, existing generally-learned models of-
ten struggle between strong representation ability and high runtime per-
formance, and also lack physical parameters for material editing. To ad-
dress these concerns, we introduceMetaLayer, a new methodology leverag-
ingmeta-learning for modeling and rendering layeredmaterials. MetaLayer
contains two networks: a BSDFNet that compactly encodes layered materi-
als into implicit neural representations, and a MetaNet that establishes the
mapping between the physical parameters of each material and the weights
of its corresponding implicit neural representation. A new positional encod-
ing method and a well-designed training strategy are employed to improve
the performance and quality of the neural model. As a new learning-based
representation, the proposed MetaLayer model provides both fast respons-
es to material editing and high-quality results for a wide range of layered
materials, outperforming existing layered BSDF models.
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1 INTRODUCTION
Real-world materials are mostly layered, containingmultiple layers
with varying compositions (e.g., coated metals, varnished woods,
glazed ceramics, and metallic paints). The complex interactions be-
tween the light and layers give rise to visually rich and diversified
appearance characteristics that are not exhibited by single-layer
materials. Unfortunately, due to the complexity of subsurface light
transport, realistically rendering these layered materials has long
been a daunting and challenging task in computer graphics [Bati
et al. 2019; Weidlich and Wilkie 2009, 2011], bottlenecking many
rendering engines.

General and accurate layered BSDF (Bidirectional Scattering Dis-
tribution Function) models either rely on per-material precompu-
tation [Jakob et al. 2014; Zeltner and Jakob 2018] or resort to sto-
chastic evaluation [Gamboa et al. 2020; Guo et al. 2018; Xia et al.
2020]. Recent precomputation-basedmodels [Jakob et al. 2014; Zelt-
ner and Jakob 2018] succeed in capturing aggregate scattering be-
haviors for layered materials with various layer components using
the adding-doubling strategy [van de Hulst 1980]. However, they
require long per-material precomputation time and large storage,
making them impractical for spatially-varying cases. Stochastic lay-
ered BSDF models, pioneered by Guo et al. [2018], are free from
costly precomputation, but suffer from low efficiency and high vari-
ance, since Monte Carlo sampling is involved in the estimation of
the light scattering inside layers.

With the advent of deep neural networks, learning-based BSDF
models [Fan et al. 2022; Hu et al. 2020; Kuznetsov et al. 2021, 2022;
Rainer et al. 2019; Tongbuasirilai et al. 2022; Zheng et al. 2022]
have emerged as a preferable choice for modeling very complex ap-
pearance behaviors compared to conventional models. Deep neural
networks are adept at learning robust priors from large-scale re-
flectance data, allowing us to reach an unprecedented level of real-
ism in visual appearance. However, these learned BSDF models of-
ten struggle between strong representation ability (large networks
with many parameters) and high runtime performance (small net-
works with few parameters). Without additional efforts (e.g., de-
signing and training another network [Hu et al. 2020]), they also
usually lack physical or perceptual parameters for convenient ma-
terial editing or effective inverse rendering [Bati et al. 2021]. This
is particularly important for layered materials since many graphi-
cal applications need the ability to adjust the physical parameters
of each layer to reach the desired aggregate appearance. Moreover,
these models usually have low generalization ability due to the lim-
ited scale of material datasets [Dupuy and Jakob 2018; Filip and
Vávra 2014; Matusik et al. 2003].

To tackle the above issues and to make learning-based layered
BSDF models more practical, we propose MetaLayer which intro-
duces meta-learning [Hospedales et al. 2022; Thrun and Pratt 1998]
into layered material modeling and rendering. The key idea behind
MetaLayer is learning to learn a neural representation for any lay-
ered BSDF. This is a typical hypernetwork design [Ha et al. 2017]
which is a special category ofmeta-learning [Hospedales et al. 2022].
Specifically, MetaLayer involves a BSDFNet to compactly encode
layeredmaterials into implicit neural representations and aMetaNet
to establish the mapping between the physical parameters of each
material and theweights of its corresponding neural representation.
Such a weight generation scheme allows weight sharing across lay-
ers of networks [Ha et al. 2017]. To retain high-frequency details
and eliminate annoying artifacts, a newpositional encodingmethod
named Rusinkiewicz spherical harmonics encoding is used in BSDFNet.
Once trained jointly via a well-designed training strategy, MetaNet
is expected to generate the specific networkweights of BSDFNet for
any unseen layered material through only one feed-forward prop-
agation, operating in milliseconds. Material editing is enabled by
directly changing the input of MetaNet, i.e., the physical parame-
ters of layered materials.

To summarize, the main contributions of this work are:

• a meta-learning framework, i.e., MetaLayer, for layered ma-
terial modeling, providing convenient material editing and
better generalization than existing learning-based models,

• a specially-designed training strategy to train BSDFNet and
MetaNet in two phases, enabling stable convergence,

• a newpositional encodingmethod named Rusinkiewicz spher-
ical harmonics encoding to retain high-frequency details for
directional distributed BSDF data,

• an efficient integration of ourMetaLayerwithin any physically-
based renderer, demonstrating high-speed evaluation, little
precomputation overhead, and convenient material editing.

2 RELATED WORK
Approximate Layered BSDF Models. Reproducing physically cor-

rect appearance for layered materials requires solving a very com-
plex 1D radiative transfer equation [Hanrahan and Krueger 1993;
Pharr and Hanrahan 2000]. Generally, interaction phenomena take
place not only at the surfaces, but also within any point of the medi-
um. To reduce the computational burden, many practical models re-
sort to certain approximations, in particular, the simplified compu-
tation of the light transport within layered materials. For instance,
some layered BSDF models lack proper evaluation of multiple scat-
tering inside layers [Gu et al. 2007; Hanrahan and Krueger 1993]
considering the high computational overhead of multiple scatter-
ing. Others even completely ignore any scattering event within in-
dividual layers [Dai et al. 2009; Guo et al. 2017; Weidlich andWilkie
2007, 2009, 2011]. A prominent layered BSDF model in this cate-
gory is the statistical framework of Belcour [2018] which approx-
imates the surface reflectance as the summation of multiple lobes
derived from directional albedo, incident direction, and roughness.
Later, much work has been dedicated to extending this statistical
approach to handle anisotropy [Weier and Belcour 2020; Yamaguchi
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et al. 2019], diffuse interfaces [de Dinechin and Belcour 2022] or ar-
bitrary scattering volumes [Randrianandrasana et al. 2021]. There
are also many approximate models targeting specific layered mate-
rials such as dusty surfaces [Gu et al. 2007], metallic patinas [Dorsey
and Hanrahan 1996], paper [Papas et al. 2014], leaves [Baranoski
and Rokne 2001] and human skin [Stam 2001]. Usually, these ap-
proximate models make a compromise between physical accuracy
and computing time.

Precomputation-based Layered BSDF models. The difficulty in de-
signing general layered BSDF models resides in correctly account-
ing for multiple scattering within the layered structures. For ef-
ficient evaluation, one flourishing way is to precompute the an-
gular distribution of the materials and store it using some com-
pact representations. The first generic layered BSDF model based
on precomputation is proposed by Jakob et al. [2014] which relies
on an expensive angular/Fourier mode matrix representation. This
model can be seen as a significant extension to Stam’s discretiza-
tion approach [Stam 2001] and was later further extended by Zelt-
ner and Jakob [2018] to handle anisotropic interfaces. Ergun et al.
[2016] extended Jakob et al.’s model to predict the appearance of car
paint from the paint composition. Despite their high accuracy and
efficiency at runtime, these models are generally impractical for
spatially-varying structures due to long per-material precomputa-
tion time and significant storage overhead. They also easily suffer
from ringing artifacts, especially at grazing angles. In contrast, our
meta-learning-based solution is free from costly per-material pre-
computation, while still guaranteeing excellent visual effects for
any layered material.

Stochastic Layered BSDF models. To achieve accurate evaluation
of layered BSDFs with arbitrary compositions, another promising
strategy is to use the Monte Carlo simulation which accounts for
all light transport paths naturally [Novák et al. 2018]. However,
directly applying the Monte Carlo simulation to layered material
rendering is prohibitively expensive, since a large number of scat-
tering events may happen at the layer interfaces or inside the in-
ternal medium. Guo et al. [2018] proposed a position-free Monte
Carlo method that leverages a path-space simplification tailored to
the layered material context. The proposed model is accurate, unbi-
ased, and general, but is still plagued with high variance on account
of the stochastic nature, leading to a very long convergence time.
Several subsequent studies tried to reduce variance by developing
more efficient Monte Carlo methods [Gamboa et al. 2020; Xia et al.
2020]. Gamboa et al. [2020] presented an efficient path construc-
tionmethod to sample and evaluate high-throughput, low-variance
paths through an arbitrary number of interfaces and media lay-
ers. Xia et al. [2020] introduced pair-product sampling and multi-
product sampling to better take advantage of the layered structure
and reduce variance compared to Guo et al.’s approach. Despite
these efforts for variance reduction, a straightforward implementa-
tion of these stochastic models is rather inefficient and impractical
for the production purposes.

Learning-basedAppearanceModeling. Recent years havewitnessed
great progress in reproducing visual appearance using deep learn-
ing [Dong 2019]. A series of neural methods have been developed

from different perspectives for appearance modeling. Some exist-
ing neural methods aim at recovering physically-plausible material
maps from one or a small number of input images using end-to-end
trained neural networks [Aittala et al. 2016; Deschaintre et al. 2018,
2019; Guo et al. 2021; Li et al. 2017, 2018]. Others try to exploit a
low-dimensional latent space from the material data, so as to intel-
ligently reduce the dimensionality of the data for measured BRDF
[Fan et al. 2022; Hu et al. 2020; Zheng et al. 2022], spatially-varying
BRDF [Gao et al. 2019; Guo et al. 2020], bidirectional texture func-
tion (BTF) [Kuznetsov et al. 2021, 2022; Rainer et al. 2020, 2019],
etc. After compressing raw high-dimensional material data using
material-specific neural networks, each material is represented as
a low-dimensional latent code. However, these latent codes usual-
ly lack physical parameters for intuitive material editing or effec-
tive inverse rendering [Bati et al. 2021]. Recently, Xu et al. [2022]
encoded BRDF, visibility, and lighting using a set of neural basis
functions.

Unlike these methods, we encode each layered material with-
in the weights of a trained neural network called BSDFNet. The
weights are predicted by a meta-network called MetaNet, given
some physically meaningful material parameters such as surface
roughness and extinction coefficient of the medium. The weight
prediction is a typical hypernetwork design, one of themeta-learning
strategies in neural networks [Hospedales et al. 2022; Hu et al.
2019]. This facilitates the compression, rendering, and editing of
arbitrary layered materials. Hypernetworks have also been used in
modeling appearance maps [Maximov et al. 2019] and 3D faces [Bi
et al. 2021].

A similar meta-learning idea is also mentioned in the work of
Sztrajman et al. [2021] in which each BRDF is overfitted to the
weights of a small neural network and is further compressed in-
to a low dimensional embedding. However, the small scale of the
neural network limits its representation ability, and the choice of
overfitted weights makes their method only support BRDF interpo-
lation. Different from that work, our neural representation of lay-
ered materials has stronger expressiveness and robustness thanks
to a weight sharing strategy introduced in BSDFNet. It also signifi-
cantly expands the material editing ability due to the special design
of MetaNet and the training strategy. More recently, a Metappear-
ance model is proposed by Fischer et al. [2022] which also lever-
ages meta-learning for visual appearance reproduction. However,
their meta-learning paradigm is significantly different from ours.
They chose a model-agnostic meta-learning framework to improve
the inference accuracy of trained models, while our goal is to use
a meta-network to produce weights of another network, thus sup-
porting convenient material editing and fast evaluation.

3 THE METALAYER MODEL
In this section, we describe our MetaLayer model and its implemen-
tation details.

3.1 Motivation and Overview
Recent learning-based BSDF models typically need to train the net-
works for every new material, and the material is encoded in the
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Fig. 2. High-level overview of our MetaLayer model. A set of physical pa-
rameters of a layered material are mapped to the network parameters of
BSDFNet, through another neural network: MetaNet. Once converged af-
ter training, MetaLayer can model the appearance of a wide range of lay-
ered materials and BSDFNet can be easily integrated into any renderer as
a parametric BSDF model.

network parameters [Sztrajman et al. 2021] or a fixed-length la-
tent vector [Fan et al. 2022; Hu et al. 2020; Zheng et al. 2022] after
training for an enormous number of iterations. Generally, each of
these models is restricted to representing only materials within its
learned latent space, potentially limiting its ability to express previ-
ously unseen materials. More critically, these methods are hard for
material editing, since no connection is established between thema-
terials’ neural representations and their physical parameters. Con-
sequently, only material interpolation is readily supported by most
existing neural methods. However, the ability of explicit parame-
ter tuning is important for layered materials since many graphical
applications, including both forward rendering [Belcour 2018] and
inverse rendering [Bati et al. 2021], need the ability to adjust the
physical parameters of each layer to determine the desired aggre-
gate appearance.

We address the above limitations with the proposed MetaLayer
model, a meta-learning-based method for modeling arbitrary lay-
ered materials. The basic idea is illustrated in Fig. 2. Specifically,
we represent the BSDF of any layered material as a parameter func-
tion 𝐹 (𝝎𝑖 ,𝝎𝑜 ;Θ𝐹 ) with the trainable parameters Θ𝐹 . Currently, 𝐹
is realized as a fully-connected multi-layer perceptron (MLP) with
positional encoding. This network, named BSDFNet, is optimized
to map from a pair of input directions 𝝎𝑖 and 𝝎𝑜 to the RGB re-
flectance value at that pair of directions.Theoretically, such a coordinate-
based neural representation is continuous and naturally has an in-
finite resolution.

Meta-learning is normally used to train a meta network to pro-
duce the weights of another network. In our context, we construct
a meta neural network, named MetaNet, to generate the weights of
BSDFNet (taken as the base network). MetaNet, also realized as an
MLP𝑀 with its trainable weightsΘ𝑀 , takes a set of physical param-
eters Γ of a layered material and produces the partial weights (Θ∗

𝐹 )
of the corresponding BSDFNet. These partial weights (Θ∗

𝐹 ), togeth-
er with other weights of BSDFNet which are frozen after training
and are shared across all layered materials, are expected to faithful-
ly reproduce the appearance of that layered material. This weight
sharing strategy is adopted to reduce the scale of the neural BSDF
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Fig. 3. Detailed architectures of MetaNet (left) and BSDFNet (right). Both
are realized by MLPs with the number of neurons in each layer displayed
on the colored bar.

model, while still preserving strong expressiveness and high gener-
alization ability.

Overall, our meta-learned layered BSDF model is formally given
by the following equations:

𝑀 (Γ;Θ𝑀 ) = Θ∗
𝐹 (1)

𝐹 (𝝎𝑖 ,𝝎𝑜 ;Θ𝐹 ) = 𝑓𝑠 (𝝎𝑖 ,𝝎𝑜 , Γ) (2)
whereΘ∗

𝐹 denotes a subset ofΘ𝐹 which is generated by theMetaNet
𝑀 and 𝑓𝑠 (𝝎𝑖 ,𝝎𝑜 , Γ) returns the actual BSDF value of the corre-
sponding layered material with physical parameters Γ evaluated
at 𝝎𝑖 and 𝝎𝑜 . Both BSDFNet and MetaNet are trained together on
𝑁 = 𝑁Γ × 𝑁𝝎𝑖 × 𝑁𝝎𝑜 samples. In particular, the weights Θ𝐹 are
optimized such that 𝐹 matches 𝑓𝑠 as closely as possible for all coor-
dinates 𝝎𝑖 ,𝝎𝑜 , i.e.,

Θ̂𝐹 = argmin
Θ𝐹

𝑁Γ∑
𝑙=1

𝑁𝝎𝑖∑
𝑚=1

𝑁𝝎𝑜∑
𝑛=1

L
(
𝐹 (𝝎 (𝑚)

𝑖 ,𝝎 (𝑛)
𝑜 ;Θ𝐹 ), 𝑓𝑠 (𝝎 (𝑚)

𝑖 ,𝝎 (𝑛)
𝑜 , Γ (𝑙 ) )

)
(3)

where L is a task-specific loss measuring the error between 𝑓𝑠 and
𝐹 . Once trained, we are able to generate the specified network pa-
rameters of BSDFNet through one feed-forward propagation in the
MetaNet, given a set of physical parameters of a layered material.
Then, this specific BSDFNet can be integrated into any renderer,
working as a standard parametric BRDF model.

The specific design of this BSDF model leads to the following
benefits:

• It is efficient and possesses low variance since Monte Carlo
sampling is not required in evaluating this model.

• It supports convenientmaterial editingwith physicallymean-
ingful parameters.

• It does not rely on any costly precomputation and hence is
friendly to spatially-varying cases.

• It is a general model which supports a wide range of layered
materials.

3.2 BSDFNet
In our MetaLayer model, every layered material is represented as
a deep neural network 𝐹 which takes as input a pair of normalized
directions 𝝎𝑖 and 𝝎𝑜 . By encoding data into this coordinate-based
network, the appearance of a layered material will be essentially
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represented using the weights (or parameters) of the network. One
key design choice of this network is that some weights (Θ∗

𝐹 ) are
inferred from a set of physical parameters Γ by another deep neural
network, while others are shared (by the weight sharing strategy)
across all materials.

The detailed architecture of BSDFNet is depicted in the right pan-
el of Fig. 3. As seen, this network consists of five hidden layers with
64 neurons per hidden layer, except the last one which only has 32
neurons. ReLU is adopted as the activation function. Let v𝑖 be the
output of the 𝑖-th layer. Note that v𝑖 in each layer (except the first
and last layers) can be subdivided into three parts which are visu-
alized as different colors in Fig. 3:

• v∗: values predicted directly by MetaNet during the infer-
ence stage,

• v+: values computed by the frozen (shared) weights (W+ and
b+) of BSDFNet,

• v≀: values computed by predicted weights (W∗ and b∗) from
MetaNet.

According to the above rules, layer 𝑖 of the network is computed as
v+𝑖+1 = 𝑎(W+

𝑖 (v
∗
𝑖 ⊕ v+𝑖 ⊕ v≀𝑖 ) + b+𝑖 ) (4)

v≀𝑖+1 = 𝑎(W∗
𝑖 (v

+
𝑖 ⊕ v≀𝑖 ) + b∗𝑖 ) (5)

where 𝑎(·) is the element-wise activation function and ⊕ denotes
element-wise concatenation. Currently, we opt to predict the dif-
ferent channels of reflectance/transmittance independently. There-
fore, the output of the last layer is only a scalar. We observe that
this can reduce the risk of color drifting.

In our current design of BSDFNet, not only its partial weights
(W∗ and b∗) are predicted by MetaNet, but also some neurons’ val-
ues, i.e., v∗. These neurons serve as important connections between
BSDFNet and MetaNet, enabling valid back-propagation of gradi-
ents from BSDFNet to MetaNet. Without these neurons, gradients
may vanish since the activation functions could enforce some out-
puts to be zero. In this case, the weights W∗ and b∗ have little im-
pact on the back-propagation of gradients. More detailed deriva-
tions and discussions are provided in the supplemental material.

The splitting of v and the weight sharing strategy adopted in
each hidden layer are specially designed to significantly reduce the
storage cost and avoid overfitting. With the weight sharing strate-
gy, only 293 parameters (32 × 4 for v∗, 32 × 5 for W∗ and 5 for b∗)
should be stored for each layered material. A large portion of net-
work parameters are frozen and shared across different materials.
The reduced dimensionality of the predicted parameter space also
stabilizes the training process and speeds up convergence.

Comparison with Prior Representations. This network has over
13K parameters which are sufficient to reproduce the complex ap-
pearance of awide range of layeredmaterials. In comparison, NBRDF
proposed by Sztrajman et al. [2021] only has two small hidden lay-
ers for a total of 675 parameters which are further compressed
into 32 values. DeepBRDF [Hu et al. 2020] generally adopts a 10-
dimensional latent code to represent each measured BRDF. From
this, our BSDFNet has a much stronger representative ability than
these previous models. This is visually validated in Fig. 4. As seen,
NBRDF fails to preserve high-frequency glossy highlights, due to
its limited representation ability. Even if we increase the scale of

NBRDF NBRDF+ BSDFNet Reference

Re
nd

er
in
g

RMSE=0.020 RMSE=0.011 RMSE=0.010

Er
ro
r×

4

Fig. 4. Comparing the representation ability of NBRDF [Sztrajman et al.
2021], an extended version of NBRDF (NBRDF+), and our BSDFNet. The
second row shows the error maps (×4 for better visualization) with respect
to the reference images which are generated by Guo et al.’s bidirectional
method [Guo et al. 2018]. RMSEs (root mean square errors) are also provid-
ed for each method in comparison. More comparisons are provided in the
supplemental material.

NBRDF (i.e., NBRDF+ in Fig. 4) to match the number of trainable
parameters as our BSDFNet, it still produces sub-optimal results as
highlighted in the error maps, due to the lack of proper positional
encoding as explained in the next subsection. Note that the diffi-
culty of training for meta-learning is closely related to the number
of weights to be predicted. NBRDF enables easy convergence by
reducing its scale, but at the cost of low representative ability. We
guarantee both strong representative ability and easy convergence
via weight splitting and sharing. Fan et al. [2022] recently adopted a
neural network (NLBRDF) with over 1G trainable parameters to en-
code layered BRDFs. Without specially-designed acceleration with
GPUs, such a large network will incur significant overhead to exist-
ing renderers. In comparison, our meta-learning design guarantees
the strong expressiveness of BSDFNet with far fewer parameters,
and also allows convenient material editing which is not easily sup-
ported by Fan et al.’s work.

3.3 MetaNet
State-of-the-art neural BSDF models (e.g., DeepBRDF, NBRDF, and
NLBRDF) often lack the ability to quickly generalize in a sample
efficient manner to new unseen materials. They also lack editabil-
ity. For instance, handling a new material for NLBRDF requires
extracting the latent code from this material, which comes with a
certain cost of generating training examples and optimizing the la-
tent vector with some additional back-propagate steps. In contrast,
our MetaNet is designed and trained to predict the partial weights
of our coordinate-based network (BSDFNet). This makes our ap-
proach more expressive than prior works, allowing it to represent
a wider range of appearance. The editability is realized by the map-
ping between explicit material parameters and BSDFNet’s partial
weights. Specifically, we represent the material variability by an ex-
plicit material parameter vector Γ. In our current setting, Γ includes
the surface properties of two interfaces (the surface roughness: 𝛼1
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Fig. 5. Illustration of layered material editing via MetaNet. Materials in
the dashed yellow box are inside the convex hull of the training set, while
others are outside the convex hull, demonstrating the ability of material
extrapolation of MetaNet. The reference images are generated by Guo et
al.’s bidirectional method [Guo et al. 2018].

and 𝛼2, the relative index of refraction: 𝜂1 and 𝜂2) and the scatter-
ing properties of the internal medium1 (the extinction coefficient:
𝜎𝑡 and the single-scattering albedo: 𝜌). For a conductor interface,
we replace its relative index of refraction with the corresponding
Schlick reflectance 𝑅0. The goal of MetaNet is to take a specific Γ
as input and generate the partial weights of BSDFNet Θ∗

𝐹 to make
sure that 𝑓𝑠 (𝝎𝑖 ,𝝎𝑜 , Γ) and 𝐹 (𝝎𝑖 ,𝝎𝑜 ,Θ𝐹 ) behave similarly.

The architecture of MetaNet is shown in the left panel of Fig. 3. It
has 16 hidden layers, each of which has 256 neurons. As aforemen-
tioned, we currently predict independently for each RGB channel.
This results in 6 neurons for the input layer.

We train MetaNet and BSDFNet using a specially-designed train-
ing strategy. Once converged, MetaNet directly maps a set of phys-
ical parameters Γ to a vector of network parameters of BSDFNet in-
cludingW∗, b∗ and v∗, through only a forward pass.This is quite dif-
ferent from some gradient-basedmeta-learningmethods [Andrychow-
icz et al. 2016; Finn et al. 2017; Fischer and Ritschel 2022] which
require solving an optimization problem to fine-tune the weights
at test time and is convenient for material editing. We illustrate the
ability of convenient material editing using MetaNet in Fig. 5. Here,
we adjust 𝜎𝑡 and 𝛼1. New layered materials can be generated imme-
diately and their appearance varies smoothly. Note that the strong
generalization ability of meta-learning even allows appearance ex-
trapolation (e.g., the materials outside the dashed yellow box in Fig.
5) which is not supported by previous models (e.g., DeepBRDF and
NLBRDF).

3.4 Rusinkiewicz Spherical Harmonics Encoding
Although coordinate-based MLPs (like BSDFNet and MetaNet in
our framework) provide an efficient way to encode complex scatter-
ing behaviors of layered materials, they have difficulty in learning
high-frequency functions, such as the near specular reflections for
very smooth surfaces. Recent studies have shown that this spectral
bias [Basri et al. 2020; Rahaman et al. 2019] can be overcome by us-
ing positional encodings [Mildenhall et al. 2020; Müller et al. 2021;
1We adopt an isotropic phase function in our current implementation.

RMSE=0.076 RMSE=0.088 RMSE=0.048

RMSE=1.713 RMSE=1.647 RMSE=0.471

No encoding Sinusoidal Ours Reference

Fig. 6. Comparison of different positional encoding methods. From left to
right, we show two predicted BSDFs without positional encoding, with si-
nusoidal encoding used in [Mildenhall et al. 2020], with our Rusinkiewicz
spherical harmonics encoding and the reference. The BSDFs are parameter-
ized by the Rusinkiewicz coordinates. Error maps (×4) are shown for better
comparison. More results are provided in the supplemental material.

Tancik et al. 2020] which significantly improve the representation
ability of MLPs.

To allow our BSDFNet to learn high-frequency spherical signals
on S2 better, we adopt a new positional encoding method named
Rusinkiewicz Spherical Harmonics Encoding. This method firstly
converts the input coordinates of BSDFNet (i.e., 𝝎𝑖 and 𝝎𝑜 ) into
the Rusinkiewicz coordinates [Rusinkiewicz 1998]:𝝎ℎ and𝝎𝑑 . The
Rusinkiewicz coordinate system adopts an efficient sampling strat-
egy for tabulation by allowing dense sampling near specular high-
light regions, thus providing a much better suited set of variables
to encode specular lobes. Then, the following mapping is applied
to both 𝝎ℎ and 𝝎𝑑 :

𝛾 (𝝎) =
[
𝝎, 𝑌 0

0 (𝝎), 𝑌 −1
1 (𝝎), 𝑌 0

1 (𝝎), 𝑌 1
1 (𝝎), ..., 𝑌

𝑚
𝑙 (𝝎), ...

]⊤ (6)

to map them to a higher-dimensional space. Here,𝑌𝑚
𝑙
(𝝎) is a series

of spherical harmonics (SH) basis functions of varying order 𝑙 and
degree𝑚. Note that our Rusinkiewicz spherical harmonics encod-
ing is deterministic and allows our network to bias towards data
that has more frequency content along 𝝎𝑑 and 𝝎ℎ . We currently
choose up to ninth order SH basis functions for positional encod-
ing, thus resulting in a total of 168 input dimensions to BSDFNet.

To show the effectiveness of our Rusinkiewicz spherical harmon-
ics encoding method, we compare predicted BSDFs using different
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positional encoding methods in Fig. 6. As expected, the fitted BS-
DFs without any positional encoding method fail to recover high-
frequency signals of glossy highlights due to the low dimensional-
ity of the input. Incorporating positional encodings, such as 2D si-
nusoidal encodings widely used in previous work [Mildenhall et al.
2020; Müller et al. 2021], may alleviate this problem. However, si-
nusoidal encodings will cause distracting ghosting artifacts along
the glossy lobes. In comparison, our proposed encoding method is
free from these artifacts and achieves high-quality results that are
much closer to the reference.

3.5 Two-phase Training Strategy
To speed up convergence, our networks are trained in a two-phase
manner, as summarized in Algorithm 1. In the first phase, BSDFNet
and MetaNet are trained jointly using the dataset described below.
This stage is designed to help the training process to be initially
more stable, since BSDFNet and MetaNet have different objectives.
In the second phase, the training steps of BSDFNet andMetaNet are
interleaved in a meta-training manner, as specified in lines 9-24 in
Algorithm 1. During this phase, each time we sample a layered ma-
terial from the dataset, its sample set X (with 𝑁𝝎𝑖 varying incident
direction 𝝎𝑖 and 𝑁𝝎𝑜 varying outgoing direction 𝝎𝑜 ) is split into
two subsets: X1 and X2. X1 is first used to train BSDFNet for 𝐾1
steps, while freezing the weights in MetaNet. These training steps
aim to stabilize the shared weights in BSDFNet. Then, X2 is used to
train MetaNet for 𝐾2 steps, updating Θ𝑀 only. This training phase
lets our framework generalize to new materials more easily.

3.6 Training Details
We train our networks with TensorFlow [Abadi et al. 2015] on a
server with eight NVIDIA 2080Ti GPUs. We use the Adam optimiz-
er with default parameters and an initial learning rate of 0.0005
to train all networks. The learning rate decays by 0.99 for every
8 epochs. For layered materials with reflective/conductive base lay-
ers, we train a singlemodel with 225 epochs (100 epochs for the first
training phase and 125 epochs for the second training phase), tak-
ing roughly 50 hours. For layeredmaterials with transmissive/dielectric
base layers, we train two models for the BRDF part and the BTDF
part separately. Each model is trained with 200 epochs (100 epochs
for the first training phase and 100 epochs for the second training
phase), taking roughly 48 hours.

Loss Function. The loss function for training our networks is in-
spired by the reverse Huber loss which has shown great success in
the dense depth prediction problem [Laina et al. 2016; Wang et al.
2020]. Specifically, our loss function is defined as

L(𝑓 , 𝑓𝑠 ) =
{

|T (𝑓 ) − T (𝑓𝑠 ) | |T (𝑓 ) − T (𝑓𝑠 ) | ≤ 𝑡
∥T (𝑓 )−T ( 𝑓𝑠 ) ∥22+𝑡2

2𝑡 |T (𝑓 ) − T (𝑓𝑠 ) | > 𝑡
(7)

where 𝑡 is a positive threshold and T is the 𝜇-law transformation
[Kalantari and Ramamoorthi 2017] used to compress the high dy-
namic range of the reflectance value:

T (𝑓 ) = sign(𝑓 ) log(1 + abs(𝑓 )𝜇)
log(1 + 𝜇) (8)

Algorithm 1 Two-phase training
Input: A training dataset D with 𝑁 = 𝑁Γ × 𝑁𝝎𝑖 × 𝑁𝝎𝑜 samples
Output: Trained MetaNet 𝑀 (Γ,Θ𝑀 ) and BSDFNet 𝐹 (𝝎𝑖 ,𝝎𝑜 ,Θ𝐹 )

1: Randomly initialize Θ𝑀 and Θ𝐹

2: for iterations in the first phase do
3: Sample a material from D with a sample set X
4: for samples in X do
5: Feed-forward propagation of𝑀 (Θ𝑀 ) and 𝐹 (Θ𝐹 )
6: Evaluate the loss L and update both Θ𝑀 and Θ𝐹

7: end for
8: end for
9: for iterations in the second phase do

10: Sample a material from D with a sample set X
11: Split X into X1 and X2
12: for 𝐾1 steps do
13: for samples in X1 do
14: Feed-forward propagation of 𝐹 (Θ𝐹 )
15: Evaluate the loss L and update Θ𝐹

16: end for
17: end for
18: for 𝐾2 steps do
19: for samples in X2 do
20: Feed-forward propagation of𝑀 (Θ𝑀 ) and 𝐹 (Θ𝐹 )
21: Evaluate the loss L and update Θ𝑀

22: end for
23: end for
24: end for

Table 1. Sampling functions used to generate layered materials for the Lay-
eredBRDF and LayeredBTDF datasets. U denotes the uniform distribution
and V means sampling the set with the discrete uniform distribution.

Parameter Symbol Sampling

Roughness for top interface 𝛼1 10U(−3,−0.5)

Roughness for bottom interface 𝛼2 10U(−3,0)

IOR for dielectric interface 𝜂1, 𝜂2 U(1.05, 2)
Fresnel for conductive interface 𝑅0 U(0, 1)

Single-scattering albedo for medium 𝜌 1 −U(0, 1)2
Extinction coefficient for medium 𝜎𝑡 V({0, 1, 2, 5})

with 𝜇 controlling the amount of compression. We currently set
𝑡 = 0.1 and 𝜇 = 32. Empirically, this loss function provides a good
balance between L1 error and L2 error. In our context, L2 aims to re-
construct the potential large values at highlight regions while L1 is
responsible for preserving the long tail of the layered BSDF. More-
over, this loss function is continuous and first order differentiable
at the threshold 𝑡 where the switch from L1 to L2 occurs.

Dataset Preparation. To train the proposed networks, we collect
two datasets: a LayeredBRDF dataset for layered materials with re-
flective/conductive base layers and a LayeredBTDF dataset for lay-
eredmaterials with transmissive/dielectric base layers. Both datasets
are generated according to Guo et al.’s method, using a sampling
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rate of 128 spp. The LayeredBRDF dataset contains 𝑁Γ = 12, 000
BRDFs and the LayeredBTDF dataset contains 𝑁Γ = 10, 000 BSDFs.
The distributions of their parameters are listed in Table 1. Current-
ly, we use GGX as the normal distribution function at interfaces,
resulting in two roughness parameters 𝛼1 and 𝛼2 for either conduc-
tive or dielectric interfaces. For conductive base layers, we adopt
the Schlick Fresnel approximation with 𝑅0. The inside medium is
described by the extinction coefficient 𝜎𝑡 and single-scattering albe-
do 𝜌 . For each BRDF in the LayeredBRDF dataset, we sample 254

pairs of spherical angles (𝜃 ,𝜙) of the 𝝎ℎ and 𝝎𝑑 vectors in the
Rusinkiewicz parameterization [Rusinkiewicz 1998]. We perform
stratified sampling along the elevation angle 𝜃 and azimuth angle
𝜓 on the upper hemisphere, where 𝜃 ∈ [0, 𝜋2 ) and 𝜙 ∈ [0, 2𝜋). For
BTDFs in the LayeredBTDF dataset, the elevation angle 𝜃 covers
the whole sphere, i.e., 𝜃 ∈ [0, 𝜋), resulting in 4× 254 pairs of spher-
ical angles.

4 RENDERING WITH METALAYER
Renderer Integration. Integrating our Metalayer model into ex-

isting renderers is quite easy and straightforward, which can be
seen as another benefit of this model. Once BSDFNet and MetaNet
converge, BSDFNet can be used as similarly as other parametric
BSDF models since BSDFNet in our current design is lightweight
and portable. Consequently, the learned BSDFNet can run without
the support of GPU resources, thus neglecting any workload from
data transfer between CPU and GPU. Except for positional encod-
ingswhich are precomputed and stored in a look-up table, BSDFNet
only contains matrix multiplication/addition operations and ReLU
activation functions that are easy for data-level parallelism. In prac-
tice, we parallelize these operations via the Intel Advanced Vector
Extensions 512 (AVX-512) instruction set [Intel 2023].

For MetaNet, it should run only once for a given material, al-
though it contains much more parameters than BSDFNet. This de-
sign significantly improves the performance of our model during
runtime, while still preserving its strong representation ability by
transferringmuch computation to the precomputation step. To sup-
port spatially-varying layered BSDFs, only the parameters predict-
ed by MetaNet are stored in textures. Other trainable parameters
in BSDFNet are fixed and shared across all layered materials.

Importance Sampling. Theusage of a newBSDFmodel in a ray/path
tracing-based renderer also requires the ability to properly sample
the BSDF and to estimate the probability of this sampling. Consider-
ing that the appearance of layered materials typically has multiple
dominant lobes, we adopt the following multi-lobe probability dis-
tribution, inspired by [Belcour 2018]:

𝑝 (𝝎𝑜 |𝝎𝑖 ) =
𝐸all∑𝑁

𝑖=0 𝐸𝑖𝑝𝑖

𝑁∑
𝑖=0

𝐸𝑖𝜌𝑖 (𝛼𝑖 ) (9)

where 𝐸𝑖 is the energy for the 𝑖-th lobe, 𝐸all is the total energy,
𝑝𝑖 is the probability density function (PDF) of sampling the visible
normals [Heitz and d’Eon 2014], and 𝜌𝑖 is the PDF of the 𝑖-th micro-
facet model. Currently, we select two lobes (R and TRT) for layered
materials with reflective base layers and select three lobes (R, TRT,
and TT) for layered materials with transmissive base layers. Please

Table 2. Comparison of different learning-based BSDF models. Our pro-
posed MetaLayer model supports BTDFs with two transmissive interfaces,
textured material parameters and perceptual material editing. It can also
run with pure CPU resources. Here, – means partial support.

Method BTDF Texture Edit CPU
NBRDF [Sztrajman et al. 2021] × × × ✓

NLBRDF [Fan et al. 2022] × ✓ – ×
MetaLayer (Ours) ✓ ✓ ✓ ✓

refer to [Belcour 2018] for more details on the estimation of the pa-
rameters. During rendering, we randomly selected one lobe based
on 𝐸𝑖 and importance sample the visible normals [Heitz and d’Eon
2014].

Summary of Abilities. Our MetaLayer model has many desired
properties when integrated into existing renderers. Table 2 com-
pares the abilities of the proposed MetaLayer model against several
existing models. Currently, only our model fully supports layered
BTDFs with two transmissive interfaces. It seems that some oth-
er models may also be extended to allow the evaluation of trans-
mittance, but the extension is not that straightforward. Supporting
textured or spatially-varying material parameters is also important
for BSDF models, which is enabled by our model and NLBRDF [Fan
et al. 2022]. Perhaps the main advantage of our model, as compared
with existing learning-based models, is its convenience in materi-
al editing. NLBRDF [Fan et al. 2022] also allows material editing,
but needs significant efforts to fine-tune the latent codes of unseen
materials. Another benefit of our model is that it can run with pure
CPU resources, thanks to the lightweight design of BSDFNet.There-
fore, porting this model to different platforms is relatively easy, and
running the model does not involve time-consuming CPU-GPU da-
ta transfer.

5 RESULTS AND DISCUSSION
We have implemented our MetaLayer model in the Mitsuba render-
er [Jakob 2010] as a new BSDF plugin. In this section, we demon-
strate the effectiveness and efficiency of our method on layered ma-
terials with various combinations of parameters. All test materials
in this section are new and never appear in the training dataset. All
results are generated on a workstation with an Intel Core i9-9900X
processor and 64GB RAM. As aforementioned, our lightweight BS-
DFmodel does not require any GPU resource at runtime. Reference
images are rendered using Guo et al.’s bidirectional method [Guo
et al. 2018] at a high sampling rate (2048 spp by default). Please
refer to the accompanying video for animated versions of several
scenes.

5.1 Comparison on Reflective Layers
We first compare our method with previous work on modeling lay-
ered materials with reflective base layers. Fig. 7 compares our neu-
ral method to Belcour’s efficient model based on statistical opera-
tors [Belcour 2018]. As a typical approximate model, it has many
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Belcour [2018] Reference Ours

Fig. 7. Comparison to the approximate model of Belcour [2018] on a lay-
ered material with rough interfaces (𝛼1 = 0.1, 𝛼2 = 0.3).

Guo et al. [2018] (18.1 s) Ours (6.3 s) Reference

RMSE=0.09 RMSE=0.04

Fig. 8. Comparison to the method of Guo et al. [2018] with an equal sam-
pling rate (64 spp, in the first row). Closeups in the second row highlight
the high variance caused by stochastic evaluation in Guo et al.’s BSDFmod-
el. Note that our BSDFNet, as a parametric BSDF model, runs much faster
than Guo et al.’s model at the same sampling rate for this scene. The last
row shows the evolution of RMSE of both methods with respect to the sam-
pling rate (Spp).

limitations such as inaccuracy for very rough interfaces and igno-
rance of multiple scattering. As expected, our method produces
the appearance of layered materials much closer to the reference
than the Belcour’s model, especially for rough interfaces (𝛼1 = 0.1,
𝛼2 = 0.3) shown in Fig. 7. For a fair comparison, the layered mate-
rial in Fig. 7 does not contain any scattering medium (𝜎𝑡 = 0).

In Fig. 8, we compare our method to the model of Guo et al.
[2018], the most accurate layered BSDF model to date. The medi-
um’s thickness is set as 𝜎𝑡 = 1.0, which incurs obvio us multiple
scattering events that are forbidden by Belcour’s model. However,
our model can correctly reproduce the appearance of this layered
material, closely matching the reference. Note that our method con-
sumes much less time than Guo et al.’s model on this material when

𝛼1,2 : 0.01, 0.05 𝛼1,2 : 0.1, 0.1 𝛼1,2 : 0.3, 0.3 𝛼1,2 : texture
Ours RMSE=0.009

Guo (Reference)

NLBRDF RMSE=0.018

Ours RMSE=0.009

Guo (Reference)

NLBRDF RMSE=0.010

Ours RMSE=0.002

Guo (Reference)

NLBRDF RMSE=0.006

Ours RMSE=0.0179

Guo (Reference)

Fig. 9. Comparison to NLBRDF [Fan et al. 2022] and the method of Guo et
al. [2018] with an equal sampling rate (256 spp) on a conductive plane with
varying roughness. Note that NLBRDF does not support spatially-varying
roughness.

Guo et al. [2018] NLBRDF [Fan et al. 2022] Ours
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CPU: 3.8 s
GPU: 0.05 s
CPU: 0.01 s + 55 min (data) CPU: 0.2 s
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pt
h=

10
0,

20
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p

CPU: 51 min Not available CPU: 5.6 min

Fig. 10. Comparison to NLBRDF [Fan et al. 2022] and the method of Guo
et al. [2018] on the Shoe scene. Top row: tracing with the maximum path
depth 2. Bottom row: tracing with the maximum path depth 100. The CPU-
GPU collaborative rendering mode in NLBRDF currently makes it difficult
to handle path tracing with long paths, e.g., depth=100.

rendering at the same sampling rate (64 spp). It also achieves low
variance as highlighted in the closeups, implying that rendering
with our neural BSDF model converges much faster. The conver-
gence curves in the last row clearly show that our method con-
verges faster than the model of Guo et al.

In Figs. 9 and 10, we make comparisons to Fan et al.’s NLBRDF
model [Fan et al. 2022] which also leverages neural networks to
represent layered materials. Compared with our neural method,
NLBRDF generally has two limitations in practice. First, NLBRDF
needs to prepare BRDF data (roughly 55minutes) for materials with
any unseen parameters and optimize their latent codes using the da-
ta before rendering. This restricts it to only support material inter-
polation within BRDFs with known data and latent codes. In partic-
ular, the surface properties (e.g., surface roughness) are not allowed
to be freely edited. Therefore, spatially-varying surface properties
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Table 3. Quantitative comparison in terms of mean and standard deviation
(STD) against NBRDF and an extended version of NBRDF (NBRDF+). The
values (RMSE) are counted over 100 layered BRDFs with random parame-
ters, lit by a single point light. Best scores are highlighted in bold.

NBRDF NBRDF+ Ours
Mean 0.891 0.873 0.483
STD 1.960 2.488 1.043

are not supported by NLBRDF 2. With our MetaNet, the weights
of each material can be determined in less than 1 second. This al-
lows us to freely edit any material parameters and easily support
spatially-varying cases, as shown in Fig. 9. Second, the CPU-GPU
collaborative rendering strategy in Fan et al.’s method is difficult to
handle path tracing with long paths, such as the case in the second
row of Fig. 10. Again, our method is free from this limitation and
can efficiently run in a wide range of complex scenes.

Table 3 further demonstrates the advantage of ourmodel by quan-
titatively comparing against NBRDF [Sztrajman et al. 2021] and its
variant on 100 randomly selected layered BRDFs from the test set.
More visual comparisons are provided in the supplemental materi-
al.

To further verify the efficiency and high fidelity of our model,
we make a series of pair-wise comparisons with Guo et al.’s method
on the Dragon scene with varying extinction coefficient 𝜎𝑡 . Fig. 11
shows the results when 𝜎𝑡 increases from 0.0 to 3.0. As seen, our
method produces visually similar appearance to Guo et al.’s method
on different layered materials. The absence of Monte Carlo sam-
pling in our neural model helps us to achieve lower-variance re-
sults than Guo et al.’s on different configurations, at the same sam-
pling rate (64 spp). Quantitative evaluations in terms of root mean
square error (RMSE), as compared with high-quality reference im-
ages, further show the benefit of our model in reducing the vari-
ance. It should be noted that the runtime cost of Guo et al.’s mod-
el increases prominently as 𝜎𝑡 increases, since a larger 𝜎𝑡 incurs
more scattering events in the medium. This is clearly shown in Fig.
12 where we plot the time spent by layered materials with varying
extinction coefficient 𝜎𝑡 . The comparisons tell that our neural mod-
el has a constant runtime cost since the architecture of BSDFNet
is fixed. When 𝜎𝑡 = 5.0, our method achieves nearly 6× runtime
acceleration as compared with Guo et al.’s method on this Dragon
scene at the same sampling rate.

5.2 Comparison on Transmissive Layers
In Fig. 13, we compare our MetaLayer model to Guo et al.’s mod-
el on layered materials with transmissive base layers. With proper
training on our LayeredBTDF dataset, our model successfully re-
produces the translucent effects caused by transmissive layers. The
continuous representation of BSDFNet allows us to generate im-
ages with less noise, as compared with Guo et al.’s model which

2NLBRDF only allows the scattering properties of the internal medium to be spatially-
varying.

Table 4. Quantitative evaluation in terms of mean and standard deviation
(STD) of different positional encoding methods. The values (RMSE) are
counted over 100 layered BRDFs with random parameters, lit by a single
point light. Best scores are highlighted in bold.

Sinusoidal Sinusoidal SH SH (Ours)
(𝝎𝑖 , 𝝎𝑜 ) (𝝎ℎ , 𝝎𝑑 ) (𝝎𝑖 , 𝝎𝑜 ) (𝝎ℎ , 𝝎𝑑 )

Mean 1.249 1.265 1.230 0.998
STD 2.847 2.241 2.833 1.900

involves Monte Carlo sampling in evaluation. Similar to the reflec-
tive cases in Fig. 11, Guo et al.’s model suffers a significant degrada-
tion in runtime performance and image quality (e.g., RMSE) as the
extinction coefficient 𝜎𝑡 increases. This is further evidenced in the
last row of Fig. 13 where we see our model converges faster than
its competitor on this transmissive case (𝜎𝑡 = 2.0).

5.3 Spatially-varying Cases
The lightweight design of our BSDFNet allows us to support spatially-
varying BSDFs, without any GPU assistance. When the parame-
ters of a layered material are encoded in textures, we run MetaNet
for each texel and the resulting weights of BSDFNet are stored
in a look-up table (LUT). This LUT is then retrieved at rendering
time, with each slot representing a layered material. We currently
use the nearest neighbor search to retrieve the LUT, without intro-
ducing additional storage and computational overhead. However,
our method supports linearly interpolating the LUT. Fig. 15 shows
our results of the Globe scene with spatially-varying BRDFs. Here,
we show an equal-time comparison with Guo et al’s bidirectional
method. As seen, our method is able to produce high-quality result
with much lower variance as compared with Guo et al’s method.
Even at the same sampling rate (64 spp), our method still outper-
forms its competitor due to the intrinsic smoothness and robustness
brought by our trained neural representation.

In Fig. 16, we edit the Kettle scene with spatially-varying lay-
eredmaterials (reflective base layers). Processing these textures takes
less than one minute with MetaNet. The processing time increas-
es linearly with the resolution of the texture and is much lower
than the rendering time. Editing of transmissive layered materials
is demonstrated in Fig. 17 where we edit either the surface rough-
ness or the albedo of the medium, with spatially-varying parame-
ters.

Concerningmemory consumption, ourmethod currently requires
a 293D vector for eachmaterial. For instance, thematerial in the left
image of Fig. 16 requires roughly 1.7GB memories. In comparison,
Fan’s method only requires a 32D latent code per material. Howev-
er, this 32D code should be re-optimized for each unseen material
and relies on a very large network (1G parameters) for decoding.

5.4 Validation of Network Design
Our networks have several key design choices. To validate their ef-
fectiveness, we report the performance of our complete model as
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𝜎𝑡 = 0.0 𝜎𝑡 = 0.5 𝜎𝑡 = 1.0 𝜎𝑡 = 2.0 𝜎𝑡 = 3.0
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Fig. 11. Impact of the extinction coefficient 𝜎𝑡 of the medium. We compare our method to Guo et al. [2018] on the Dragon scene with increasing 𝜎𝑡 . RMSE
values are provided for each image. Closeups in the second row and their corresponding error maps in the third row (left: Ours, right: Guo et al.) highlight
the benefit of method in variance reduction.

Fig. 12. Variations of the runtime cost (at 64 spp) of the Dragon scene with
respect to the extinction coefficient 𝜎𝑡 .

compared with two ablated models. In Fig. 18, we plot the evolu-
tion of the training loss for the three models in comparison. The
first ablated model (the green curve in Fig. 18) predicts the weights
of two neurons v≀ per-layer instead of one neuron in our current
design (see Fig. 3). This makes BSDFNet more flexible but leads to
poor convergence, due to the large variations of more weights. Due
to the relatively large scale of our BSDFNet, predicting all weights,
in the same way as in NBRDF [Sztrajman et al. 2021], will make
the training hard to converge. The second ablated model (the blue
curve in Fig. 18) removes v∗ completely. As explained previously,
this has the risk of incurring the vanishing gradient problem. Ob-
viously, our complete model converges faster than its ablated vari-
ants.

As an important building block in our framework, the Rusinkiewicz
spherical harmonics encodingmethod has already shown its advan-
tage in preserving high-frequency details for some typical glossy
lobes in Fig. 6. In Table 4, we further validate its superiority by
quantitatively comparing against some other encoding methods on
100 randomly selected layered BRDFs from the test set. More visual
comparisons are provided in the supplemental material.

5.5 Validation of the Loss Function
We also validate the effectiveness of the loss function, as compared
with the conventional L1 loss and L2 loss. Our loss function com-
bines the benefits of both L1 loss and L2 loss.This allows the trained
model to preserve both low-frequency information (diffuse reflec-
tion) and high-frequency information (glossy highlights). Table 5
reports the prediction accuracy in terms of RMSE formodels trained
on different loss functions. We evaluate the accuracy using the ren-
dered images under either point lighting or environmental lighting.
The model trained with our loss function achieves the lowest er-
ror in either case. A typical example is shown in Fig. 19. The error
occurs mainly at the highlight regions, while our loss function is
beneficial for reducing this error, as clearly shown by the scan line
comparisons.

5.6 Validation of the Two-phase Training Strategy
We finally validate the effectiveness of the proposed two-phase
training strategy in Fig. 20. As compared with the traditional one-
phase training strategy that always trains BSDFNet and MetaNet
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𝜎𝑡 = 0.0 𝜎𝑡 = 1.0 𝜎𝑡 = 2.0

O
ur

s

RMSE=0.092 RMSE=0.055 RMSE=0.030

Gu
o
et

al
.[
20

18
]

RMSE=0.097 RMSE=0.098 RMSE=0.067

Fig. 13. Rendering the Frosted Glass scene (𝛼1 = 𝛼2 = 0.02) using our
MetaLayer model (the top row) and Guo et al.’s model (the bottom row),
respectively. RMSE values are provided for each image. The last row shows
the evolution of RMSE of both models on the transmissive case (𝜎𝑡 = 2.0)
with respect to the sampling rate (Spp).

Fig. 14. Variations of the runtime cost (at 64 spp) of the Frosted Glass
scene with respect to the extinction coefficient 𝜎𝑡 .

Table 5. Quantitative evaluation (in terms of RMSE) of different loss func-
tions used to train our networks. The values are averaged over 100 layered
BRDFs with random parameters, lit by a single point light and an environ-
ment light respectively. Best scores are highlighted in bold.

L1 loss L2 loss Our loss
Point light 0.096 0.106 0.092

Environment light 0.018 0.018 0.017

Guo et al. (64 spp, 2.4 min)

RMSE=0.088

Ours (434 spp, 2.4 min)

RMSE=0.040

Guo et al. [2018] Ours (equal sampling rate) Ours (equal time)

Fig. 15. Visual comparison to the method of Guo et al. [2018] on the Globe
scene with spatially-varying layered materials.

𝛼1 : texture (512 × 1024)

MetaNet: 27 s

𝛼1 : texture (1024 × 1024)
𝜌 : texture (1024 × 1024)

MetaNet: 53 s

Fig. 16. Editing reflective layered materials with spatially-varying (tex-
tured) parameters. The resolution of each texture and the processing time
of MetaNet are shown for each case.

𝜌 : texture (800 × 2000)

MetaNet: 80 s

𝛼1/2 : texture (800 × 2000)

MetaNet: 80 s

Fig. 17. Editing transmissive layered materials with spatially-varying (tex-
tured) parameters. The resolution of each texture and the processing time
of MetaNet are shown for each case.
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Fig. 18. Training loss versus epochs for different variants of our model.

Fig. 19. Validation of different loss functions. Here, we compare the error
of intensity (as compared with reference) along the red scan line.

Fig. 20. Evolution of RMSE (evaluated on 100 randomly selected layered
BRDFs from the test set) with respect to the training epoch, for two differ-
ent training strategies.

jointly, our specially-designed training strategy makes the training
more stable and allows the trained model to recover layered BSDFs
with lower errors.

6 DISCUSSION, LIMITATION AND FUTURE WORK
Smooth Surfaces. Our MetaLayer model may incur large errors

for very smooth surfaces with near-specular reflection, possibles
due to the 𝜇-law transformation and the limited accuracy of floating-
point operations in the networks. As shown in Fig. 21, when the
surface roughness approaches 0.001, large errors appear at the high-
light region, resulting in inconsistent shading as comparedwith the
reference.

Multiple Layers and Anisotropy. Our model currently handles a
single layer with two interfaces. The extension to multiple layers
is straightforward. We only need to generate the training exam-
ples from multi-layered materials and expand the parameter set Γ

Ours

Reference

Fig. 21. A failure case for our model. Our model under-estimates the high-
light (see the closeups) for very small roughness, e.g., 𝛼1 = 0.001 and
𝛼2 = 0.01 in this case. The cyan arrows in the closeups highlight the differ-
ences.

(as well as the input nodes of MetaNet) by including other layers’
properties. Similarly, our model can also be extended to handle
anisotropic interfaces [Weier and Belcour 2020] by adjusting the
parameter set and training set. However, as the number of param-
eters increases, training our networks becomes difficult. We leave
this as the future work.

Optimal Importance Sampling. Importance sampling is the key
to ray/path tracing-based renderers. The proposed multi-lobe sam-
pling algorithm is simple, efficient, and satisfies many layered ma-
terials. However, this is not the optimal importance sampling algo-
rithm for layeredmaterials since layeringmultiple interfaces would
result in more than two lobes. Consequently, investigating an opti-
mal and robust importance sampling strategy for arbitrary layered
materials (including anisotropy and multiple layers) deserves fur-
ther study.

Measured Materials. Adopting data-driven BRDF models using
real material measurements has always been the pursuit of many
physically-based renderers. However, extending ourMetaLayermod-
el to support measured materials is not that straightforward, since
MetaNet requires explicit parameters of the material as input. A
possible solution is to compress measured materials into a low-
dimensional latent space (like DeepBRDF [Hu et al. 2020]), and then
feed the latent code toMetaNet. Nevertheless, onemajor goal of the
proposed layered BSDF model is convenient artistic design for lay-
ered materials which is not compatible with measured materials.

Energy Conservation. As a neural representation based on neural
networks, our model does not guarantee energy conservation since
the trained networks may produce unpredictable error. However,
in practice, we never observed any artifact that is caused by the vi-
olation of energy conservation. Investigating neural BSDF models
that always conserve energy would be an interesting future work.
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7 CONCLUSION
Layered materials are ubiquitous in the natural world. This paper
has proposed a new method, named as MetaLayer, to reproduce
the complex appearance from layered materials, with high visual
quality, low runtime cost, and strong editing ability. The key idea
is incorporating meta-learning into layered appearance modeling,
which addresses several tough issues of previous neural appearance
models, making learning-based appearance models more practical.
Besides, several novel designs, including a new positional encod-
ing method, a well-designed training strategy and a weight shar-
ing strategy, further improve the effectiveness and efficiency of the
proposed model. To our best knowledge, this is the first layered ma-
terial model that incorporates meta-learning. We believe the new
methodology behind our MetaLayer model can be applied to other
complex appearance modeling/rendering scenarios.
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