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Fig. 1. Rendering a complex scene involving challenging light paths with multiple consecutive specular bounces. The long specular chains (> 5 in this scene)

create great obstacles to existing path sampling algorithms, while the proposed manifold path guiding method addresses this issue, faithfully reproducing

high-frequency caustics and noticeably reducing the variance. Here, we compare our method with Path Tracing (PT), Practical Path Guiding (PPG) [Müller

2019; Müller et al. 2017], and an extension (supporting various chain types) of Specular Manifold Sampling (SMS*) [Zeltner et al. 2020] at the same rendering

time. Quantitative error in terms of MSE is reported for each closeup.

Complex visual effects such as caustics are often produced by light paths

containing multiple consecutive specular vertices (dubbed specular chains),
which pose a challenge to unbiased estimation in Monte Carlo rendering. In

this work, we study the light transport behavior within a sub-path that is

comprised of a specular chain and two non-specular separators. We show

that the specular manifolds formed by all the sub-paths could be exploited to

provide coherence among sub-paths. By reconstructing continuous energy

distributions from historical and coherent sub-paths, seed chains can be
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generated in the context of importance sampling and converge to admissible

chains through manifold walks. We verify that importance sampling the

seed chain in the continuous space reaches the goal of importance sam-

pling the discrete admissible specular chain. Based on these observations

and theoretical analyses, a progressive pipeline, manifold path guiding, is
designed and implemented to importance sample challenging paths featur-

ing long specular chains. To our best knowledge, this is the first general

framework for importance sampling discrete specular chains in regular

Monte Carlo rendering. Extensive experiments demonstrate that our method

outperforms state-of-the-art unbiased solutions with up to 40× variance

reduction, especially in typical scenes containing long specular chains and

complex visibility.
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Additional Key Words and Phrases: Specular chain, Importance sampling,

Caustics
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1 INTRODUCTION

Monte Carlo (MC) integration using stochastic samples has long

been the de facto solution to the problem of physically-based light

transport simulation [Christensen and Jarosz 2016; Fascione et al.

2018; Keller et al. 2015]. Over the past decades, great efforts have
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been devoted to significantly improving the convergence rate and

reducing the noise for MC-based rendering algorithms.

However, several common scenes still lack effective and robust

sampling strategies to handle certain classes of light paths well. In

particular, long paths with multiple consecutive specular or near-

specular scattering events (widely appearing in scenes with curved

metals, water, and glasses as shown in Fig. 1) have always been a

nightmare for existing physically-based rendering engines, causing

significantly slow convergence. The key difficulty lies in finding

valid path samples that are not only “important” but also satisfy all

physical constraints at specular reflective/refractive vertices [Jakob

and Marschner 2012].

To reduce the variance for scenes with multiple specular scat-

tering events, many approaches have been tried. Early attempts

leverage Metropolis Light Transport (MLT) [Veach and Guibas 1997]

to explore high-energy regions in the path space. However, even

if some specific mutation strategies have been designed to handle

paths containing specular chains [Jakob and Marschner 2012; Ka-

planyan et al. 2014], it is still difficult to find the so-called Specular-

Diffuse-Specular (SDS) paths. Another line of work leverage fitted

energy distributions to directly sample the difficult paths [Müller

et al. 2017; Vorba et al. 2014]. Despite their success in production,

they fail to handle pure specular cases (i.e., specular paths adjacent

to point light sources).

Recently, Zeltner et al. [2020] proposed Specular Manifold Sam-

pling (SMS), a general sampling strategy tailored for specular light

paths. Unfortunately, this method favors short specular paths with

one or two vertices, and its performance reduces dramatically when

the paths become longer. Moreover, SMS samples specular paths

according to the size of convergence basins and ignores their energy

distributions which are critical for variance reduction. Until now,

importance sampling arbitrarily long specular chains (i.e., light paths
containing multiple consecutive specular vertices) is still a far less

explored field in computer graphics.

Our goal in this paper is to analyze the best possible importance

sampling strategy for specular chains and find a practical solution

to approach it without incurring significant overhead to the existing

rendering pipelines. Due to the discrete nature of the admissible
specular chain space and its high dimensionality, conducting impor-

tance sampling directly in that space may be difficult. To address this

key issue, we exploit a continuous space in which seed chains can

be importance sampled and converge to corresponding admissible

chains via manifold walk [Jakob and Marschner 2012]. We further

reduce the dimensionality of the space by in-depth analyzing the

light transport behavior of admissible specular chains, thus making

the task tractable and easily supporting glossy cases.

We design and implement a practical rendering pipeline, named

manifold path guiding, to construct continuous distributions for

importance sampling seed chains. After initialization, the pipeline

progressively learns specular manifolds via reconstructing continu-

ous spatial-directional distributions from historical sub-paths, gen-

erating new seed chains following the distributions, and performing

manifold walks to obtain new admissible sub-paths. The learned

distributions converge after several iteration steps and are then

used in the final rendering stage. We show through extensive ex-

periments that the proposed method allows us to faithfully produce

complex caustics stemming from arbitrarily long specular chains,

and it outperforms previous unbiased MC solutions (including those

tailored for specular paths) with more than one order of magnitude

variance reduction in equal rendering time.

In summary, our contributions are:

(1) A formulation of the task of specular chains importance sam-

pling that covers any number of consecutive specular vertices,

(2) A general solution that obtains and utilizes a continuous

distribution exploiting the continuity of specular manifold,

(3) A practical pipeline that progressively gathers sub-path sam-

ples, achieving fast convergence even for paths with long

specular chains and complex visibility.

2 RELATED WORK

Bidirectional Monte Carlo and MCMC methods. Importance sam-

pling difficult paths has been a long-standing challenge in rendering.

Bidirectional approaches [Lafortune and Willems 1993; Veach and

Guibas 1995a] try to solve this problem by sampling from the view-

point and the emitters independently and then properly connecting

sub-paths. However, they fail to handle the SDS paths.

Biased methods, such as photon mapping [Hachisuka and Jensen

2009; Jensen and Christensen 1995] and regularization [Jendersie

and Grosch 2019; Kaplanyan and Dachsbacher 2013; Weier et al.

2021], are also designed to find difficult paths for caustics. Due to

their biased nature, these methods tend to lose details from high-

frequency caustics.

Another family of Monte Carlo methods samples difficult paths by

running a Markov chain of paths, known as MCMC approaches [Sik

and Křivánek 2020]. Pioneered by Metropolis Light Transport (MLT)

[Veach and Guibas 1997], many efforts have been devoted to signif-

icantly enhancing the performance of path mutations [Jakob and

Marschner 2012]. Although MCMC-based methods reduce variance

significantly, they are plagued with splotchy non-uniform noise and

temporal flickering artifacts in animations.

Unlike these methods, our approach works in a regular and un-

biased Monte Carlo manner. We stride over the limitation by con-

necting chains between separators. This belongs to the non-local

sampling strategies [Veach 1998].

Path guiding. Monte Carlo rendering techniques rely heavily on

importance sampling when constructing light transport paths. So

far, the most promising sampling distributions are obtained based

on learned scene priors [Vorba et al. 2019].

Existing works have studied various distribution representations.

For instance, Lafortune and Willems [1995] stored incident radiance

of previously traced rays in a 5D tree, and Jensen [1995] estimated

histograms of incoming radiance from photons. Gaussian Mixture

Models (GMM) [Vorba et al. 2014] are found to be flexible, while

quad-trees [Müller et al. 2017] succeed in practice due to their adapt-

ability. Some approaches further take consideration of the correla-

tion between consecutive vertices in the full path, e.g., using product

importance sampling [Herholz et al. 2016], parallax-aware warp-

ing [Ruppert et al. 2020] and spatial correlation [Dodik et al. 2022;

Schüßler et al. 2022]. Recently, Li et al. [2022] utilized representative

specular paths to enable effectively guided rendering of caustics,
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Fig. 2. (a) Notations for a specular chain x𝑆 (in the red-shaded area)

which is comprised of 𝑛 specular vertices x1, x2, . . . , x𝑛 . By connecting two

separators x𝐷 and x𝐿 with a specular chain x𝑆 , we produce a sub-path

(x𝐷 , x𝑆 , x𝐿 ) . (b) Throughput between two separators, which comes

from both direct and indirect connections. In this example, the indirect part

is comprised of two admissible chains x∗𝑆 = x∗
1
, x∗

2
and x∗𝑆

′ = x∗
1

′, x∗
2

′, x∗
3

′
.

Thus, the admissible chain space P∗
𝑆
= {x∗𝑆 , x

∗
𝑆
′ }.

but their methods struggled to support specular or low-roughness

materials.

Guided path sampling achieves great successwhen high-frequency

details are absent in the radiance distribution. However, when faced

with paths containing multiple specular interactions, the radiance

distribution usually involves high-frequency variations that bottle-

neck existing guiding techniques [Loubet et al. 2020]. We address

this issue by importance sampling the specular chains directly. The

proposed method allows us to find admissible paths in a very effi-

cient way and enables the creation of high-frequency caustics from

pure specular surfaces with low variance.

Specular light transport. Due to the intrinsic difficulties in specular

light transport, many specialized methods have been proposed to

sample challenging specular paths.

A line of approaches performs exhaustive searching and root-

solving to find all specular chains connecting two endpoints [Mitchell

and Hanrahan 1992]. Due to the high computational complexity,

these methods either only work for one specular bounce [Loubet

et al. 2020; Walter et al. 2009] or incur significant performance

degradation as the number of bounces increases [Wang et al. 2020].

Other methods lower the computational burden by stochastical

sampling at the cost of introducing variance. Manifold Exploration

Metropolis Light Transport (MEMLT) [Jakob and Marschner 2012]

allows random walks on a specular manifold with Newton’s method.

This, as a pioneer work in this field, is extended to half-vector space

[Kaplanyan et al. 2014] and then introduced to regular Monte Carlo

sampling as Manifold Next-Event Estimation (MNEE) [Hanika et al.

2015]. MNEE heuristically generates a deterministic initial chain

connecting the shading point to the light source, followed by a man-

ifold walk for a feasible solution. With fixed initialization, MNEE

can only find at most one specular chain connecting a given pair

of endpoints, resulting in energy loss. Specular Manifold Sampling

(SMS) [Zeltner et al. 2020] addressed the above issue with random

initialization. Accompanied by an unbiased reciprocal probability

Table 1. List of important notations.

Symbol Definition

x𝑆 , x∗𝑆 Specular chain, admissible chain

(x𝐷 , x𝑆 , x𝐿) Sub-path

x1, ..., x𝑛 Specular vertices of x𝑆
𝝎𝐷 ,𝝎

∗
𝐷

Direction from x𝐷 to x1, x∗
1

𝜏1, ..., 𝜏𝑛 Type of the scattering event of each vertex

𝑇 (x𝐷 , x∗𝑆 , x𝐿) Sub-path throughput

estimator, it is able to preserve energy for complex caustics. Unfortu-

nately, the simple treatment of initial guesses by uniform sampling

will cause a high variance.

In comparison, we take the energy contribution of each chain

into consideration during sampling, forming a new and generic

importance sampling paradigm suitable for a wide range of spec-

ular chains, including very long chains and chains with complex

visibility.

3 BACKGROUND

We first review some background knowledge regarding our topic.

Paths with specular chains. Veach [1998] introduced non-local
sampling that evaluates the full path integral in Monte Carlo ren-

dering by sampling separators (i.e., diffuse
1
vertices) first and then

connecting specular chains (i.e., chains of consecutive specular ver-

tices) between adjacent separators. Hence, importance sampling a

full path boils down to importance sampling separators and chains.

While there are existing approaches (e.g., irradiance caching

[Ward et al. 1988]) for separator sampling, connecting chains is

still a challenge and is our major concern in this paper.

Without loss of generality, we denote x𝐷 and x𝐿 as two separa-

tors, where x𝐷 is a diffuse vertex and x𝐿 is on the light source. x𝑆
represents a chain connecting x𝐷 and x𝐿 , which is comprised of

specular vertices x1, x2, ..., x𝑛 . We call (x𝐷 , x𝐿) as a configuration
and (x𝐷 , x𝑆 , x𝐿) as a sub-path. For brevity, we also refer to x𝐷 as

x0, x𝐿 as x𝑛+1. These symbols are demonstrated in Fig. 2(a) and

summarized in Table 1.

Specular manifolds. To satisfy all physically-based specular con-

straints along a path, existing solutions mostly build on top of Jakob

and Marschner [2012]’s path space manifold. In this context, an ad-
missible chain x∗𝑆 [Hanika et al. 2015] refers to a specular chain that

satisfies all the constraints, which could have a non-zero throughput

once it passes the visibility test. In general, we could safely assume

that there is a discrete and finite set of admissible chains connect-

ing two separators. Although infinite cases theoretically exist, they

rarely occur in natural rendering [Wang et al. 2020; Zeltner et al.

2020] as discussed in our supplemental document.

Throughput between separators. Between two separators x𝐷 and

x𝐿 , we use the term throughput to refer to the irradiance received at

1
We utilize Heckbert’s notation [Heckbert 1990] for path classification: a full path is

described by regular expressions in the form 𝐸 (𝑆 |𝐷 )∗𝐿, with each letter representing

a vertex of a path. For ease of discussion, we assume that each path is comprised of

pure specular and diffuse vertices. The extension to glossy will be discussed later.
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x𝐷 contributed by the unit-area surface at x𝐿 . The throughput can be
subdivided into two independent parts [Veach 1998]. The first part

comes from the direct connection between x𝐷 and x𝐿 , which can be

trivially evaluated and thus will not be considered in the following

discussions. The second part corresponds to all connections passing

through at least one intermediate specular vertex. We formulate it as∑
x∗𝑆 ∈P∗

𝑆
𝑇 (x𝐷 , x∗𝑆 , x𝐿), a summation of all admissible chains, where

the admissible chain space P∗
𝑆
= P∗

𝑆
(x𝐷 , x𝐿) is a finite, countable

set containing all admissible chains connecting x𝐷 and x𝐿 as shown

in Fig. 2(b). The sub-path throughput 𝑇 (x𝐷 , x∗𝑆 , x𝐿) is part of the
throughput contributed by a specified admissible chain x∗𝑆 . Its value
is determined by the product of several terms [Hanika et al. 2015;

Jakob 2013]:

𝑇 (x𝐷 , x∗𝑆 , x𝐿) = 𝜅 (x𝐷 , x∗𝑆 , x𝐿)𝐺 (x𝐷 , x∗𝑆 , x𝐿)𝐿𝑜 (x
∗
𝑛, x𝐿) (1)

with 𝜅 being a unitless specular scattering value that folds the reflec-

tion/refraction coefficients at each specular vertex (e.g., the Fresnel

term for reflection), 𝐺 denoting the Generalized Geometric Term

(GGT) [Jakob and Marschner 2012; Wang et al. 2020] which relates

the differential solid angle at x𝐷 to the differential surface area at

x𝐿 (including the visibility function) and 𝐿𝑜 (x∗𝑛, x𝐿) representing
the outgoing radiance at x𝐿 towards x∗𝑛 .

Manifold walks and seed chain sampling. Existing solutions of

specular path sampling [Hanika et al. 2015; Kaplanyan et al. 2014;

Zeltner et al. 2020] are mostly built on the top of manifold walks
[Jakob and Marschner 2012]. Through combining Newton’s method

and a reprojection step, it forms a general and efficient solver that

can reach an admissible chain from a seed chain x𝑆 (i.e., the initial

state of the solver).

In general, through the solver, discrete admissible chains in the

discrete spaceP∗
𝑆
can be indirectly sampled by sampling a seed chain

first from a continuous probability distribution 𝑝 (x𝑆 |x𝐷 , x𝐿)2 in the

continuous specular chain space P𝑆 (space formed by all chains of

specular vertices) and then solve for an admissible chain via mani-

fold walks. A conditional probability distribution 𝑃 (x∗𝑆 |x𝑆 , x𝐷 , x𝐿)
demonstrates the convergence behavior of manifold walk. This also

defines the convergence basin [Zeltner et al. 2020]:

B(x∗𝑆 |x𝐷 , x𝐿) = {x𝑆 | 𝑃 (x∗𝑆 |x𝑆 , x𝐷 , x𝐿) = 1}. (2)

As illustrated in Fig. 3, MNEE [Hanika et al. 2015] uses a Dirac

delta distribution as 𝑝 (x𝑆 |x𝐷 , x𝐿). When multiple solutions for a

given configuration exist, MNEE becomes biased (or helps little to

reduce variance when combined with a path tracer) [Hanika et al.

2015]. SMS [Zeltner et al. 2020] adopts a uniform seed chain dis-

tribution to enable unbiased sampling. Consequently, the variance

can be very high since the probability density ignores the impact

of the throughput. The situation becomes worse when the number

of specular bounces increases, where the size of each convergence

basin becomes extremely small while the probability of finding

each chain is still proportional to the size of its convergence basin.

This inspires us to reduce the variance and support long specular

chains by finding a better seed chain distribution 𝑝 (x𝑆 |x𝐷 , x𝐿) that
is continuous and takes energy distributions into consideration.

2
We use an upper-case 𝑃 to denote discrete probability mass functions and use a

lower-case 𝑝 to represent continuous probability density functions.

MNEE SMS Ours

seed chain
solution

diverged

93 spp 62 spp 12+29 spp

Fig. 3. MNEE [Hanika et al. 2015] easily loses energy due to incomplete

solutions, while SMS [Zeltner et al. 2020] produces results with high variance.

Our importance sampling method addresses these issues. The bottom row

shows equal-time (3 min) rendering results of these methods.

4 PROBLEM FORMULATION

To obtain a proper seed chain distribution mentioned above, we first

formulate the problem. Evaluating the throughput summation using

Monte Carlo techniques requires sampling the admissible chain x∗𝑆
in P∗

𝑆
for a given configuration (x𝐷 , x𝐿). To achieve this goal, we

require a sampling technique that generates random samples of

discrete admissible chains with probability 𝑃 (x∗(𝑖 )
𝑆

|x𝐷 , x𝐿), where 𝑖
denotes the index of samples used in Monte Carlo estimations. Then

we resort to the following estimator:〈 ∑︁
x∗𝑆 ∈P∗

𝑆

𝑇 (x𝐷 , x∗𝑆 , x𝐿)
〉
=
1

𝑁

𝑁∑︁
𝑖=1

𝑇 (x𝐷 , x∗(𝑖 )𝑆
, x𝐿)

𝑃 (x∗(𝑖 )
𝑆

|x𝐷 , x𝐿)
. (3)

The estimation is unbiased if

𝑇 (x𝐷 , x∗(𝑖 )𝑆
, x𝐿) > 0 ⇒ 𝑃 (x∗(𝑖 )

𝑆
|x𝐷 , x𝐿) > 0, (4)

but the value of the sampling probability has a dramatic impact on

the variance. Ideally, if the probability of sampling each admissible

chain is proportional to the throughput, i.e.,

𝑃 (x∗(𝑖 )
𝑆

|x𝐷 , x𝐿) ∝ 𝑇 (x𝐷 , x∗(𝑖 )𝑆
, x𝐿), (5)

the estimation will reach zero variance and achieve the best possible

importance sampling
3
.

Unfortunately, this task is not as simple as it seems and differs

significantly from sampling non-specular vertices due to the discrete

property of the P∗
𝑆
space. Traditional path sampling techniques

designed for continuous target distributions will fail since they hit

each admissible chain with almost zero probability.

Our key insight is that, from a well-designed continuous distribu-
tion, a seed chain can converge to an admissible chain satisfying

both the constraints and the requirements of importance sampling.

3
The discussion here is under the assumption of diffuse separators, where the through-

put equals the contribution to the full path.
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Training

Query Distribution

Sample Length

Sample Chain

Sample Seed

Manifold Walks

Eval. Contribution

For each 𝐱𝐷, 𝐱𝐿 :
Initialization

Sample

Fit Distributions

Rendering

Sample

Fig. 4. An overview of our proposed pipeline. The pipeline employs a

progressive manner to gather sub-path samples (indicated by green plus

signs), which are then utilized to fit continuous distributions (marked in

orange). These distributions are essential for the importance sampling of

seed chains, which ultimately converge to admissible chains (marked by

white dots) if they fall within the convergence basins (colored in blue with

varying brightness to distinguish different basins).

Therefore, one key to the above problem is to find such a continu-

ous distribution 𝑝 (x𝑆 |x𝐷 , x𝐿) from existing information about the

discrete admissible chains.

5 MANIFOLD PATH GUIDING

In this section, we present a practical rendering method, manifold
path guiding, which allows us to address the above problem and

hence achieve the goal of importance sampling specular chains.

To begin with, we will provide a brief summary of the pipeline,

followed by discussions of each stage and some practical issues.

Please refer to the supplemental document for pseudo-code snippets

in Python style with explanations.

5.1 Overview

In general, as shown in Fig. 4, our pipeline consists of three stages:

• In the initialization stage, we set an initial distribution that

specifies how to sample seed chains without the knowledge

of historical sub-path samples.

• During the training stage, progressive training is achieved by

reconstructing distributions from previously found sub-path

samples, sampling new seed chains, and performing manifold

walk.

• In the rendering stage, the final converged distribution is

adopted to estimate the throughput between separators.

As aforementioned, we focus on specular chain sampling. Therefore,

in our current implementation, we only handle the case in which

x𝐿 lies on light sources. We pick x𝐷 by path tracing and x𝐿 by

uniformly sampling all emitters.

Our main goal is to reconstruct continuous distributions using the

historical sub-path samples from previous iterations. After progres-

sive refinement, the continuous distribution is expected to reflect

the actual energy distribution and approach the optimal distribution

for seed chain importance sampling.

Therefore, the foundation of our online training and rendering

pipeline is a seed chain importance sampling strategy that lever-

ages the historical sub-path samples. This is made possible by the

following analyses of the continuity of the specular manifold and

the light transport behaviors of specular paths.

(a) (b)

𝐱𝐷

𝐱𝐿

𝐱𝐷
′

𝐱𝐿
′

𝐱𝑆
∗

𝐱𝑆 = 𝐱𝑆
∗′

𝐂 𝐱𝐷
′ , 𝐱𝑆

∗′
, 𝐱𝐿

′ = 0 𝐂 𝐱𝐷 , 𝐱𝑆
∗
, 𝐱𝐿 = 0

𝐂 𝐱𝐷 , 𝐱𝑆, 𝐱𝐿 ≠ 0

𝐱𝐷 𝐱𝑳

𝑇

𝑅/𝑇 𝑅

𝑅𝐱𝟐
∗

𝑇

𝜏 = 𝑇𝑅𝑇 𝜏 = 𝑇𝑇𝑅𝑅

Fig. 5. (a) Two configurations (x𝐷 , x𝐿 ) and (x′
𝐷
, x′

𝐿
) that are close to

each other. They tend to generate admissible sub-paths (x𝐷 , x∗𝑆 , x𝐿 ) and
(x′

𝐷
, x∗𝑆

′
, x′

𝐿
) through similar specular chains x∗𝑆 and x∗𝑆

′
. An admissible

chain x∗𝑆 can be acquired starting from a seed chain x𝑆 = x∗𝑆
′
usingmanifold

walk. (b) The scattering type is essential to ensure the uniqueness of the

simplified chain description since reflection and refraction can happen at

the same vertex (x∗
2
) simultaneously.

5.2 Exploitation of continuity

Although the admissible chains under a specific configuration are

usually discrete, all sub-paths in the scene form manifolds in the

specular chain space P𝑆 , i.e., the specular manifolds [Jakob and

Marschner 2012; Zeltner et al. 2020].

The continuity of the specular manifold is guaranteed by the

Implicit Function Theorem [Jakob and Marschner 2012]. It tells

that the function x∗𝑆 (x𝐷 , x𝐿) is continuous in an infinitely small

neighborhood around an admissible sub-path, and x∗𝑆 lies in the

convergence basin
4
of that admissible sub-path. This allows us to

use the admissible chain x∗𝑆
′
of a nearby configuration (x′

𝐷
, x′

𝐿
) to

be the seed chain x𝑆 of the current configuration (x𝐷 , x𝐿). From
this seed chain x𝑆 , an admissible sub-path (x𝐷 , x∗𝑆 , x𝐿) could be

obtained after convergence. Fig. 5 (a) gives a visual explanation of

this process.

Moreover, the continuity of specular manifolds also results in the

continuity of the sub-path throughput
5
, which means the through-

put is nearly constant in the neighborhood. Consequently, we can

optimally importance sample the admissible chain under the current

configuration by sampling the admissible chain under all nearby

configurations according to their throughput. This will be particu-

larly efficient when the throughput has a small value of derivatives

to x𝐷 and x𝐿 . Now the problem has been significantly simplified

— the distribution of all nearby admissible chains is a continuous

distribution, which can be fitted with any possible continuous dis-

tribution reconstruction technique.

4
Manifold walks have quadratic convergence to an admissible chain when the seed is

close to the solution [Jakob and Marschner 2012; Zeltner et al. 2020]. This guarantees

the existence of a convergence basin in the neighborhood of an admissible chain, which

can be used to solve for an admissible chain starting from an approximated one.

5
In the neighborhood N of an admissible sub-path, x∗𝑆 has continuous partial deriva-

tives to x𝐷 and x𝐿 , which reveals the continuity of GGT. Assuming that 𝜅 and 𝐿 in Eq.

(1) are locally continuous, the sub-path throughput𝑇 is also continuous.
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5.3 Dimensionality reduction

As the length of the specular chain increases, there will be a risk

of the curse of dimensionality. We avoid this by using a marginal.

Let 𝜏 denote the type of a specular chain x𝑆 . It is a string consisting

of 𝑇 and/or 𝑅, with 𝑖-th letter 𝜏𝑖 describing the scattering type at

𝑖-th vertex of the chain. For a specific configuration (x𝐷 , x𝐿), once
𝜏 is given and x1 = r(x𝐷 ,𝝎𝐷 ) is determined, the rest of the vertices

x2, ..., x𝑛 can be deduced using the following recursion:

x𝑖 = r(x𝑖−1, s𝜏𝑖−1 (x𝑖−1,
−−−−−−−→x𝑖−2x𝑖−1)) (6)

where the operator r(x,𝝎) returns the intersection of the ray (x,𝝎)
with all specular surfacesM𝑆 , and the operator s returns the scat-
tered direction for given scattering type. Consequently, an admis-

sible sub-path (x𝐷 , x∗𝑆 , x𝐿) can be determined with (x𝐷 ,𝝎∗
𝐷
, x𝐿, 𝜏).

Note that the scattering type is necessary to ensure uniqueness

since reflection and refraction can happen at the same vertex simul-

taneously, as visually explained in Fig. 5(b).

Following the above representation, we can sample (𝝎𝐷 , 𝜏) and
use Eq. (6) to obtain a seed chain x𝑆 . It converts a high-dimensional

sampling problem into a much lower one, and the probability of

sampling a seed chain can be further subdivided into two factors,

i.e.,

𝑝 (x𝑆 |x𝐷 , x𝐿) = 𝑃 (𝑛 |x𝐷 , x𝐿)𝑝 (𝝎𝐷 , 𝜏 |x𝐷 , x𝐿, 𝑛). (7)

With the above analysis, we divide the sampling task of a seed

chain into three parts: sampling the number of bounces 𝑛, sampling

the scattering type 𝜏 , and sampling the direction 𝝎𝐷 . This lays the

foundation for efficient data-driven importance sampling. Note that

the order of the last two steps may be changed due to practical

considerations.

5.4 Initialization

The initial distribution 𝑝0 (x𝑆 |x𝐷 , x𝐿) decides how initial seed chains

are sampled only according to a priori knowledge. In theory, any

distribution that covers all the admissible chains can be selected.

Better choices can be adopted with the help of other existing algo-

rithms. For instance, we can reconstruct energy distributions from

photons tracing from emitters. Since reconstructed distributions

are not fully conservative, we could further incorporate a uniform

distribution to avoid making some regions never discovered [Li et al.

2022; Müller et al. 2017; Zhu et al. 2021b].

In our implementation, we use the following initialization:

• The length of the chain is sampled by simulating a Russian

Roulette (RR) defined in the underlying path tracer.

• The direction 𝝎𝐷 is determined by uniformly sampling po-

sitions as the first specular vertex x1 on all specular objects,

yielding 𝑝0 (𝝎𝐷 |x𝐷 , x𝐿).
• The remaining specular vertices x2, ..., x𝑛 are generated by

ray tracing, deciding the scattering type 𝜏 (i.e., reflection or

refraction) at each vertex according to their BSDF.

This covers all the possible (𝝎𝐷 , 𝜏) pairs and is equivalent to cov-

ering all the admissible chains according to Eq. (7). Consequently,

each solution will be reached with non-zero probability.

5.5 Importance sampling seed chains

The continuity discussed in Section 5.2 allows us to perform im-

portance sampling leveraging historical samples of neighboring

configurations. Now we reconstruct discrete distributions for 𝑛 and

𝜏 and continuous distributions for 𝝎𝐷 , rewriting Eq. (7) as

𝑝 (x𝑆 |x𝐷 , x𝐿) = 𝑃 (𝑛 |x𝐷 , x𝐿)𝑃 (𝜏 |x𝐷 , x𝐿, 𝑛)𝑝 (𝝎𝐷 |x𝐷 , x𝐿, 𝜏) . (8)

Gathering neighboring samples. Wefirst perform a neighbor search-

ing process in a set
6
of previously obtained sub-path samples S,

gathering a set of sub-paths with the nearest configurations to

(x𝐷 , x𝐿), denoted as S(x𝐷 , x𝐿). Then, we evaluate the weight of a
sub-path sample,𝑤 (x′

𝐷
, x∗𝑆

′
, x′

𝐿
), which equals to the product of its

throughput and the reciprocal probability estimation:

𝑤 (x′𝐷 , x
∗
𝑆
′
, x′𝐿) = 𝑇 (x′𝐷 , x

∗
𝑆
′
, x′𝐿)

〈
1

𝑃 (x∗𝑆
′ |x′

𝐷
, x′

𝐿
)

〉
. (9)

Here, the throughput and reciprocal probability are computed in

earlier iterations and stored in memory.

Sampling chain length. The length of a specular chain determines

the dimensionality of the specular chain space and thus needs to be

sampled first. By accumulating and normalizing the weights for each

length, we obtain a discrete probability distribution 𝑃𝑒 (𝑛 |x𝐷 , x𝐿)7
from S(x𝐷 , x𝐿):

𝑃𝑒 (𝑛 |x𝐷 , x𝐿) =

∑
(x′

𝐷
,x∗𝑆

′
,x′

𝐿
) ∈S(x𝐷 ,x𝐿,𝑛) 𝑤 (x′

𝐷
, x∗𝑆

′
, x′

𝐿
)∑

(x′
𝐷
,x∗𝑆

′
,x′

𝐿
) ∈S(x𝐷 ,x𝐿 ) 𝑤 (x′

𝐷
, x∗𝑆

′
, x′

𝐿
)
, (10)

whereS(x𝐷 , x𝐿, 𝑛) denotes all the samples of length𝑛 inS(x𝐷 , x𝐿).
This will be used when sampling the length of a new seed chain.

Sampling scattering type. Once 𝑛 is determined, we sample the

scattering type from a discrete distribution reconstructed by sum-

ming up the total weights of each type:

𝑃𝑒 (𝜏 |x𝐷 , x𝐿, 𝑛) =

∑
(x′

𝐷
,x∗𝑆

′
,x′

𝐿
) ∈S(x𝐷 ,x𝐿,𝜏 ) 𝑤 (x′

𝐷
, x∗𝑆

′
, x′

𝐿
)∑

(x′
𝐷
,x∗𝑆

′
,x′

𝐿
) ∈S(x𝐷 ,x𝐿,𝑛) 𝑤 (x′

𝐷
, x∗𝑆

′
, x′

𝐿
)
. (11)

Let S(x𝐷 , x𝐿, 𝜏) denote the set of samples with type 𝜏 . The final

step is sampling the direction from S(x𝐷 , x𝐿, 𝜏).

Sampling the direction. We blur each chain in S(x𝐷 , x𝐿, 𝜏) with
a wide kernel in the directional domain. Specifically, we estimate

the directional footprint [Hey and Purgathofer 2002] of 𝑖-th chain

by finding a sample in the S(x𝐷 , x𝐿, 𝜏) with the nearest 𝝎∗
𝐷
′
to it

and evaluating their directional distance 𝜎′
𝑖
. Then, we place a von

Mises-Fisher (vMF) lobe [Fisher 1953] along the direction 𝝎∗
𝐷
′
𝑖
:

𝑣 (𝝎𝐷 ; 𝝁𝑖 , 𝜅𝑖 ) =
𝜅𝑖

4𝜋 sinh(𝜅𝑖 )
𝑒𝜅𝑖𝝁𝑖 ·𝝎𝐷

(12)

where we set 𝝁𝑖 = 𝝎∗
𝐷
′
𝑖
, 𝜅𝑖 = 𝜎′

𝑖
−2

. With the weights of each lobe be-

ing proportional to the corresponding sub-path sample’s weight de-

fined in Eq. (9), we obtain a mixture of vMF lobes 𝑝𝑒 (𝝎𝐷 |x𝐷 , x𝐿, 𝜏).

6S can include either all the samples already encountered [Reibold et al. 2018] or only

the samples found in the last iteration [Müller et al. 2017]. We use the latter by default.

7
We use subscript 𝑒 for fitted distributions and subscript 0 for initial distributions.
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Fig. 6. An example validating our solution of importance sampling

discrete specular chains.We choose a typical configuration in the Ring

scene: x𝐿 on a small emitter and x𝐷 marked by the white plus sign. The

convergence basin and our sampling distribution are visualized in spher-

ical coordinates. Two diagrams in the right panel visualize the discrete

distribution of admissible chains 𝑃 (x∗(𝑖 )
𝑆

|x𝐷 , x𝐿 ) for this configuration

(bottom-right) and the continuous distribution 𝑝 (x𝑆 |x𝐷 , x𝐿 ) reconstructed
from historical samples (top-right).

Validation and discussion. In Fig. 6, we verify that the proposed

method can achieve nearly optimal importance sampling for discrete

admissible chains. Here, we marginalize the reconstructed distri-

bution of seed chains along the horizontal flatland, shown in the

top-right diagram. In the bottom-right diagram, we evaluate the cor-

responding sampling probability (blue) and the expected probability

according to their throughput (green). As seen, the probability of

finding each admissible chain closely matches their throughput. In

theory, this is still possible with high-frequency details and complex

visibility, despite requiring more samples.

Defensive sampling. In order to cover all admissible chains, we

further perform Multiple Importance Sampling (MIS) [Veach and

Guibas 1995b] with the initial distribution. We use a one-sample

MIS model for sampling both 𝑛 and (𝝎𝐷 , 𝜏):
𝑃 (𝑛 |x𝐷 , x𝐿) = 𝛼𝑃0 (𝑛 |x𝐷 , x𝐿) + (1 − 𝛼)𝑃𝑒 (𝑛 |x𝐷 , x𝐿)

𝑝 (𝝎𝐷 , 𝜏 |x𝐷 , x𝐿) = 𝛼𝑝0 (𝝎𝐷 , 𝜏 |x𝐷 , x𝐿) + (1 − 𝛼)𝑝𝑒 (𝝎𝐷 , 𝜏 |x𝐷 , x𝐿)
(13)

where 𝛼 is the probability of choosing 𝑃0. Following the convention

in many path guiding methods, we always set 𝛼 = 0.5 [Müller et al.

2017; Reibold et al. 2018; Zhu et al. 2021a].

5.6 Spatial structures

In Section 5.5, we gather nearby sub-path samples and construct vMF

lobes to represent the directional distribution. However, the choice

of spatial hierarchy significantly affects efficiency and robustness.

Performing an accurate k-nearest neighbor search (implemented

with a 6D kd-tree) would be computationally expensive. Instead,

we use an approximated solution. We organize all the samples in a

6D adaptive binary tree (STree) following [Müller et al. 2017] and

12, 0.0223

Ours

10, 0.0126

Ours+Product

SPP, MSE

Reference

Fig. 7. Equal-time (5 min) comparison of our approach without and with

product importance sampling with the separator’s BSDF. A normal-mapped

reflective specular plane is placed on a glossy (𝛼 = 0.05) floor.

set the spatial threshold (i.e., the maximum number of samples in

a leaf node) to

√︁
|S|. This is generally similar to [Müller 2019], but

we use the number of total samples rather than the samples per

pixel and omit the coefficient. Our strategy is independent of image

resolution and works well in all our test scenes
8
. When subdividing

nodes, we perform spatial filtering by allowing a small overlapping

between child nodes
9
. This prevents artifacts introduced by spatial

division [Müller 2019; Ruppert et al. 2020; Zhu et al. 2021a].

5.7 Handling glossy cases

Our earlier discussions are under the assumption of diffuse sep-

arators and pure specular chains. However, our method can be

generalized to support glossy separators and chains.

Glossy separators. When the separator is not diffuse, to achieve op-

timal importance sampling, we should perform product importance

sampling [Herholz et al. 2016] with the separator’s BSDF. Since

we use sub-path samples to reconstruct the distributions, we can

directly modify their weights before sampling, and Eq. (9) becomes

𝑤 (x′𝐷 , x
∗
𝑆
′
, x′𝐿) = 𝜌x′

𝐷
(𝝎′

𝑖 ,𝝎
∗
𝐷
′)𝑇 (x′𝐷 , x

∗
𝑆
′
, x′𝐿)

〈
1

𝑃 (x∗𝑆
′ |x′

𝐷
, x′

𝐿
)

〉
.

(14)

Here, 𝝎′
𝑖
in the BSDF term 𝜌x′

𝐷
(𝝎′

𝑖
,𝝎∗

𝐷
′) is the direction towards

x′
𝐷
and is already determined. All we need is to traverse through

each sub-path sample in S(x𝐷 , x𝐿) and apply the above weighting

scheme. This can significantly reduce noise when separators have

small roughness, as shown in Fig. 7.

Glossy chains. For glossy chains, once manifold offset [Jakob and

Marschner 2012; Kaplanyan et al. 2014] is sampled, it boils down

to pure specular cases, and the admissible chains corresponding

to the offset are still finite. This is unbiased since each chain can

be found with non-zero probability. Like prior work [Hanika et al.

2015; Kaplanyan et al. 2014; Zeltner et al. 2020], we sample the offset

8
One can further fine-tune the performance by using 𝑐

√︁
|S | , as shown in our supple-

mental document. Generally, we recommend𝑐 = 1, which is simple and straightforward.

9
Specifically, we copy 𝜀𝑘 sub-path samples from the left subtree to the right subtree and

vice versa. We also discard the samples far from the bounding box of a node. Overall,

we observe that 𝜀 = 10% works well across all our test scenes.
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Living  180 min SMS*

796, 100%

Ours

212+492, 100%

Ours+Selective

210+1235, 39%

Fig. 8. Selective activation on a realistic scene, where caustics only cover

a small part of images. We report SPP and the activation rates.

normal from the microfacet distribution before manifold sampling.

Then, we sample seed chains and admissible chains constrained to

this offset normal.

5.8 Practical considerations

Reciprocal probability estimation. To estimate the reciprocal prob-

ability in Eq. (9), we repeat independent trials once the sampled

admissible chain was found, in the same way as in SMS [Zeltner

et al. 2020]. However, some portions of the reciprocal probability

can be evaluated analytically. In particular, 𝑃 (𝑛 |x𝐷 , x𝐿) is deter-
mined when we sample the length of the chain. Therefore, it can be

factored out of the stochastic estimation, i.e.,〈
1

𝑃 (x∗𝑆 |x𝐷 , x𝐿)

〉
=

1

𝑃 (𝑛 |x𝐷 , x𝐿)

〈
1

𝑃 (x∗𝑆 |x𝐷 , x𝐿, 𝑛)

〉
(15)

and only 𝑃 (x∗𝑆 |x𝐷 , x𝐿, 𝑛) needs to be estimated in our implementa-

tion. In other words, we reuse 𝑛 across trials.

Online training and rendering. We use an online training strategy

that progressively gathers sub-path samples. We separate the train-

ing stage into several iterations with increasing budgets. Specifically,

we double the sample count in each iteration [Müller et al. 2017].

We stop the training stage immediately when 30% of the budget

is already used. Besides, when a training iteration is finished, we

start a new round if less than half of the training budget is used.

Otherwise, we continue the current iteration until the rendering

stage starts. Considering that high variance may occur during the

training phase, we never splat the samples produced in the training

stage into the final image. Besides, we only use samples from the

last iteration to reconstruct sampling distributions.

Selective activation. Our learned distribution can also be employed

to determine when specular chain sampling should be activated

[Loubet et al. 2020], which avoids the costly sampling process for

non-caustic regions [Zeltner et al. 2020]. In the rendering stage, if no

samples (excluding those used for filtering) are in the corresponding

leaf node of the spatial hierarchy for a given configuration, we

simply switch to using path tracing. In other words, we perform a

combination with path tracing according to the existence of nearby

sub-path samples. This significantly reduces overhead and leads to

more samples in equal time, as illustrated in Fig. 8.

6 RESULTS

We have implemented our approach in the Mitsuba 2 Renderer

[Nimier-David et al. 2019] as a new integrator. In this section, we

will describe our experimental setup, compare our approach to

related methods, and validate our building blocks.

All our test scenes have been rendered on a compute node with

32 2.50 GHz cores of Xeon E5-2682 v4 processors. Since we focus

on high-frequency light transport, we only use artificial point and

small area light sources to cast caustics and handle them using

the proposed approach. Other light transport portions involving

environmental lighting are handled by conventional path tracing.

We set the max length of paths to 15. Russian roulette starts from

bounce 5 with probability 𝛾 = 0.95. Unless otherwise mentioned, we

do not enable product importance sampling or selective activation

for a more fair comparison with related methods.

The reference images of Lamp, Flower, and Double Slabs are

generated using path tracing, whereas the others are rendered with

our modified SMS at high sample rates. Some of our results report

the number of samples per pixel in the form of “𝑛 +𝑚”, meaning 𝑛

spp for training and𝑚 spp for rendering.

6.1 Comparisons with previous approaches

Comparison with unbiased MC approaches. In Fig. 9, we show the

equal-time comparison of our approach against PT, PPG [Müller

2019], VAPG [Rath et al. 2020], VMMPG [Ruppert et al. 2020], the

original SMS [Zeltner et al. 2020], and our modified SMS on three

scenes: Lamp, Flower and Double Slabs.

Conventional guiding approaches, such as PPG, rely on online

learned distributions to perform path sampling. They generally

work well but will encounter difficulties in dealing with glossy

or specular interactions since the radiance distribution involves

high-frequency variations. Visual comparisons clearly show that

a typically guided path tracer, such as PPG, VAPG, and VMMPG,

fails to handle challenging light paths involving specular vertices,

leading to many outliers and energy loss.

Although our approach also adopts reconstructed energy distribu-

tions as guidance, its usage is quite different. First, our distribution is

reconstructed from admissible sub-path samples, which is beneficial

for exploring high-frequency regions. Second, the reconstructed

distribution is used to sample seed chains instead of light paths.

Therefore, even inaccurate distributions can still work well. Conse-

quently, our method succeeds in covering all challenging lighting

effects with much fewer fireflies.

SMS is the state-of-the-art approach tailored for the unbiased sim-

ulation of specular light transport. The original SMS can only sup-

port a user-specified and fixed chain length. We extend it (denoted

as SMS*) using our initialization (Section 5.4) to support various

specular chain lengths and scattering types. Although this enables

handling all types of specular chains, it has the risk of higher vari-

ance (see the Lamp scene) than the original SMS since the sample

budget is amortized for various types of chains.

Thus, to further demonstrate the effect of our importance sam-

pling strategy, we also choose a dominant type of chain for each

scene (𝑅𝑇 for Lamp,𝑇𝑇𝑅 for Flower, and𝑇𝑇𝑇𝑇 for Double Slabs)

and present the results rendered by the original SMS in Fig. 9. Even
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Fig. 9. Equal-time comparisons among Path Tracing (PT), the improved Practical Path Guiding (PPG) [Müller 2019; Müller et al. 2017], Variance-Aware

Path Guiding (VAPG) [Rath et al. 2020], parallax-aware VMM Path Guiding (VMMPG) [Ruppert et al. 2020], the original Specular Manifold Sampling (SMS)

[Zeltner et al. 2020], a modified version of SMS (SMS*) and our method on three scenes.

Slab  2 min SMS

43, 0.0555

Ours

15+46, 0.0167
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Fig. 10. Equal-time comparison between the original SMS [Zeltner et al.

2020] and our method on the Slab scene. In order to validate the effect of

directional sampling, we use a fixed chain length (𝑛 = 2) and also neglect

reflection on the dielectric surface.
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Fig. 11. Convergence curves of two testing scenes. We compare our

method with PT, PPG, and SMS* on the evolution of MSE with respect to

the total rendering (including training) time. The standard deviation of the

MSE is shown as shaded regions.
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Pool  5 min MEMLT

0.6150

Ours

0.0061

Reference

MSE

Plane  5 min MLT

0.0153

MEMLT

0.0140

Ours

0.0058

Fig. 12. Equal-time (5min) comparison betweenMLT [Veach and Guibas

1997], MEMLT [Jakob and Marschner 2012] and our method.

in this way, the original SMS still tends to produce noticeable noise

since it samples seed chains uniformly. This is particularly obvious

in areas that correspond to admissible chains with extremely small

convergence basins, e.g., the bottom of the slabs.

Our method exploits progressively generated sub-path samples

to reconstruct and refine continuous distributions for sampling

seed chains, thus providing high-quality, unbiased rendering for

challenging SDS paths. Even at relatively low sample rates, our

method still outperforms its competitors with much lower variance.

We further validate the benefit of our directional importance sam-

pling in Fig. 10, where we disable the sampling of chain length and

type in our method and compare with the original SMS to validate

the effect of directional importance sampling. As highlighted in

the closeups, due to efficient importance sampling, our approach

generates more samples and produces results with far less noise. A

complete ablation study is shown in the supplemental document,

which validates the effectiveness of length sampling, type sampling,

and directional sampling, respectively.

In Fig. 11, we evaluate the accuracy in terms of MSE with respect

to the running time, showing the fast convergence provided by

our method. Thanks to the energy-based sampling distribution, our

method consistently outperforms previous ones as the running time

increases and achieves a large margin at a high sampling rate.

Comparison with unbiased MCMC approaches. In Fig. 12, we com-

pare our approach with MLT [Veach and Guibas 1997] and MEMLT

[Jakob and Marschner 2012], two typical MCMC approaches. The

Pool scene is a typical example of challenging paths, and the Plane

scene contains a normal-mapped conductor with roughness (𝛼 =

0.002). Both MLT and MEMLT require admissible chains as their

seed paths. Simply relying on PT or BDPT to find valid seed paths is

inefficient for SDS paths. This results in either energy loss if no seed

RingAndSlab  5 min SPPM

0.1244

UPSMCMC

0.1059

Ours

0.0285

Fig. 13. Equal-time (5 min) comparison between SPPM [Hachisuka and

Jensen 2009], UPSMCMC [Šik et al. 2016], and our method.

path is found for a specific region (blue closeups in Pool) or over-

bright artifacts where Markov chains get stuck in narrow regions

(red closeups in both scenes). As our method works in the context

of regular Monte Carlo sampling, it is able to produce images free

from blotchy artifacts.

Comparison with biased approaches. Biased approaches excel at

producing noise-free results for complex caustics and hence prevail

in the industry. In Fig. 13, we conduct an equal-time comparisonwith

Stochastic Progressive Photon Mapping (SPPM) [Hachisuka and

Jensen 2009] and Metropolised Bidirectional Estimator (UPSMCMC)

[Šik et al. 2016]. A slab and a ring are lit by a distant point light

encapsulated in a glass sphere.

For a meaningful comparison with SPPM, we decrease the photon

lookup radius to the point that the bias is less perceptible. Despite

this, the noise level is still higher than ours. It also suffers from visible

light leaking at the bottom of the ring. A similar issue occurs for

UPSMCMC. Its MCMC nature also results in an uneven convergence

characterized by an overly dark region and visible fireflies.

As an unbiased method, our technique performs independent

Monte Carlo estimation without spatial relaxing or reuse, thereby

avoiding these problems and producing caustics of high quality with

sharp details and low noise.

Fig. 3 shows a visual comparison with MNEE [Hanika et al. 2015].

As aforementioned, MNEE cannot find all valid admissible chains

in this scene since it relies on deterministic initialization. Generally,

this method performs well in simple cases but works inefficiently

and tends to be biased (or suffers from extremely high variance if

combined with path tracing) in complex scenes with many solutions.

The stochastic sampling strategy adopted in our method makes it

possible to cover all solutions for a configuration and hence ensures

unbiasedness.

6.2 Validation of building blocks

In theory, our pipeline supports most feasible spatial neighbor

searching and directional density estimation techniques. However,

the decision will significantly affect the quality of the sampling.

Here, we endeavor to generate such insights by comparing various

alternative choices of pipeline components in Fig. 14 and Fig. 15.

Distribution reconstruction. We employ STree for approximated

spatial nearest neighbor searching when reconstructing the energy

distribution, and perform an accurate directional density estimation.
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Stone  5 min  KNN

0.2478
4+4, 91.9%

SDTree

0.0505
31+74, 1.5%

Ours

0.0154
31+74, 2.6%

Reference

MSE
SPP, Overhead

Lamp  3 min NoFilter

0.6853
30+72, 2.2%

StochasticFilter

0.0021
30+72, 2.3%

Ours

0.0004
27+65, 3.0%

Reference

MSE
SPP, Overhead

Fig. 14. Choices of building blocks. Left: we perform equal-time comparisons of various spatial and directional structures. Right: comparisons of different

spatial filtering strategies. We report the full-image MSE, SPP, and the overhead of sampling. More scenes are shown in the supplemental document.
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Fig. 15. Equal-time comparison of different distribution reconstruction techniques, spatial filtering strategies, and neighboring thresholds on

five scenes featuring different light transport effects and complexity. The corresponding images are shown in the supplemental document.

To evaluate their effectiveness, we compare our method against

adaptive quad-tree [Müller et al. 2017] (SDTree) and a variant of our

approach with accurate spatial nearest neighbor searching (KNN ).

Despite its overall feasibility, SDTree introduces more noise due

to its inaccuracy in reconstructing high-frequency distributions. In

contrast, our accurate local density estimation yields more stable

convergence with fewer outliers. Accurate KNN introduces substan-

tial overhead (around 90% in most scenes) since gathering thousands

of nearest samples is costly. On the contrary, querying the STree

only requires descending from the root to the leaf node. Conse-

quently, the total overhead of querying and sampling distributions

never exceeds 5% in all our experiments.

Spatial filtering. We have employed the spatial filtering (Ours)
to improve robustness. Along with this, we include comparisons

with alternative choices: no spatial filtering (NoFilter) and Müller

[2019]’s stochastic filtering (StochasticFilter) that randomly jitter the

sample’s position. Simply disable filtering produces inferior results

with visible artifacts. Although stochastic filtering has been widely

adopted in previous works [Ruppert et al. 2020; Zhu et al. 2021a],

it also leads to slightly less accuracy and more fireflies. In contrast,

our approach produces results with less noise and fewer outliers

with nearly no performance degradation, striking an appropriate

balance between overhead and performance.

Spatial neighboring threshold. We also validate our automatic

spatial neighboring threshold in Fig. 15. Our automatic threshold

always predicts a reasonable value and generally outperforms al-

ternative choices, including Müller [2019]’s threshold (4000 ·
√
SPP)

and variants of our threshold with different coefficients.

SMS*
219 spp

Ours
30+81 spp

Slab×01
SMS*
231 spp

Ours
18+46 spp

Slab×02
SMS*
238 spp

Ours
13+32 spp

Slab×03

SMS*
203 spp

Ours
27+68 spp

Pillar×01
SMS*
204 spp

Ours
26+63 spp

Pillar×03
SMS*
190 spp

Ours
27+63 spp

Pillar×09

PPG
106 spp

Ours
11+31 spp

Sphere Radius×01
PPG
104 spp

Ours
10+32 spp

Sphere Radius×03
PPG
103 spp

Ours
9+34 spp

Sphere Radius×20

Fig. 16. Equal-time (5 min) comparison on scenes with varying chain

lengths (top), visibility complexity (middle), and emitter radii (bottom).

6.3 Impact of scene complexity

Our method adapts well to scenes with various intricate structures.
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Fig. 17. The impact of training budget and initialization strategies on

the rendered image quality. The number of training samples per pixel is

given as the x-axis. Each image is finally generated with 32 spp.

Chain length. The first row of Fig. 16 conducts a visual compari-

son against SMS on a series of scenes with an increasing number of

transparent slabs. Since SMS neglects energy distributions during

specular chain sampling, the variance increases prominently as the

number of specular bounces increases. In contrast, by exploiting the

continuity of specular manifolds, our method keeps a low variance

even in scenes with long specular chains.

Visibility. The second row of Fig. 16 shows a series of scenes with

increasing degrees of complex visibility stemming from multiple

pillars near a transparent slab. SMS hardly samples solutions that

pass the visibility test, while we consider visibility by reconstructing

distributions from unblocked admissible chains. As a result, our

method avoids high variance introduced by occlusions and works

well in complex scenes.

Size of light sources. In the last row of Fig. 16, we present a se-

ries of scenes with various emitter sizes. As the size of the emitter

decreases, the frequency of caustics increases. While path-guiding

methods work well for large area lights, producing high-frequency

caustics can be challenging. Instead, our proposed method addresses

this issue by exploring admissible chains through manifold walks,

allowing us to handle small area lights and complex caustic patterns

effectively.

6.4 Choice of strategies

Our pipeline incorporates some design choices. We conduct the

following experiments to validate their effectiveness.

Training budgets. Fig. 17 shows the influence of the training bud-

get on the rendering with the same sample rate. Generally, the

variance reduces significantly as the number of training samples

increases. This indicates that the training process gradually makes

the sampling distribution optimal.

Initialization. We also compare different initialization strategies

in Fig. 17. Here, surface means uniformly sampling x1 on specu-

lar surfaces, direction means uniformly choosing 𝝎𝐷 on the hemi-

sphere, and photon means reconstructing the initial distribution

from 250,000 photons traced by a photon mapper. The comparison

shows that initialization using photons leads to better results at the

Double Slabs  3+7 spp Ours

0.2105
 29 sec

Ours (R×4)

0.0967
 49 sec

Ours (TR×4)

0.0630
 57 sec

Reference

MSE
Time

Fig. 18. The variance of reciprocal probability estimation can be reduced

by repeating the process multiple times (4 in this example) and using the

average, either in the rendering phase only (R×4) or both training and

rendering phases (TR×4). This example also showcases the notable overhead

of the estimation process.

early stage of training. However, after convergence, different initial-

ization strategies perform similarly. This shows that our method is

robust to the initial state.

6.5 Performance analysis

In Table 2, we report the rendering statistics of several test scenes

used in this paper. As seen, for each scene, 50%-98% of the time

is spent on specular chain sampling. In particular, a small amount

of time (no more than 5% in all the scenes) is spent on guiding

(i.e., querying the spatial and directional distributions). In complex

scenes, the reciprocal probability estimation has a non-negligible

run-time cost since many trials are required.

Our implementation needs to store the original sample, which

could cause relatively heavy storage. Our consideration is twofold.

On the one hand, the storage required for each raw sample is only

40 bytes. On the other hand, it is worthy of being done because the

local density estimation is more accurate than existing online fitting

approaches when faced with near-delta radiance distributions.

7 DISCUSSION AND FUTURE WORK

There are several challenges not yet solved in our method.

Overhead and variance of reciprocal probability estimation. Our
importance sampling works as a promising variance reduction tech-

nique, but it only considers the variance of the sampling process

itself. We still rely on repeating the whole chain sampling process

to find the reciprocal probability of an admissible chain. Unfortu-

nately, the overhead and variance may be high in complex scenes

where there are many solutions with small convergence basins for

a configuration. Figure 18 is an example showing the overhead and

visual impact of the variance of reciprocal probability estimation.

While the noise of the estimation visibly affects the image, how to

balance the variance and overhead remains a challenge for future

research.

Online training pitfalls. The training process relies on an initializa-
tion sampling strategy. This lead to a general issue that too complex

or too large specular surfaces, as well as light sources, will make

the training process slow. Insufficient training will lead to fireflies

or temporal instability. One case is demonstrated in Fig. 19.
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Table 2. Rendering statistics of our experiments.

Scene Figure Chain types Budget (min.) Sample per pixel Time on specular (min.) #Sub-path

(dominant) Total Training Training Rendering Guide PDF Total samples

Glass Fig. 1 𝑇𝑇,𝑇𝑇𝑇𝑇,𝑇𝑇𝑇𝑇𝑇𝑇 240.0 72.0 80 195 3.592 77.886 215.328 12 519 949

Lamp Fig. 9 𝑇, 𝑅𝑇 5.0 1.5 46 116 0.233 0.388 3.377 1 347 096

Flower Fig. 9 𝑇𝑇,𝑇𝑇𝑅 5.0 1.5 16 134 0.053 1.971 3.983 1 189 876

Double Slabs Fig. 9 𝑇𝑇,𝑇𝑇𝑇𝑇 5.0 1.5 24 59 0.096 1.433 4.127 2 066 782

Water Fig. 19 𝑇𝑇𝑇𝑇,𝑇𝑇𝑇𝑇𝑇𝑇 240.0 72.0 41 99 2.621 223.176 236.883 1 667 185

199 spp

SMS*

99 spp

Ours

2352 spp

Reference

Fig. 19. Equal-time (4 hours) rendering of theWater scene, demon-

strating a failure case for our approach due to tiny caustic casters

(many small droplets in this scene).

However, this is a general stubborn problem for rendering al-

gorithms involving MC sampling. Tiny geometries make the path

space complicated and hard to explore by sampling without geom-

etry awareness [Otsu et al. 2018]. Using a deterministic strategy

to acquire sampling distributions may alleviate this issue. Outlier

removal [Reibold et al. 2018], or biased variants [Zeltner et al. 2020],

can also be used in practice.

8 CONCLUSION

We have studied the problem of importance sampling specular

chains that involve multiple consecutive specular bounces. Existing

methods often overlook energy distributions in the discrete admissi-

ble chain space, resulting in high variance. To solve this problem, we

have developed a comprehensive approach incorporating a specially

designed continuous space for seed chain sampling. Following that,

we have implemented a practical pipeline that leverages manifold

path guiding to explore all the specular chains in a given scene.

Additionally, our findings suggest that seed chain sampling has the

potential to address the longstanding unbiased caustics rendering

problem in a practical setting.

Our work is the first study focusing on importance sampling

strategies for multi-bounce specular light transport. We hope this

work could promote new research interests in the Monte Carlo

simulation of challenging light transport.
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