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Fig. 1. We propose a filtering-based reconstruction algorithm for gradient-domain rendering. Utilizing gradient-domain information and a coarse-to-fine
strategy, we could improve the reconstruction quality across a variety of scenes. Left: the pipeline of our method. Right: our reconstructed results compared to
𝐿2 reconstruction, GradNet [Guo et al. 2019] and NGPT [Kettunen et al. 2019]. Below are close-up views and relMSE evaluations.

Gradient-domain rendering methods reconstruct color images based on the
Poisson equation with gradients from correlated sampling. The relatively low
variance in the gradient estimation facilitates convergence but the inevitable
noises make the solving process prone to unpleasant spiky artifacts.

We propose a gradient-guided filtering approach1 for reconstruction that
avoids instability from directly using noisy gradients. Our method models
the output color of each pixel as a weighted combination of its neighboring
pixels, utilizing gradients as guidance to compute optimized filtering weights.
The gradients are enhanced before being applied in the filtering process, and
a coarse-to-fine strategy is used to leverage information from a larger scale.
∗Kun Xu is the corresponding author.
1Our method is open-sourced at https://github.com/lastmc/FRGR.
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Experiments show that our method achieves superior reconstruction
quality for gradient-domain renderings compared to existing techniques.
Furthermore, our method has two advantages: (1) it is not learning-based,
making it more robust to unseen scenes without requiring extra training or
fine-tuning; and (2) it is designed to be asymptotically unbiased.
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1 INTRODUCTION
Gradient-domain rendering employs correlated sampling to esti-
mate color gradients from differences between neighboring pixels,
achieving reduced variance compared to independent sampling.
Reconstruction techniques are subsequently applied to combine
color and gradient-domain images into the final rendering, typically
through solving the Poisson equation.

The underlying rationale is to leverage the relatively low-variance
first-order estimates to regularize the estimation of the mean values,
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i.e., the pixel colors. However, the gradients rendered with Monte
Carlo sampling are not perfectly noise-free, which can easily violate
the reconstruction process, leading to unpleasant spiky artifacts.
On the other hand, filtering is a widely used noise-reduction

approach in conventional Monte Carlo rendering. Sophisticated
weighting heuristics are developed to efficiently combine the color
estimates from similar pixels. However, typically utilizing only the
image-domain information without the true gradients, filtering
methods often suffer from blurry artifacts with overly mingled
neighboring pixels.

We are thusmotivated to find a novel reconstruction technique for
gradient-domain rendering that bridges the strengths of both meth-
ods: preserving sharp edges with the gradients while suppressing
noises and spikes with optimized filters. Instead of solving Poisson
equations directly involving noisy gradients, we propose gradient-
guided filtering for reconstruction. We model the output color of
each pixel as a weighted combination of neighboring pixels, where
the gradients are used as guidance in computing optimal filtering
weights. The optimization is formulated as a convex quadratic prob-
lem and can be efficiently solved.
We enhance the gradients before gradient-guided filtering with

an optimization goal involving three aspects: (1) valid gradients, (2)
extreme values preserving, and (3) feature-aware. The enhanced
gradients are demonstrated to provide better guidance compared
to the input noisy gradients. Furthermore, a coarse-to-fine strategy
is employed to utilize information from multiple scales. We extend
Guided Linear Upsampling [Song et al. 2023] with auxiliary features
to better maintain details and fine structures.

Experiments demonstrate that our method outperforms the state-
of-the-art neural reconstruction approaches, GradNet [Guo et al.
2019] and NGPT [Kettunen et al. 2019], in both quantitative mea-
sures and visual quality (Fig. 1 and 11). Compared to traditional
Poisson-solving approaches, our method is robust to noisy gradients
and avoids spiky artifacts, which are a common issue in previous
gradient-domain reconstruction methods. Compared to learning-
based approaches which are data-dependent, our method does not
require a preprocessing or training step and adapts to diverse scenes.
Besides, our method is designed with asymptotic unbiasedness, a
desirable property that theoretically ensures convergence.

2 RELATED WORK

2.1 Gradient-Domain Rendering
Gradients provide first-order information about an image. When
used meticulously, they help distinguish sharp edges from smooth
areas and are thus widespread in image processing [Bhat et al. 2010;
Kazhdan and Hoppe 2008; Kou et al. 2015]. In Monte Carlo render-
ing, Lehtinen et al. [2013] pioneered the use of gradient-domain
information for image reconstruction to overcome the uneven con-
vergence in Metropolis Light Sampling [Veach and Guibas 1997].
They compute gradients by sampling pairs of paths and reconstruct
the rendering by solving the Poisson equation. Soon their approach
was improved [Manzi et al. 2014] and extended to other Monte Carlo
rendering techniques, including unidirectional path tracing [Bauszat
et al. 2017; Kettunen et al. 2015], bidirectional path tracing [Manzi
et al. 2015], photon mapping [Hua et al. 2017], vertex connection

and merging [Sun et al. 2017], etc. All follow the framework of
correlated path/photon sampling and Poisson equation solving. The
rendered gradients can also serve as guidance for adaptive render-
ing. Back et al. [2018] introduced an adaptive guiding technique
utilizing features derived from gradients.

While correlated sampling reduces gradient estimation variance
and the first-order information benefits edge preservation, equation-
solving methods still suffer from the inevitable gradient-domain
noise that leads to spiky artifacts in the color space. Reconstruction
methods, such as Ha et al. [2019]; Manzi et al. [2016], have been de-
veloped to better combine color-space and gradient-space. However,
their direct use of noisy gradients still results in spiky artifacts. For
better visual quality, learning-based methods are introduced [Guo
et al. 2019; Kettunen et al. 2019]. However, they typically require
large datasets for training and can hardly deal with noise patterns
not captured by the training distribution. Our method opts to apply
reconstruction with enhanced gradients to achieve a more robust
solution while remaining independent of large datasets.

2.2 Image-Space Reconstruction
Filtering is a common facility in image reconstruction. In Monte
Carlo rendering, auxiliary features, such as albedo and normal, are
available as a byproduct and extensively exploited in today’s Monte
Carlo denoisers. Representative filter-based techniques include Joint
Bilateral Filtering (JBF) [Kopf et al. 2007], Robust Denoising Using
Feature and Color Information (RDFC) [Rousselle et al. 2013], Adap-
tive rendering based on weighted local regression [Moon et al. 2014],
and Nonlinearly Weighted First-Order Regression for Denoising Monte
Carlo Renderings (NFOR) [Bitterli et al. 2016]. These methods uti-
lize auxiliary buffers to aid in discerning the similarity of neigh-
boring pixels and constructing robust weights for hand-designed
filtering/regression models. With the prevalence of deep learning,
Kernel-Predicting Convolutional Networks for Denoising Monte Carlo
Renderings (KPCN) [Bako et al. 2017] predicts the filter weights with
learned priors. Monte Carlo Denoising via Auxiliary Feature Guided
Self-Attention (AFGSA) [Yu et al. 2021] introduced the attention
mechanism to enlarge the receptive field. These data-driven tech-
niques allow neural networks to learn prior knowledge and discover
effective denoising strategies. Post-denoising is also considered im-
portant for further correction. Utilizing statistical techniques, the
denoised images are processed to gain more advantages such as
unbiasedness. Zheng et al. [2021] combined the outputs of multiple
denoisers to obtain a better result, and Gu et al. [2022] combined
biased denoised outputs with unbiased ones. Back et al. [2022] de-
signed a self-supervised framework to boost supervised denoising.
However, handcrafted or data-driven, the averaging nature of filters
results in unavoidable over-blurry.
The distinct characteristics of gradient-domain and color-space

methods indicate a chance of mutual complement when combined.
We are thus inspired to propose the filtering-based reconstruction
method for gradient-domain rendering.
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Fig. 2. The overall pipeline of our method leverages a coarse-to-fine strategy.
At each level, input images are downsampled, filtered, and then upsampled
to guide the finer level. The downsampling and upsampling processes use
an algorithm similar to GLU [Song et al. 2023].

2.3 Image Upsampling
In image processing, manipulating images at a low resolution and
then upsampling them back to the original size is an effective strat-
egy for reducing computation. However, the information loss in
this procedure could not be ignored sometimes. Kopf et al. [2007]
first introduced the concept of guided upsampling, where the pixels
in the upsampled image are represented with a weighted sum of
the low-resolution image. In their work, the weights are computed
from bilateral weighting techniques [Tomasi and Manduchi 1998].
As a follow-up work, Song et al. [2023] proposed a pixel represen-
tation where two low-resolution pixels interpolate the output one
and an optimization algorithm minimizes the reconstruction loss.
We employ their technique to mitigate the loss of details during
downsampling and upsampling.

3 OUR METHOD
Given a scene, we first use a gradient-domain path tracer to generate
a noisy color image Ib and two noisy gradient images Idx and Idy
at a relatively low sample rate. Our method can be formulated as a
function𝐺 that takes as input the rendered noisy color and gradient
images (Ib, Idx, and Idy), together with some auxiliary feature images
F (normal, albedo, etc.), and outputs a reconstructed image I:

I = 𝐺 (Ib, Idx, Idy, F) . (1)

To leverage information from multiple scales, we employ a coarse-
to-fine strategy, which proceeds from the lowest (coarsest) level
to the highest (finest) level. At each level, we first downsample
the inputs from the higher level; then, we perform reconstruction;
finally, we upsample the reconstructed image to guide the higher
level. We adopt Guided Linear Upsampling (GLU) [Song et al. 2023]
for both downsampling and upsampling to ensure quality (Sec. 3.1).

Specifically, two steps are performed at each level 𝑘 (1 ≤ 𝑘 ≤ 𝐾 ):
(1) Gradient enhancement. To preserve sharp edges while sup-

pressing noise and spikes in the gradient images, we apply
an enhancement step to the gradient images:

(Î𝑘dx, Î
𝑘
dy) = 𝐺𝑠 (I

𝑘
dx, I

𝑘
dy, F

𝑘 ), (2)

where the superscript (·)𝑘 denotes the images at resolution
level 𝑘 . Details are provided in Sec. 3.2.

(2) Gradient guided filtering. The reconstructed image is com-
puted through a filtering pass on the input noisy image. The
filtering weights are obtained through an optimization pro-
cess considering the smoothed gradients:

I𝑘 = 𝐺 𝑓

(
I𝑘b , Î

𝑘
dx, Î

𝑘
dy, F

𝑘 ,Up(I𝑘−1)
)
, (3)

where Up(·) denotes the upsampling operator. Details are
provided in Sec. 3.3.

The final output reconstructed image is simply the output at the
finest level, i.e., I = I𝐾 . Fig. 2 illustrates the pipeline of our method.

To summarize the general flow of our method: We begin by gen-
erating multiple scales using the GLU method, along with noisy
renderings. Starting from the lowest level (i.e., the smallest scale), we
reconstruct the image using our filter-based algorithm. The recon-
structed output is then upsampled using the appropriate strategy,
serving as one of the auxiliary buffers for reconstructing the next
level. By repeating this process, we ultimately reconstruct the image
at its original resolution, which is the final output of our method.

3.1 Coarse-to-Fine Strategy
In our coarse-to-fine strategy, the input at each resolution level
includes the noisy rendering, noisy gradients, and auxiliary features,
all downsampled from the higher level. After the reconstruction
process, the output will be upsampled and provided back to the
previous level as a guidance image.
The output reconstructed image utilizes the low-variance guid-

ance from the lower level and benefits from the wide perception
field. However, details such as fine structures are often lost during
downsampling. To mitigate the loss of spatial information, we adopt
the Guided Linear Upsampling (GLU) method, which regresses the
downsampling and upsampling weights iteratively to achieve mini-
mum reconstruction loss. Also, we follow RDFC to pre-denoise the
noisy images for more feasible inputs for GLU.
Below, we briefly review GLU in Sec. 3.1.1 and explain how it is

used in our coarse-to-fine strategy in Sec. 3.1.2. The RDFC-based
pre-denoising algorithm is described in Sec. 3.1.3.

3.1.1 Review of Guided Linear Upsampling (GLU). GLU does not use
a simple predefined interpolation weighting scheme (e.g., bilinear
interpolation) for downsampling and upsampling. Instead, given an
input guidance image J, the downsampling and upsampling weights
are obtained by optimizing the reconstruction loss:

min
𝑊𝑑 ,𝑊𝑢

∥J − Up(Down(J,𝑊𝑑 ),𝑊𝑢 )∥, (4)

where𝑊𝑑 ,𝑊𝑢 denote the weights (and parameters) used for down-
sampling and upsampling, respectively.
In the case of 2× downsampling, the value of each pixel in the

downsampled image is interpolated from four neighboring pixels
in the input image. The downsampling weights can be assigned in
two ways: (1) all set to 1/4 for basic averaging; or (2) one set to 1
and others set to 0, to preserve detailed structures.
During 2× upsampling, each pixel in the upsampled image is

reconstructed via linear interpolation of just two pixels within its
small neighborhood (a 3 × 3 window) of the downsampled image.

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.
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Fig. 3. A visualization of enhanced gradients and the input noisy gradients compared to the ground truth gradients. Above, we show their relMSE (relative
mean square error) error maps. The scene in this figure is Dining Room sampled at 32 samples per pixel.

All weights and parameters used in downsampling and upsam-
pling are jointly optimized according to Eq. 4. Given the combina-
torial nature of the optimization problem, which is challenging to
solve directly, an iterative and efficient scheme is employed. For
more details, please refer to the GLU paper [Song et al. 2023].

3.1.2 Downsampling and upsampling. Our coarse-to-fine strategy
involves downsampling images from resolution level 𝑘 to 𝑘 − 1
and then upsampling them back to level 𝑘 after processing. For
guidance, we use a multi-channel image J𝑘 , formed by stacking
the pre-denoised image I𝑘d (as detailed in Sec. 3.1.3) and auxiliary
features F𝑘 , so that J𝑘 = [I𝑘d , F

𝑘 ]. In our implementation, J𝑘 consists
of 9 channels: 3 each for color, albedo, and normal. These channels
are scaled by different coefficients to ensure matching magnitudes.
We then use the guidance image to compute the downsampling

and upsampling weights using Eq. 4. We then apply these weights
to downsample all inputs from level 𝑘 to 𝑘 − 1, including the noisy
rendering I𝑘b , the noisy gradients I𝑘dx, I

𝑘
dy, the pre-denoised image

I𝑘d , and the auxiliary feature images F𝑘 . After completing the re-
construction process at level 𝑘 − 1, we upsample the reconstructed
image I𝑘−1 from level 𝑘 − 1 back to level 𝑘 .

3.1.3 Pre-denoising algorithm. The noisy guidance image is unsuit-
able for calculating GLU weights because noise and outliers could be
mistaken for fine structures and preserved at lower levels. Therefore,
we pre-denoise it using RDFC [Rousselle et al. 2013], which jointly
combines the non-local means (NLM) weights from the color image
with the bilateral weights from the auxiliary feature buffers.

The per-pixel, per-channel color distance between two pixels, 𝑝
and 𝑞, is defined as

Δ2 (𝑝, 𝑞) = (𝑐 (𝑝) − 𝑐 (𝑞))2 − (Var[𝑝] +min(Var[𝑝],Var[𝑞]))
10−10 + 𝑘2𝑐 (Var[𝑝] + Var[𝑞])

. (5)

Based on this, we compute the NLM distance by averaging the pixel
distances within the neighborhoods of 𝑝 and 𝑞:

𝑑2𝑐 (𝑝, 𝑞) =
1

(2𝑓 + 1)2
∑︁

∥𝑛∥1≤ 𝑓
Δ2 (𝑝 + 𝑛, 𝑞 + 𝑛) . (6)

The bilateral feature distance is defined as

𝑑2
𝑓
(𝑝, 𝑞) =

(𝑓 (𝑝) − 𝑓 (𝑞))2 − (Var𝑓 [𝑝] +min(Var[𝑝],Var[𝑞]))
𝑘𝑓 max(10−10,max(Var[𝑝], ∥Grad[𝑝] ∥2))

.

(7)

Here, Var[𝑝] refers to the sample variance of the corresponding
buffer, and Grad[𝑝] refers to its gradient. The final filter weight is

exp(−𝑑2𝑐
∏
𝑓

𝑑2
𝑓
) (8)

We first filter the image using three different sets of parameters
for (𝑓 , 𝑘𝑐 , 𝑘𝑓 ): (1, 0.45, 0.6), (3, 0.45, 0.6), and (3, 1010, 0.6). Then we
estimate the SURE (Stein’s Unbiased Risk Estimate) error of each
filtered part and select the pixels with the lowest error from the
three candidates to produce the final pre-denoised image.

3.2 Gradient Enhancement
The input gradients suffer from sampling noise in two major ways:

(1) Invalid gradients. Even for the same two pixels, inconsistent
pixel differences are accumulated along different paths. Al-
though the gradients rendered from Monte Carlo sampling
are unbiased, their noise may disrupt the divergence-free
property of image gradients.

(2) Spikes from outliers. Outliers in the gradient domain are
reconstructed into spiky artifacts by the Poisson equation.

Therefore, it is necessary to enhance the gradients before image
reconstruction. To better preserve the first-order information, three
requirements are to be met:

(1) Valid. The processed gradient images should be divergence-
free vector fields, ensuring that any path between the same
two pixels sums to the same pixel difference.

(2) Extreme value preserving. Gradients of small and great mag-
nitudes should be less changed because they typically corre-
spond to the smooth regions and sharp edges, which are the
most perceptually noticeable.

(3) Feature-aware. Auxiliary buffers (e.g., albedo and normal)
should be utilized, as they provide additional information
about geometry and shading and contain significantly less
noise than the full rendering.

Considering these requirements, we formulate an optimization
target for gradient enhancement with three components: the validity
constraint, the color-guided regularization, and the feature-guided
smoothing. Since gradient enhancement is applied at every resolu-
tion level 𝑘 , we will omit the superscripts (·)𝑘 (e.g., using Ib instead
of I𝑘b ) for simplicity in notation from now on.
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Fig. 4. Error curves of relMSE with respect to the number of spp (samples per pixel).

3.2.1 Validity constraint. This constraint ensures that the sum of
differences along any path between the same two pixels remains
constant, effectively making the gradient vector field divergence-
free. Let Î represent any color image, with Idx and Idy denoting its
gradients along the 𝑥 and 𝑦 axes, respectively. For every pixel (𝑖, 𝑗),
the following equation holds:

Î(𝑖 + 1, 𝑗 + 1) − Î(𝑖, 𝑗) = Îdx (𝑖, 𝑗) + Îdy (𝑖, 𝑗 + 1)
= Îdy (𝑖, 𝑗) + Îdx (𝑖 + 1, 𝑗)

(9)

This equation represents the validity constraint. Gradients adher-
ing to this constraint are considered valid, and from them, a color
image can be uniquely reconstructed.

3.2.2 Color-guided regularization. To meet the second requirement,
pixel-wise weights are applied to the differences between the input
gradients (Idx and Idy) and the enhancement targets (Îdx and Îdy),
controlling how much the original values are preserved. Specifically,
the regularization loss is derived as follows:

L𝑔 =
∑︁
𝑝

(
𝑚𝑥 (𝑝) (Îdx (𝑝) − Idx (𝑝))2 +𝑚𝑦 (𝑝) (Îdy (𝑝) − Idy (𝑝))2

)
.

(10)
This equation iterates over all pixels 𝑝 . Per-pixel weights𝑚𝑥 and
𝑚𝑦 are defined as

𝑚𝑥 (𝑝) =
|Idx (𝑝) |

𝑡
+ 1
|Idx (𝑝) | + 𝜖

, 𝑚𝑦 (𝑝) =
|Idy (𝑝) |

𝑡
+ 1
|Idy (𝑝) | + 𝜖

,

(11)
where 𝑡 is set to a constant value of 0.09, controlling the minimum
value of the weights and matching the magnitudes of other coeffi-
cients. 𝜖 , which is 0.01, is added to the denominator to avoid division
by 0. The weights are large when the absolute values of the corre-
sponding gradient are either great or small. This design is based
on our observation that large and small gradient values typically
correspond to sharp edges and smooth regions, which are the most
visually noticeable structures and should be preserved. Any noise or
outliers that might produce large gradient values will be suppressed
by the feature-guided loss described in the next paragraph.

3.2.3 Feature-guided smoothing. Feature buffers, such as albedo
and normal maps, often exhibit less noise and clearer edges, making
them valuable for distinguishing between smooth regions and sharp
boundaries. To mitigate jittering and enhance smoothness within
flat areas, we propose a feature-guided loss that involves a pixel-
wise weighting of the feature gradients. This loss is mathematically

expressed as follows:

L𝑓 =
∑︁
𝑝

(
𝑎𝑥 (𝑝) |Îdx (𝑝) |2 + 𝑎𝑦 (𝑝) |Îdy (𝑝) |2

)
, (12)

The per-pixel weights 𝑎𝑥 and 𝑎𝑦 are designed to be large when the
corresponding gradients of feature buffers are small:

𝑎𝑥 (𝑝) =
1∑

𝑗 |F
( 𝑗 )
dx (𝑝) | + 𝜖

, 𝑎𝑦 (𝑝) =
1∑

𝑗 |F
( 𝑗 )
dy (𝑝) | + 𝜖

, (13)

where Fdx and Fdy denote the screen-space gradients of the feature
maps F, and 𝑗 traverses the feature map channels. 𝜖 is set to 0.01.

3.2.4 Final enhancement objective. In general, the color-guided
term preserves both large and small gradient values, whereas the
feature-guided term smooths gradients within regions indicated by
feature buffers. By incorporating these losses alongside the hard
validity constraint, we formulate the final objective L𝑔𝑟𝑎𝑑 to solve
for the enhanced gradients Îdx and Îdy:

minL𝑔𝑟𝑎𝑑 = L𝑔 + 𝜆𝑓 L𝑓 , s.t. Eq.(9) holds for all pixels. (14)

Here, 𝜆𝑓 = 8/
√
𝑁 (where 𝑁 represents the number of samples per

pixel) is employed to balance the color- and feature-guided losses.
Note that L𝑔𝑟𝑎𝑑 is a convex function. Thus, a gradient descent
method is leveraged to solve the minimization problem.

Meanwhile, to enforce the validity constraint during optimization,
we introduce a change of variable into the optimization objective:

Îdx (𝑖, 𝑗) = Î(𝑖 + 1, 𝑗) − Î(𝑖, 𝑗), Îdy (𝑖, 𝑗) = Î(𝑖, 𝑗 + 1) − Î(𝑖, 𝑗) . (15)

By implementing this substitution, we shift the optimization focus
to the reconstructed image. Consequently, the validity of the image
gradients is inherently satisfied during the optimization process.
We perform the gradient descent method on these convex losses to
assure fast and global convergence. Specifically, we performmultiple
one-dimension searches with random directions to decrease the
losses. For more details, please refer to our source code.

Fig. 3 compares gradients before and after enhancement, showing
that the enhanced gradients are less noisy and closer to the ground
truth than the original ones.

3.2.5 Discussion of asymptotic convergence. While the term L𝑓 in-
troduces bias, its weight 𝜆𝑓 will decrease to zero as the sample rate
𝑁 goes to infinity. Therefore, the enhanced gradients will asymp-
totically converge to the correct gradients.
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3.3 Gradient-Guided Filtering
The enhanced gradients from the previous step exhibit low vari-
ance. We introduce a filtering-based method that utilizes these low-
variance gradients for improved image reconstruction. Compared
to traditional Poisson-based approaches, this method is more robust
and effectively avoids the typical spiky artifacts. For simplicity in
notation, the superscript (·)𝑘 is also omitted in this subsection.

3.3.1 Formulation. The reconstructed color at pixel 𝑝 is computed
as the linear combination amongN(𝑝), the neighborhood of 𝑝 (note
that 𝑝 ∈ N (𝑝)). We have

I(𝑝) =
∑︁

𝑞∈N(𝑝 )
𝑤𝑞Ib (𝑞), s.t. 𝑤𝑞 ≥ 0,

∑︁
𝑞∈N(𝑝 )

𝑤𝑞 = 1. (16)

Next, we will detail how the filter weights 𝑤𝑞 are computed by
optimizing a combination of several losses.

3.3.2 Gradient-guided loss. This loss is defined by the expectation
of the squared error between the filtered color I(𝑝) and the noise-
free ground-truth color 𝜇𝑝 at pixel 𝑝 . We also denote the variance
of the input noisy color Ib (𝑞) as 𝑣𝑝 . The loss is formulated as

Lopt = E
[
(I(𝑝) − 𝜇𝑝 )2

]
=
(
E
[
I(𝑝) − 𝜇𝑝

] )2 + Var
[
I(𝑝) − 𝜇𝑝

]
=
©«

∑︁
𝑞∈N(𝑝 )

𝑤𝑞 (𝜇𝑞 − 𝜇𝑝 )ª®¬
2

+
∑︁

𝑞∈N(𝑝 )
𝑤2
𝑞𝑣𝑞

(17)
Minimizing Lopt leads to the optimal weights for filtering. The

color variance 𝑣𝑝 can be unbiasedly estimated by the sample vari-
ance of the input noisy colors Ib (𝑞). However, the true colors 𝜇𝑝 and
𝜇𝑞 are unknown in the equation, and their estimation via vanilla
path tracing is typically very noisy. Fortunately, we can now derive
a low-variance estimate of their differences (𝜇𝑞 − 𝜇𝑝 ) using the
enhanced gradients obtained in the previous step (Sec. 3.2).

Noticeably, with the validity constraints outlined in Section 3.2.1,
this estimation becomes straightforward, using the pixel differences
Î(𝑝) − Î(𝑞) in the corresponding image of the enhanced gradients.

3.3.3 Auxiliary self-regression loss. To reduce noise and prevent
blurring at object boundaries, we introduce a self-regression loss
using auxiliary buffers, including albedo and normal. The loss for
each auxiliary map, Lalbedo and Lnormal, is defined as

L𝑥 =
©«F𝑥 (𝑝) −

∑︁
𝑞∈N(𝑝 )

𝑤𝑞F𝑥 (𝑞)ª®¬
2

, 𝑥 ∈ {albedo, normal}. (18)

3.3.4 Additional losses. Recall that we have two additional images
at our disposal. One is the upsampled reconstructed image from
the lower level, which we denote as Iup. Similar to the approach
with auxiliary buffers, we introduce a self-regression loss for this
upsampled reconstructed image:

Lup =
©«Iup (𝑝) −

∑︁
𝑞∈N(𝑝 )

𝑤𝑞Iup (𝑞)
ª®¬
2

. (19)

The other is the pre-denoised color image Id (see Sec. 3.1.2), which
is already reasonably clean. We define a loss to constrain the recon-
structed color to be close to the pre-denoised color:

Ld = (Id (𝑝) − I(𝑝))2 = ©«Id (𝑝) −
∑︁

𝑞∈N(𝑝 )
𝑤𝑞Ib (𝑞)

ª®¬
2

. (20)

3.3.5 The final combined loss. The final combined loss is a weighted
sum of all previously defined losses, including the gradient-guided
loss, the auxiliary self-regression loss, and additional losses from
the lower-level reconstructed image and the pre-denoised image:

L = Lopt + 𝜆aLalbedo + 𝜆nLnormal + 𝜆uLup + 𝜆dLd . (21)

The filter weights𝑤𝑞 are computed by minimizing the final loss:

argmin
𝑤𝑞

L, s.t. 𝑤𝑞 ≥ 0,
∑︁

𝑞∈N(𝑝 )
𝑤𝑞 = 1. (22)

Since the loss function is a convex quadratic form, the minimization
can be treated as a quadratic programming problem and solved
using the gradient descent method as mentioned in Sec. 3.2.4.

In our implementation, we use a 9×9 neighborhood size. Although
minimization is required for every pixel, each pixel’s computation
is independent and involves only 81 unknown values. This allows
for efficient parallel processing on a GPU.
The combination factors in the final loss are empirically set as

𝜆a = 16/
√
𝑁 , 𝜆n = 0.16/

√
𝑁 , 𝜆u = 𝜆d = 8/

√
𝑁 , where 𝑁 denotes the

number of samples per pixel. These factors are designed to ensure
the asymptotic unbiasedness of our method: as the sample rate 𝑁
goes to infinity, all loss terms except for Lopt will diminish to zero.

4 EXPERIMENTS
Our method is implemented on a PC with an AMD Ryzen 9 7950X
CPU and an NVIDIA 3080Ti GPU. We use the gradient-domain path
tracing algorithm [Kettunen et al. 2015] implemented on LuisaRen-
der [Zheng et al. 2022] to render the inputs, including the noisy color
images, noisy gradient images, and auxiliary feature images. We use
a fixed rendering resolution of 1280 × 720. Our method is efficient,
taking about 5 seconds for the whole process of the reconstruction
of one image (excluding rendering time).

4.1 Evaluation
In this section, we evaluate the effectiveness of the different compo-
nents in our method.

4.1.1 The coarse-to-fine strategy. In Fig. 8, we evaluate our method
using different numbers of resolution levels, from only 1 level to
4 levels. From the results, we find that using multiple levels im-
proves the reconstruction quality compared to a single level. The
optimal number of levels might vary with the scenes. For scenes
with simple lighting and shading, such as the Living Room, using
2 levels is preferable. However, for more complex scenes like the
Bookshelf, which have intricate lighting conditions, employing 4
levels produces better results. Overall, in our experiments, we fix
the number of levels to 2 for its good general quality.

In Fig. 5, we evaluate the effectiveness of theGuided Linear Upsam-
pling (GLU) method used in our coarse-to-fine strategy. In contrast,
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we use a simple bilinear downsampling/upsampling approach as a
comparing baseline. From the results, we could find that GLU helps
in preserving details and fine structures.

4.1.2 The overall loss L in gradient-guided filtering. Recall that the
overall loss (Eq. 21) is defined as a weighted of the gradient-guided
loss and several regression losses using the upsampled reconstructed
image (Lup), the auxiliary maps (Lalbedo and Lnormal), and the
denoised image (Ld), respectively. We would like to evaluate the
importance of those regression losses.

Removing the regression loss using the upsampled reconstructed
image (Lup) is equivalent to setting the number of resolution levels
to 1, i.e., not using the coarse-to-fine strategy at all. We have already
tested such settings in Fig. 8 and the results suggest the coarse-to-
fine strategy helps in improving reconstruction qualities.

In Fig. 6, we show that removing the feature-guided losses (Lalbedo
and Lnormal) causes artifacts around textures and edges, highlight-
ing their importance in preserving texture and geometry details.

In Fig. 7, we show that using a pre-denoised image as a regression
loss (Ld) significantly improves reconstruction quality.

4.1.3 Convergence. As explained in Sec. 3.3, our method produces
asymptotically converged results. To validate this property, we mea-
sure how the relative MSE (relMSE) of our reconstructed images
change with the sample rates on different scenes, as shown in Fig. 4.
We also compare the relMSE of several other methods, including 𝐿2
reconstruction, GradNet [Guo et al. 2019] and NGPT [Kettunen et al.
2019]. The results show that our method has a better convergence
property compared to all those competitive methods.

4.2 Comparison
We have compared our method with several reconstruction methods
for gradient-domain rendering, including the basic 𝐿2 reconstruc-
tion methods by solving Poisson equations, and two state-of-art
learning-based reconstruction methods, GradNet [Guo et al. 2019]
and NGPT [Kettunen et al. 2019]. We also compared our method
with non-gradient techniques including NFOR [Bitterli et al. 2016],
AFGSA [Yu et al. 2021], and NPPD [Balint et al. 2023].

In our experiments, we compare our method with the pre-trained
models provided by the authors of GradNet, NGPT, AFGSA, and
NPPD. Since our method is not dependent on any specific dataset,
we opted not to retrain or fine-tune the compared methods.

Six scenes from the Rendering Resources website [Bitterli 2016]
and GradNet, including Glass of Water, Kitchen, Living Room, Bath-
room, Bookshelf, and Dining Room, are tested. These scenes cover a
variety of materials and lighting conditions. We report relative MSE
(relMSE) for all reconstructed images. Different numbers of spps (i.e.,
from 32 spps to 128 spps) are tested. More results of comparisons
can be found in the supplemental material.

4.2.1 Comparisons to gradient-domain approaches. As depicted in
Fig. 11, the 𝐿2 reconstructions show noticeable noise and spikes,
while GradNet and NGPT effectively suppress most of these arti-
facts. In terms of reconstruction time, GradNet takes approximately
800ms, whereas NGPT takes around 600ms. However, GradNet
struggles to eliminate outliers present in both color and gradient
images, whereas NGPT introduces wave-like artifacts. In contrast,

our method markedly outperforms GradNet and yields cleaner and
smoother results than NGPT. Also, it is noticeable that on scenes
out of NGPT’s training set (e.g., Bookshelf and Glass of Water),
our method achieves better results both numerically and visually,
showing more robustness than learning-based methods.
We provide an indirect comparison with Manzi et al. [2016] on

the reduction in RMSE over the L1 baseline due to the unavailability
of the original implementation. In the Bookshelf scene, Manzi et al.
[2016] reported an RMSE that is 21.3% of the L1 reconstruction’s
RMSE, while our method achieves an RMSE that is 11.7% of the L1
reconstruction’s RMSE. This result suggests that our method offers
a more substantial improvement in denoising performance.

4.2.2 Comparisons to non-gradient approaches. We also compare
our method to image-space Monte Carlo denoising approaches,
including NFOR, a filtered-based method, and AFGSA, a recent
learning-based method. Since generating gradients requires addi-
tional time, our comparisons were conducted within the same time
budget. To elaborate, our implementation of gradient path tracing
takes slightly less than twice the time of path tracing with equiva-
lent sample rates. Thus we provide NFOR and AFGSA with twice
the samples of our inputs. Furthermore, the gradient path tracing
algorithm yields pixel-correlated results that deviate from the as-
sumptions of NFOR and lie outside the distribution of AFGSA’s
training set. Therefore, we provided noisy renderings generated by
path tracing to these methods. NFOR takes around 5s for denoising,
while AFGSA takes about 400ms.

As illustrated in Fig. 9, our method generally produces better
results than NFOR and AFGSA. NFOR tends to blur the output at
a low sample rate and occasionally fails due to the instability of
first-order regression. On the other hand, AFGSA tends to blur the
scene even at high sample rates. In contrast, our method surpasses
them within the same rendering time budget.

Additionally, we compared our method to a state-of-the-art non-
gradient neural denoising technique, NPPD [Balint et al. 2023].
NPPD requires every sample of a noisy input (e.g., 64 images for
a 64spp input). Thus we reduced the sample rates to half of the
previous comparisons in Fig. 9, as too many samples would cause
NPPD to consume excessive GPUmemory. In current settings, NPPD
needs 1s to handle 32spp, but over 10s for 128spp due to memory
exceeding. Since our experimental setup does not include temporal
sequences, we used the first frame output of NPPD for comparison.
As shown in Fig. 10, we conducted equal-time experiments on the
same scenes as AFGSA and NFOR but with half the sample rate. Our
method demonstrated better results compared to NPPD.

5 CONCLUSION
In this paper, we have proposed a filtering-based reconstruction
method for gradient-domain rendering. The basic idea is to model
each output pixel color as a weighted combination of noisy colors
from neighboring pixels. The gradients are used to optimize the
filtering weights. The optimization is formulated as a convex qua-
dratic problem and could be efficiently solved. We also introduce a
gradient enhancement step before gradient-guided filtering to ob-
tain higher-quality gradients. Furthermore, a coarse-to-fine strategy
is employed to utilize information frommultiple scales. Experiments
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show that our method achieves the best reconstruction results for
gradient-domain rendering compared to other methods.
Our method would perform less successfully at extremely low

sample rates where the high variance might lead to less accurate
estimates. Possible ways to alleviate this problem might be using a
larger filter radius for filtering or using ensemble denoising [Zheng
et al. 2021] to combine with other learning-based methods.
In recent years, we have seen a renaissance of path reuse tech-

niques, such as ReSTIR [Bitterli et al. 2020], in which correlated
sampling and path shifting techniques are also widely leveraged.
It is worthwhile to investigate how to utilize our gradient-guided
filtering idea in such techniques to further reduce noise.
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(a) w/o GLUKitchen (64 spp)
relMSE 0.004801

(b) w/ GLU
0.003109

(c) Reference

(a) w/o GLU
0.004310

(b) w/ GLU 
0.004143

(c) ReferenceBathroom (64 spp)
relMSE

Fig. 5. Comparisons between using GLU and using simple bilinear down-
sampling/upsampling.

(a) w/o auxsBookshelf (256 spp)
relMSE 0.005012

(b) w/ auxs
0.004460

(c) Reference

(a) w/o auxs
0.004858

(b) w/ auxs 
0.004131

(c) ReferenceBathroom (64 spp)
relMSE

Fig. 6. Evaluation on the importance of the regression losses using the
auxiliary features (Lalbedo, Lnormal).

(a) w/o denoisedGlass of Water (64 spp)
relMSE 0.03765

(b) w/ denoised
0.02075

(c) Reference

(a) w/o denoised
0.004963

(b) w/ denoised
0.004361

(c) ReferenceDining Room (32 spp)
relMSE

Fig. 7. Evaluation on the importance of the regression losses using the
denoised image (Ld).

Living Room (16 spp)
relMSE

(a) Reference

(b) 1 level
0.004329

(c) 2 levels
0.004029

(d) 3 levels
0.004042

(e) 4 levels
0.004075

Bookshelf (128 spp)
relMSE

(a) Reference

(b) 1 level
0.007408

(c) 2 levels
0.006617

(d) 3 levels
0.006450

(e) 4 levels
0.006407

Fig. 8. Evaluation on the number of levels in the coarse-to-fine strategy.

(2) NFOR (3) AFGSA (4) Ours (5) Reference(1) Ours

Glass of Water
relMSE / Sample Rate (Time)

Pavilion Day
relMSE / Sample Rate (Time)

128 spp (7.1s) 128 spp (7.1s) 64 spp (6.7s)

512 spp (41.3s) 512 spp (41.3s) 256 spp (39.3s)

0.0219 0.0221 0.0208

0.0022 0.0023 0.0016

Fig. 9. Comparisons of our method with NFOR [Bitterli et al. 2016] and
AFGSA [Yu et al. 2021]. We doubled the sample rates for NFOR and AFGSA
to achieve roughly equal rendering times as ours. The rendering times are
indicated in the figures. Remarkably, our method achieves better results
within a shorter rendering time.

(4) NPPD (5) Ours (6) Reference(1) NPPD (2) Ours (3) Reference

128 spp 64 spp
0.0063 0.0032

64 spp
0.0311

32 spp
0.0282

Fig. 10. Comparisons of our method with NPPD [Balint et al. 2023]. The
same scenes as the previous comparisons are used and the rendering times
are roughly equal. All sample rates are halved to reduce the GPU memory
occupancy of NPPD. Our method achieves better results.
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(2) Base (3) L2 (4) GradNet (5) NGPT (6) Ours (7) Reference(1) Ours

0.1086 0.1038 0.0468 0.0208 relMSEGlass of Water (64 spp) 0.0295

0.0277 0.0071 0.0050 0.0031 relMSEKitchen (64 spp) 0.0021

0.3969 0.1118 0.0101 0.0066 relMSEBookshelf (128 spp) 0.0076

0.0161 0.0107 0.0037 0.0018 relMSEDining Room (32 spp) 0.0012

0.0350 0.0114 0.0055 0.0026 relMSELiving Room (32 spp) 0.0014

(2) Base (3) L2 (4) GradNet (5) NGPT (6) Ours (7) Reference(1) Ours

Fig. 11. Image reconstruction results comparing to several existing reconstruct methods: 𝐿2 reconstruction, GradNet [Guo et al. 2019] and NGPT [Kettunen
et al. 2019]. Note that the Dining Room and Living Room scenes are in the training set of NGPT. We apply relative MSE (relMSE) as the metric in comparisons.
Obvious artifacts could be observed in the outputs of NGPT though their numerical metrics look better in some cases.
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