
GPU Coroutines for Flexible Splitting and Scheduling of Rendering Tasks

SHAOKUN ZHENG, BNRist, Department of CS&T, Tsinghua University, China

XIN CHEN, BNRist, Department of CS&T, Tsinghua University, China

ZHONG SHI, BNRist, Department of CS&T, Tsinghua University, China

LING-QI YAN, University of California, Santa Barbara, United States of America

KUN XU
∗
, BNRist, Department of CS&T, Tsinghua University, China

Transform
 &

 A
nalyze

R
ecord &

 Translate

If

Lone Monk RTX-2080Ti (DirectX) 
1920⨉1440 / 1024spp 
Spectral / 24 bounces

Mega-Kernel 
Coroutine (Wavefront) 
Coroutine (Persistent-reads)

88.1s 
79.7s (-9.53%) 
81.6s (-7.38%)

Coroutine pt = [&](UInt sample_id) { 
  auto Li = Float3(0.f); 
  auto beta = Float3(1.f); 
  auto ray = camera->generate_ray(…); 
  $for (depth, max_depth) { 
    $suspend("intersect"); 
    auto hit = scene->intersect(ray); 
    $if (hit->miss()) { 
      $suspend("miss"); 
      env->evaluate(…); 
      $break; 
    }; 
    $suspend("sample_light"); 
    auto Ld = scene->sample_light(…); 
    $suspend("evaluate_surface"); 
    auto f = scene->eval_surface(…); 
    … 
    $if (!rr) { $break; }; 
  }; 
  film->accum(coro_id().xy(), Li); 
};
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Fig. 1. We incorporate the coroutine concept into GPU kernel programming and reify it with language constructs and multiple built-in schedulers, facilitating

the splitting and scheduling of complex rendering tasks. Our implementation extends Luisa’s domain-specific language (DSL) and runtime constructs. Users

can write the rendering algorithm in a mega-kernel fashion with suspension marks to define a coroutine function, which is dynamically recorded and translated

into an intermediate representation (IR). Suspension is allowed in arbitrarily nested control flow, ensuring flexibility with ease of programming. We then

perform a set of compiler transformation and analysis passes to automatically extract the continuation subroutines of each suspension point and materialize

the state frame, both encoded into a graph representation. Schedulers, either built-in or customized, can be freely selected to execute the subroutines and

manage the state frames. Experiments on intricate rendering tasks, including path tracing, demonstrate the potential of our GPU coroutines.

We introduce coroutines into GPU kernel programming, providing an au-
tomated solution for flexible splitting and scheduling of rendering tasks.
This approach addresses a prevalent challenge in harnessing the power of
modern GPUs for complex, imbalanced graphics workloads like path tracing.
Usually, to accommodate the SIMT execution model and latency-hiding
architecture, developers have to decompose a monolithic mega-kernel into
smaller sub-tasks for improved thread coherence and reduced register pres-
sure. However, involving the handling of intricate nested control flows and
numerous interdependent program states, this process can be exceedingly
tedious and error-prone when performed manually.

Coroutines, a building block for asynchronous programming in many
high-level CPU languages, exhibit untapped potential for restructuring
GPU kernels due to their versatility in control representation. By extending
∗Kun Xu is the corresponding author.

Authors’ addresses: Shaokun Zheng, BNRist, Department of CS&T, Tsinghua University,
Beijing, China, zsk20@mails.tsinghua.edu.cn; Xin Chen, BNRist, Department of CS&T,
Tsinghua University, Beijing, China, xin-chen22@mails.tsinghua.edu.cn; Zhong Shi,
BNRist, Department of CS&T, Tsinghua University, Beijing, China, shizhong24@mails.
tsinghua.edu.cn; Ling-Qi Yan, University of California, Santa Barbara, Santa Barbara,
United States of America, lingqi@cs.ucsb.edu; Kun Xu, BNRist, Department of CS&T,
Tsinghua University, Beijing, China, xukun@tsinghua.edu.cn.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
© 2024 Copyright held by the owner/author(s).
0730-0301/2024/12-ART281
https://doi.org/10.1145/3687766

Luisa [Zheng et al. 2022], we implement an asymmetric, stackless coroutine
model with programming language support and multiple built-in schedulers
for modern GPUs. To showcase the effectiveness of our model and imple-
mentation, we examine them in different application scenarios, including
path tracing, SDF rendering, and incorporation with custom passes.

CCS Concepts: • Computing methodologies → Rendering; Parallel
programming languages; • Software and its engineering → Domain
specific languages; Compilers; Coroutines.
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1 INTRODUCTION

Modern GPUs have evolved into powerful general-purpose paral-
lel computing devices, capable of handling increasingly complex
rendering tasks. However, although feasible and convenient, im-
plementing a heavy workload such as path tracing in a monolithic
mega-kernel is usually not the optimal solution. Low hardware uti-
lization may occur, due to the overwhelming thread divergence in
both control flow and memory access.
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Fig. 2. Wavefront path tracing decomposes the path tracing logic into

smaller sub-kernels, each handling a rendering stage. A scheduling kernel

is employed to sort the path states into queues for the sub-kernels. The

batched processing of similar paths improves thread coherence on GPUs.

For such reasons, graphics developers often have to refactor a
rendering task into multiple smaller GPU kernels and carefully plan
their execution for improved performance. A well-known example
is wavefront path tracing [Laine et al. 2013], which decomposes the
mega-kernel path tracing process into multiple sub-kernels. At each
iteration, a scheduler kernel sorts the paths into per-kernel queues
for coherent batched tracing and shading (Fig. 2).
However, manually splitting and scheduling mega-kernels is

rather complicated and error-prone. Restructuring of intricate nested
control flows, collection of numerous states scattered across mod-
ules, management of various runtime resources, etc., are each hard
enough to handle, not to mention the deep coupling in between.
Such case-by-case tedious labor prompts us to seek a unified,

automated solution, which would necessarily involve three parts:

(1) Code transformation that automatically decomposes the pro-
gram into subroutines with user-specified marks;

(2) Data-flow analysis that determines the live states across split-
ting points and their usage in each subroutine; and

(3) Built-in schedulers that efficiently execute the resulting sub-
routines and manage the live states;

so that no longer would and should developers be distracted by
manual refactoring of sophisticated rendering tasks. Instead, they
could concentrate on the expression of the algorithm in a mega-
kernel manner. The underlying framework would take over the most
annoying code transformation work and provide various scheduling
schemes for them to try out.

We observe that these demands are closely linked to the concept
of coroutines, an asynchronous programming construct widespread
in high-level CPU languages, typically implemented as suspendable
functions. The suspension operation captures the current program
state and remaining instructions into a closure, known as the con-
tinuation, and then transfers control back to the caller. When the

continuation is later invoked, it resumes execution from the suspen-
sion point, as if the program had never stopped. With both logic and
data encapsulated in the closure, the resumption can be strategically
deferred, thus providing flexibility in scheduling.

Incorporating this construct into GPU programming, suspension
points can act as execution barriers that divide a monolithic kernel
into smaller sub-stages. The resumption of these sub-stages can then
be rearranged by suitable schedulers at opportune times, thereby
enhancing performance.
However, despite their established presence in many CPU lan-

guages, adapting coroutines for GPU programming is non-trivial
due to the distinct architectures:

• Opaque hardware-managed thread context. Unlike CPUs,
which usually allow direct manipulation of the call stack via
their instruction sets, GPUs manage thread contexts at the
hardware level, making them inaccessible to user programs.
A purely user-space implementation is required.

• Critical per-thread resource efficiency. The massive paral-
lelism of GPUs makes it crucial to manage coroutine frames
efficiently. Reducing per-thread register usage and memory
bandwidth is essential to maximize hardware utilization.

• Multi-level asynchronicity. Coroutines’ deferred resumption
adds another level of asynchronicity to the already asynchro-
nous GPU execution, necessitating specialized schedulers for
effective latency hiding and resource management.

Therefore, a suitable GPU coroutine model must be carefully chosen,
accompanied by pragmatic, hardware-oriented optimizations in
both the language and runtime implementation.
We opt for an asymmetric, stackless coroutine model. We base

the coroutine language features and runtime support on Luisa, to
reuse its constructs while avoiding platform-specific details. The
implementation not only supports traditional asynchronous pro-
gramming patterns, such as generators and await, but is also tailored
for compute-intensive tasks on massively parallel GPU hardware
with multiple built-in schedulers. As shown in Fig. 3, with the pro-
posed language and runtime features, rewriting a mega-kernel can
be accomplished in two simple, decoupled steps: marking suspen-
sion points and handing it over to a chosen scheduler, without any
kernel logic modification.
To demonstrate the effectiveness of the GPU coroutine concept

and to examine the practicality of our implementation, we con-
ducted experiments across multiple applications and settings. We
transformed path tracing and SDF rendering applications, origi-
nally written as mega-kernels, into versions utilizing coroutines
and measured the performance gains with the built-in schedulers.
Additionally, we showed that GPU coroutines can serve as a general
control-flow restructuring tool, simplifying the incorporation of
external computation passes during the execution of a mega-kernel.

In summary, our contributions include
(1) The introduction of the coroutine concept into GPU program-

ming, observing and highlighting its deep connections to
kernel splitting and scheduling techniques;

(2) A systematic design of the coroutine model that adapts well
to modern GPUs, along with a practical implementation of
language constructs and runtime support; and
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(3) An exploratory study of using coroutines in massively paral-
lel computing, demonstrated through several representative
rendering applications.

2 RELATED WORK AND BACKGROUND

2.1 GPGPU Programming

Programmability is an everlasting topic in the evolution of GPUs.
Even before the birth of programmable graphics hardware and APIs,
pioneering endeavors have modeled early GPUs as SIMD computers
and compiled procedural shaders to combinations of multiple fixed-
function rendering passes [Lastra et al. 1995; Olano and Lastra 1998;
Peercy et al. 2000]. Entering the programmable era, various efforts
were made to bring high-level language features and interfaces to
rasterization shader programming [Mark et al. 2003; McCool et al.
2002; Proudfoot et al. 2001]; or to explore the potential patterns for
generic computation [Buck et al. 2004; Hou et al. 2008].

Today, graphics processors are not just specialized rasterizers but
powerful general-purpose computing hardware, thus often referred
to as general-purpose GPUs (GPGPUs). They leverage the single
instruction, multiple threads (SIMT) execution model to achieve mas-
sive parallelism and latency hiding, where a single program (kernel)
is dispatched to many lightweight GPU threads to process multi-
ple data streams simultaneously. In companion, modern shading
languages (such as HLSL, GLSL, CUDA C++, and Metal Shading
Language) are high-level C/C++-style imperative languages with
tailored syntax and specialized standard libraries for this parallel
SIMT programming model and GPU-specific functionalities.
As co-processors, GPUs are typically employed in a host-device

manner via graphics APIs such as DirectX, Vulkan, CUDA, and
Metal. The host-side (CPU) applications take responsibility for man-
aging the runtime resources (buffers, textures, etc.) and scheduling
the device tasks (memory transfer, kernel execution, etc.). To hide
CPU-GPU communication latency and maximize the computation
throughput, it is preferable that applications dispatch commands in
a non-blocking, asynchronous manner.
While modern GPGPUs have rich computation capability and

general-purpose programmability, achieving optimal hardware uti-
lization and performance still necessitates expertise and meticulous
adjustment for the intended application and platform. Optimiza-
tion requires the consideration of both the device-side kernels and
host-side scheduling, such as control flow coherence, register pres-
sure, memory access, command grouping, etc., each with numerous
context-dependent strategies and trade-offs. For a comprehensive
review of today’s optimization techniques for GPGPU programming,
we refer our readers to [Hijma et al. 2023].

2.2 Domain-Specific Graphics Frameworks

To ease graphics programming, domain-specific languages and
frameworks have surfaced since the very inception of programmable
graphics hardware. In recent years, with the emergence of ray-
tracing hardware, intricate graphics tasks such as physically based
(differentiable) rendering are increasingly offloaded onto GPUs. This
trend has spurred the development of GPU ray-tracing frameworks
to handle highly complicated device-side logic that involves dy-
namism and polymorphism, as needed by material evaluation.

For example, ShaderComponents [He et al. 2017] and Slang [He
et al. 2018] introduce interfaces and generics into shading lan-
guages for maintainable and extensible shader variant management.
SLANG.D [Bangaru et al. 2023] brings first-class automatic differ-
entiation to Slang while preserving the type-safe interface feature.
Rodent [Pérard-Gayot et al. 2019] exploits AnyDSL [Leißa et al.
2018], a partial-evaluation language and compiler, to generate spe-
cialized renderers for each scene to achieve the optimal runtime
rendering performance. The Selos [Seitz et al. 2019] shading system
employs Terra [DeVito et al. 2013], a multi-stage metaprogram-
ming language, to ease shader implementation. Enoki [Jakob 2019]
is the underlying differentiable computing library for the Mitsuba
2 [Nimier-David et al. 2019] renderer. It traces array operations and
just-in-time (JIT) compiles them into kernels that materialize the
computation.Dr.JIT [Jakob et al. 2022] fuses the program traces into
mega-kernels, resolving Enoki’s performance issues from frequent
global memory I/O of intermediate arrays.
Our proposed GPU coroutine model and Dr.JIT share the same

objective of generating kernels with appropriate granularity, but
the approaches are opposite: Dr.JIT fuses small array operations
into larger kernels to reduce launch overhead and I/O traffic, while
we split mega-kernels to lower register pressure and improve sched-
uling. Our model provides better support for control flows: Dr.JIT’s
symbolic mode does not support kernel splitting and synchroniza-
tion within control flows, while its evaluated mode tends to incur
non-negligible performance penalties.

Luisa [Zheng et al. 2022] combines the idea of embedded domain-
specific languages and JIT compilation to enable the dynamic con-
struction of polymorphic shader code. Additionally, it provides a
unified runtime layer for cross-platform GPU programming. Our
implementation extends Luisa’s DSL and runtime interfaces, lever-
aging its multi-stage programming ability. In Appendix A, we offer
a brief review of Luisa to provide readers with an overview of the
base system’s programming interfaces and capabilities.
In the evolution of these systems, the increasing utilization of

compiler knowledge and techniques, such as code transformation
and static analysis, is noteworthy. This motivates us to seek the
programmatic solution to flexible kernel splitting and scheduling.
Indeed, our GPU coroutine implementation also makes heavy use
of compiler techniques.

2.3 Coroutines

In the general context, coroutines refer to suspendable functions
that (1) have persistent program states (values of local data) across
successive invocations and (2) allow control reentrance to the point
where the control previously leaves at suspension [Marlin 1980].

The coroutine concept has a deep-rooted history since the early
era of computer programming languages. According to Moura and
Ierusalimschy [2009], Conway [1963] is attributed as the first to
introduce coroutines in written literature. During the development
of the COBOL compiler, he modeled coroutines as cooperative,
intercommunicating subroutines that form an autonomous pro-
gram together, whose original application was for organizing the
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� �
1 Kernel2D kernel = [&]( UInt sample_id) {
2 Float3 Li = make_float3 (0.f);
3 Float3 beta = make_float3 (1.f);
4 UInt2 pixel_id = dispatch_id ().xy();
5 sampler ->start(pixel_id , sample_id );
6 auto ray = camera ->generate_ray(sampler , pixel_id );
7 $for (depth , max_depth) {
8 auto hit = scene ->intersect(ray);
9 $if (hit ->miss ()) {
10 Li += light_sampler()->evaluate_miss (...);
11 $break;
12 };
13 $if (hit ->is_light ()) {
14 Li += light_sampler()-> evaluate_light (...);
15 };
16 auto light_sample = light_sampler()->sample (...);
17 auto surf_eval = scene ->evaluate_surface (...);
18 beta *= ...;
19 };
20 film ->accumulate(pixel_id , Li);
21 };
22
23 Shader2D s = device.compile(kernel );
24 for(uint i = 0; i < spp; i++) {
25 stream << s(i). dispatch(width , height );
26 }
27 stream.synchronize ();� �

� �
1 // Step 1: add suspension marks to the original kernel
2 Coroutine coro = [&]( UInt sample_id) {
3 Float3 Li = make_float3 (0.f);
4 Float3 beta = make_float3 (1.f);
5 UInt2 pixel_id = dispatch_id ().xy();
6 sampler ->start(pixel_id , sample_id );
7 auto ray = camera ->generate_ray(sampler , pixel_id );
8 $for (depth , max_depth) {
9 $suspend ();
10 auto hit = scene ->intersect(ray);
11 $if (hit ->miss ()) {
12 $suspend ();
13 Li += light_sampler()->evaluate_miss (...);
14 $break;
15 };
16 $if (hit ->is_light ()) {
17 Li += light_sampler()-> evaluate_light (...);
18 };
19 $suspend ();
20 auto light_sample = light_sampler()->sample (...);
21 $suspend ();
22 auto surf_eval = scene ->evaluate_surface (...);
23 beta *= ...;
24 };
25 film ->accumulate(pixel_id , Li);
26 };
27
28 // Step 2: create a scheduler to launch tasks
29 PersistentThreadsSchedulerConfig config{
30 .thread_count = 32 * 1024, /* 2^15 */
31 .block_size = 128,
32 };
33 PersistentThreadsScheduler s{device , coro , config };
34 // or StateMachineScheduler / WavefrontScheduler
35 for(uint i = 0; i < spp; i++) {
36 stream << s(i). dispatch(width , height );
37 }
38 stream.synchronize ();� �

Fig. 3. A typical use case of rewriting a mega-kernel path tracer (left) using GPU coroutines and scheduling it with the built-in scheduler (right). Step 1: Users

can conveniently specify the splitting points using the $suspend keyword, and the system automatically handles the code transformation and live state

computation. Step 2: Multiple built-in schedulers, such as the persistent-threads model, are available for scheduling the execution and managing the states of

massively parallel coroutine instances on the GPU device.

compilation pipeline of lexer/parser components. Later the corou-
tine concept was reified in multiple early languages (such as Sim-
ula [Birtwhistle et al. 1979] and Modula-2 [Wirth 1988]), with its
flexibility in control representation honored. In many modern lan-
guages, implicitly or explicitly, from scratch or with extensions,
coroutines have become the backbone of many asynchronous pro-
gramming patterns [Elizarov et al. 2021], such as the async/await

idiom in C#, Kotlin, Python, Rust, C++, etc.
Despite the diversity in syntactic forms and compiler implemen-

tations, coroutines in different languages can be classified by three
characteristic dimensions [Moura and Ierusalimschy 2009]:

(1) Symmetric vs asymmetric control transfer. Symmetric corou-
tines can transfer control directly to another coroutine, while
asymmetric ones may only transfer control to the caller.

(2) Stackful vs stackless suspension. Stackful coroutines can sus-
pend from inside arbitrarily nested functions, while stackless
ones may only suspend from the top-level coroutine body.
Stackful coroutines are generally more powerful.

(3) First-class vs constrained language constructs. Coroutines as
first-class language constructs provide users with full control

over a coroutine’s creation, suspension, resumption, storage,
scheduling, etc., while the constrained ones only support
restricted forms.

While coroutine support has become common in CPU languages,
to our knowledge, there has been little effort to explicitly inte-
grate them into GPU kernel programming. This gap may be due
to the traditional focus of GPGPUs on data-oriented applications,
as coroutines are typically asynchronous constructs used for low-
computation, I/O-heavy tasks.

In this context, our exploration of coroutines in a massively paral-
lel environment not only benefits the GPU domain but also provides
a complementary perspective to modern CPU languages. Inspired by
our work, CPU programmers may consider extending coroutines to
schedule data-oriented tasks similarly, such as in entity-component
systems in game engines.

2.4 Kernel Reorganization for Scheduling

Some works have investigated kernel or shader reorganization for
more efficient scheduling. These efforts can be seen as preliminary
explorations that have inspired our GPU coroutine model.
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For example, to virtualize the very limited resources on early
programmable graphics hardware, Chan et al. [2002] presented a
Recursive Dominator Split algorithm to partition a fragment shader
into multiple passes based on a cost model. This method was then
extended by Foley et al. [2004] with support for multiple render
targets. Larrabee [Seiler et al. 2008] models and schedules graphics
pipeline stages as fibers (i.e., user-space threads) for latency hiding.
Attributed to its special many-core x86 architecture with almost
identical programmability to a CPU, scheduling is fully performed in
a software-based manner with maximized flexibility. OptiX [Parker
et al. 2010] implements a specialized compilation process to combine
user-provided shaders into a ray tracing mega-kernel, which utilizes
a continuation mechanism to pass program states between stages.
Recent generations of GPU hardware have introduced Shader Exe-
cution Reordering techniques to on-the-fly sort threads on the same
stream-multiprocessor for better execution coherence [Rusch and
Hart 2022]. GPU Work Graphs [Patel and Riddell 2024] are another
forthcoming feature in DirectX and Vulkan for more efficient and
flexible GPU-driven task scheduling.

These works commonly suggest that significant performance im-
provements can be achieved through kernel splitting and scheduling
strategies. However, their implementations are tied to specific archi-
tectures or pipelines, limiting their extensibility to other hardware
and applications. We abstract and generalize the key insights into an
explicit coroutine model, associating kernel splitting with coroutine
suspension and sub-kernel scheduling with coroutine schedulers.
As we will discuss in Sec. 3, our coroutine model

• is compatible with most current graphics hardware, requiring
no specialized architectures or instructions;

• can be easily integrated into existing applications via user-
friendly interfaces, necessitating minimal changes;

• decouples the splitting and scheduling steps to allow conve-
nient trials over different combinations of suspension points
and schedulers; and

• supports extension with custom schedulers or external ren-
dering/computation passes for novel application scenarios.

This approach is aligned with our goal to provide a generic construct
for flexible splitting and scheduling of rendering tasks.

3 DESIGN OVERVIEW

3.1 Objectives and Principles

Coroutines in CPU programming languages have exhibited vari-
ous forms of design and implementation, each adapted to different
languages, tasks, and runtime environments.

As we introduce coroutines into the GPU domain, it is crucial that
they maintain a simple yet expressive interface while being tailored
to the unique architectures of GPUs. To achieve these objectives, we
have defined three key principles for our GPU coroutine model: com-
patibility with current systems, flexibility for performance tuning,
and customizability for novel applications.

Compatibility with current systems. In GPU programming, low-level
instructions for function stack management and thread scheduling
are typically not exposed to users. As a result, a user-space coroutine
implementation, including both language and runtime support, is

crucial for ensuring compatibility. Meanwhile, our coroutine con-
structs are based on the work done in Luisa, which provides a
unified abstraction for kernel authoring and runtime management
across various platforms. Therefore, our implementation must in-
tegrate seamlessly with the existing system components, enabling
easy adoption by existing applications with minimal modifications.

Flexibility for performance tuning. Introducing coroutines to GPUs
adds another layer of asynchronicity to the already asynchronous
task execution. Depending on the workload, there may be multiple
ways to designate suspension points within a kernel. The resulting
sub-stages can then be scheduled in various ways: either within
a reformed kernel, across different kernels, or using a mixed ap-
proach. The ability to independently combine splitting and schedul-
ing schemes facilitates application-specific performance tuning.

Customizability for novel applications. While we provide generic
schedulers that should perform reasonably well for typical cases,
capable users might occasionally want to further optimize their ap-
plications with custom schedulers that incorporate domain-specific
knowledge. Therefore, besides offering high-level user-friendly in-
terfaces, our framework should also provide access to low-level
compiler transformation information and explicit control over sub-
routine resumption. This will enable novel scheduling schemes and
application scenarios that use GPU coroutines as a generic control-
flow restructuring construct.

3.2 Choice of the GPU Coroutine Model

The practical design of coroutine interfaces involves two essen-
tial components: (1) the syntactic features for declaring coroutines,
referred to as the coroutine language model, and (2) the runtime
constructs for executing coroutines and managing their contexts,
known as coroutine schedulers.

3.2.1 The language model. We have opted for an asymmetric, stack-
less coroutine language model, aligned with those of many modern
languages, such as Kotlin [Elizarov et al. 2021] and C++20 [Mazières
2021]. The rationales for this choice are as follows:

• Asymmetric coroutines are considered equally expressive to
symmetric ones but have a more structured control hierarchy
that simplifies compiler implementation; and

• Stackless coroutines are realizable with pure language-level
transformation without dependence on special machine/OS
instructions (arbitrary jumps, runtime call stack dumping and
restoring, etc.) that are unavailable on GPUs.

Theoretically, this model may be reinterpreted as a continuation-
passing-style (CPS) transformation on the original program [Appel
1992; Danvy and Filinski 1992; Sussman and Steele 1998]; although
in practice, it is usually unnecessary to construct the compiler in an
explicit CPS form [Flanagan et al. 1993].
As depicted in Fig. 4, the suspension of a coroutine’s execution

can be viewed as a call with current continuation. This call transfers
a closure to the scheduler, subsuming the remainder of the program
instructions (i.e., the current continuation) and the program context
that carries live states. A later invocation of the continuation closure
executes the ensuing instructions from the suspension point as if
the original program were resuming.
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Fig. 4. The continuation-passing-style (CPS) transformation on a coroutine. A

suspension can be viewed as a call with current continuation to the scheduler.
The continuation closure contains both the remaining program logic and

the live states. A later call to this closure executes the continuation of the

suspension point as if the program resumes.

The control over a function’s suspension and resumption makes
the coroutine model a capable infrastructure for restructuring con-
trol flows. As we will demonstrate, many high-level asynchronous
programming patterns, such as async/await, can be implemented
using it. This model also provides enough flexibility for reorganizing
GPU kernels, which fulfills the primary purpose of this paper.

3.2.2 The schedulers. Schedulers manage coroutine contexts and or-
chestrate their suspendable execution. They can be implemented in
various styles, existing either as implicit or explicit objects to handle
individual or batched coroutine instances. For example, generators
in Python [Van Rossum et al. 2007] can be viewed as a form of im-
plicit scheduling for individual coroutines. In contrast, coroutines in
system languages like C++20 may be scheduled more explicitly with
promise objects and coroutine handles [Mazières 2021], emphasizing
versatility and performance.

To strike a balance between ease of programming and flexibil-
ity, we expose coroutine schedulers as explicit objects with layered
interfaces. For typical use cases, we offer several optimized built-
in schedulers with a uniform, high-level interface, allowing users
to quickly experiment with various kernel splitting and schedul-
ing schemes. For advanced users, we provide low-level interfaces
for direct access to coroutine frames and continuation functions,
thus enabling the development of custom schedulers for specific
application needs.

4 PROGRAMMING INTERFACES

Following the design of the language model and schedulers, we have
extended Luisa’s DSL and runtime (see Appendix A for a brief re-
view) to incorporate coroutine support for GPU programming. Fig. 3

shows a typical usage example of how the resulting programming
interfaces can be used to split and schedule a path tracer originally
written in mega-kernel style.

Specifically, only two steps are required: (1) define the Coroutine

DSL function with user-designated suspension marks, and (2) create
and configure a coroutine scheduler to manage the state storage
and execution planning. The first step corresponds to the coroutine
language constructs described in Sec. 4.1, while the second pertains
to the scheduler interfaces detailed in Sec. 4.2.

4.1 Language Constructs

We have extended Luisa’s C++-embedded DSL to incorporate lan-
guage features for defining and using asymmetric, stackless corou-
tines. A new function category, Coroutine, has been introduced to
type the coroutine functions, alongside the existing Kernels and
Callables. This extension includes companion support for suspen-
sion marks (with the $suspend keyword) and high-level program-
ming patterns such as Generators (with the $yield keyword) and
$await, which facilitate coroutine construction and usage. Addi-
tionally, for scheduler implementations and advanced applications,
low-level interfaces for direct subroutine invocation and state frame
management are available on demand.

4.1.1 Coroutine functions. We use a template class type, Coroutine,
to define device-side coroutines in the DSL:� �

1 template <typename ... Args >
2 class Coroutine;� �

Similar to Kernels and Callables, the class constructor accepts an
underlying definition function of the Coroutine, which is invoked
with proxy objects to convert expressions and statements into an
abstract syntax tree (AST). Note that with user-defined class tem-
plate argument deduction (CTAD) guides [Horton and Van Weert
2023], the template arguments are automatically deduced from the
definition function, eliminating the need for manual specification.� �

1 Coroutine coro = [](Var <Args > args ...) {
2 /* body of the coroutine to be tracked into an AST */
3 };� �

Currently, a Coroutine’s return type is restricted to void. That said,
in advanced cases, users can explicitly install values into the corou-
tine state frame and obtain them elsewhere, as detailed in Sec. 4.1.4.
We provide a built-in Generator class (Listing 1) for such needs, with
usage similar to Python, where the yielded values are passed through
a user-designated field, __yielded_value, in the frame. Sec. B.1 pro-
vides its implementation with our coroutine interfaces.

Automatic program transformation and analysis passes are then
performed to lower the coroutine to normal device-side functions,
upon which the original mega-kernel-style function is split and
materialized into a set of entry and continuation subroutines and
the actual layout of the state frame is calculated.

Like Callables, a Coroutinemay call built-in functions (e.g., math
functions like sin and cos) or other user-defined Callables; and the
transformed subroutines are invocable from Kernels and Callables.
They also share the common ability to capture literal values and
runtime resources directly from the host code in Luisa.
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1 Kernel1D kernel = [] {
2 Generator <uint(uint)> generate_numbers = []( UInt n) {
3 UInt i = 0u;
4 $while (i < n) {
5 $yield(i);
6 i += 1u;
7 };
8 };
9 // use a range -for loop to step over the generator
10 for (UInt x : generate_numbers (100u)) {
11 device_log("x = {}", x);
12 }
13 // or equivalently , use a while loop
14 auto iter = generate_numbers (100u);
15 $while (!iter.update (). is_terminated ()) {
16 UInt x = iter.value ();
17 device_log("x = {}", x);
18 };
19 };� �
Listing 1. Example usage of the built-in Generator class. Sec. B.1 provides

the internal implementation.

� �
1 Coroutine nested2 = []( UInt n) {
2 $for (i, n) {
3 device_log("{}/{}", i, n);
4 $suspend ();
5 };
6 };
7 Coroutine nested1 = [&]( UInt n) {
8 $for (i, n) {
9 $await nested2(i);
10 };
11 };
12 Coroutine top_level = [&]() {
13 $await nested1 (10u);
14 };� �
Listing 2. Example usage of the built-in $await keyword to support chained
suspension in nested coroutine invocations. The internal implementation is

included in Sec. B.2.

As a special case, it is legal for a Coroutine to call the subroutines
of another, as they have become ordinary Callables after trans-
formation. This capability can be leveraged to support high-level
abstraction patterns previously only available in CPU languages,
such as the built-in $await keyword we provide for chained suspen-
sion in nested coroutine invocations (Listing 2). Sec. B.2 provides
the implementation for this feature.

4.1.2 Coroutine suspension marks. A new DSL control-flow key-
word, $suspend, is introduced for marking suspension points inside
coroutines. The compiler transformation passes will automatically
split the original kernel at these marks, each leading to a continua-
tion subroutine. Notably, the $suspend marks are fully compatible
with any other control flows. Users can use them within $if, $while,
and $switch bodies, regardless of whether these are deeply nested
or contain $break, $continue, and early $return statements. This
capability is particularly important for handling intricate rendering
logic, such as in path tracing.

4.1.3 Low-level interfaces for subroutine selection and invocation.
Internally, each suspension point is assigned a unique identification
token, which is then mapped to the corresponding continuation

� �
1 Coroutine coro = [&](...) {
2 ...
3 // suspend with an anonymous token mark
4 // (internally maps to token number 1)
5 $suspend ();
6 ...
7 // suspend with a user -defined token mark
8 // (internally maps to token number 2)
9 $suspend("optional mark");
10 ...
11 };
12 Callable some_scheduler_or_user_function = [&](...) {
13 ...
14 // invoke a subroutine with the internal token number
15 // (typically done in a general -purpose scheduler)
16 coro [1](...);
17 ...
18 // invoke a subroutine with the user -specified mark
19 // (for special , application -related needs)
20 coro["optional mark"](...);
21 ...
22 };� �
Listing 3. An example of indexing continuation subroutines with internal

tokens or user-specified names. Note that this is intended for flexibility

in scheduler implementation or advanced custom applications; it is not

required for typical use cases of kernel splitting and scheduling.

subroutine after transformation. Schedulers can directly index the
subroutines using these tokens via the low-level interfaces. More-
over, $suspend also accepts an optional string tag for advanced users
to identify the subroutines more semantically. Listing 3 provides an
example of these two indexing styles.
The transformed subroutines are ordinary Callables, with their

first argument being the coroutine state frame. The remaining ar-
guments are inherited from the source Coroutine’s definition. As
described in Sec. 5.2, the transitions between subroutines and the
corresponding frame fields to be saved and restored are encoded in
a graph structure. Fig. 5 illustrates the representation of the trans-
formed subroutines.

With the low-level interfaces, users can exert direct control over
when and where specific subroutines are resumed and are thus fully
responsible for selecting the correct subroutines on the appropriate
occasions; otherwise, undefined behaviors may occur. Listing 4 pro-
vides an example of how subroutines are reorganized into a generic
state-machine kernel using these low-level interfaces directly. No-
tably, with Luisa’s multi-stage programming capabilities, we can dy-
namically compose the scheduler kernel based on a runtime-known
number of subroutines (Line 20–22).

4.1.4 Low-level interfaces for state frame management. Across the
suspension-resumption boundaries, some variables and states (such
as the target continuation) must be passed on to ensure a correct pro-
gram context. We refer to these as live states. They are automatically
computed with our static program analysis passes (Sec. 5).
In typical use cases, as demonstrated in Fig. 3, state frames are

managed by schedulers. Users can treat them as opaque and are
not required to explicitly handle their creation, storage, or update.
However, for scheduler implementations and custom applications,
we provide low-level interfaces that allow for direct inspection and
manipulation of the coroutine frames.
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� �
1 Coroutine coro = []( UInt n) {
2 UInt r = n % 2u;
3 $if (r == 0u) {
4 $suspend("true branch");
5 device_log("{} is even.", n);
6 } $else {
7 $suspend("false branch");
8 device_log("{} is odd.", n);
9 };
10 device_log("{} % 2 = {}", n, r);
11 };� �

� �
1 struct Frame {
2 uint3 coro_id; // user -defined coroutine index
3 uint target_token; // token of the target subroutine
4 uint r; // live state across suspension
5 };
6 __device__ void subroutine_entry(Frame &frame , uint n) {
7 uint r = n % 2u;
8 if (r == 0) {
9 frame.r = r; // save the live state
10 frame.target_token = 1u; // update the target token
11 return; // transfer control back to caller
12 } else {
13 frame.r = r; // save the live state
14 frame.target_token = 2u; // update the target token
15 return; // transfer control back to caller
16 }
17 }
18 __device__ void subroutine_true_branch(Frame &f, uint n) {
19 uint r = frame.r; // restore the live state
20 device_log("{} is even.", n); // continuation instruction
21 device_log("{} % 2 = {}", n, r); // continuation instruction
22 frame.target_token = TERMINATION; // termination reached
23 return; // transfer control back to caller
24 }
25 __device__ void subroutine_false_branch(Frame &frame , uint n) {
26 uint r = frame.r; // restore the live state
27 device_log("{} is odd.", n); // continuation instruction
28 device_log("{} % 2 = {}", n, r); // continuation instruction
29 frame.target_token = TERMINATION; // termination reached
30 return; // transfer control back to caller
31 }� �

Fig. 5. An illustration of the internal representation of the state frame and extracted subroutines of a transformed Coroutine after compilation passes.

Each subroutine is an ordinary Luisa Callable, where the first argument is the state frame and the remaining arguments are inherited from the original

definition. Upon resumption, the subroutine reads the live states from the frame and executes the continuation instructions. When the next suspension point

or termination is reached, the subroutine saves the live states and updates the target_token field of the frame.� �
1 // definition of a coroutine function
2 Coroutine c = [&]( Args ... args) { /* ... */ };
3
4 // The subroutines and the state frame are materialized
5 // after the coroutine transformation passes (done in
6 // the constructor ). Now , the state frame type and the
7 // subroutines may be used in other device functions.
8 Kernel3D state_machine = [&](...) {
9 // initialize the state frame
10 CoroFrame frame = c.instantiate(dispatch_id ());
11 // call the entry subroutine
12 c.entry ()(frame , ...);
13 // state machine to walk between subroutines
14 $loop {
15 $switch (frame.target_token) {
16 // resume the continuation subroutine associated
17 // with the target token of the suspension point
18 // note: entry with token 0 is handled aforehand
19 // and is thereby skipped here
20 for (uint i = 1; i < c.subroutine_count (); i++) {
21 $case (i) { c[i](frame , ...); };
22 }
23 // terminate if no continuation
24 $default { $return (); };
25 };
26 };
27 };� �
Listing 4. An example of reorganizing the transformed subroutines into a

state-machine kernel, utilizing the low-level coroutine frame management

and subroutine invocation interfaces directly.

We introduce a built-in CoroFrame type for in-kernel state frame
management with the DSL, similar to the existing Var<T> objects.
The class definition is shown in Listing 5, where the CoroFrameDesc

object, provided by the compiler passes, describes the underlying
coroutine frame structure and the name-to-index mapping of user-
designated fields. The CoroFrame utilizes this descriptor to create
internal DSL variables, referenced by the RefExpr member.
The underlying representation of the frame is a standard Luisa

structure. For compact storage, live states are decomposed into
scalar fields and packed into a single frame for all subroutines from
the same coroutine.

The dispatch index (coro_id) and the token of the target continu-
ation (target_token) are two special fields in the frame. These fields
are utilized by schedulers to identify the location and execution state
of a coroutine instance. The dispatch index is (optionally) initialized
at the frame’s creation during coroutine instantiation, and the target
token is automatically updated at each suspension point.� �

1 // dispatch_id () implicitly reads coro_id in coroutines
2 Coroutine coro = [](...) { auto id = dispatch_id (); };
3 // create a frame with the user -provided index
4 CoroFrame frame = coro.instantiate(index);
5 // read the stored index explicitly
6 UInt3 index = frame.coro_id;
7 // read the token of the resumption target
8 UInt target = frame.target_token;� �

We also provide methods for explicitly storing a DSL value as a
state frame fieldwithin a Coroutine using the new keyword $promise.
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1 class CoroFrame {
2 private:
3 const CoroFrameDesc *_desc; // frame descriptor
4 const RefExpr *_expression; // variable in the AST
5
6 public:
7 // create a frame variable with the given descriptor
8 static CoroFrame create(const CoroFrameDesc *desc);
9
10 public:
11 // special field for the dispatch index
12 UInt3 &coro_id;
13 // special field for the target subroutine token
14 UInt &target_token;
15 // method to retrieve a field at the given index
16 template <typename T> Var <T> &get(uint index);
17 // method to retrieve a user -designated field
18 template <typename T> Var <T> &get(string_view name);
19 };� �
Listing 5. Definition of the CoroFrame class for direct management of corou-

tine frames in the DSL. The actual layout of the underlying structure is

automatically computed by the compiler analysis passes. In typical use

cases, coroutine frames are managed by schedulers and opaque to users.

This value can later be retrieved from the frame by name in other
functions using the CoroFrame::get<T>(string_view) method:� �

1 Coroutine coro = [](...) {
2 $promise("some_value", x); // designate a field
3 };
4 // read the designated frame field (in other functions)
5 UInt v = frame.get <uint >("some_value");� �
This feature facilitates the implementation of Generators (Sec. B.1)
and simplifies the interaction with external custom passes.

We have specialized the buffer and sharedmemory class templates
in Luisa, enabling a frame to be easily stored in thread-local, block-
shared, or global memory. This flexibility allows for various data
layouts, including SoA (Structure-of-Arrays) and AoS (Array-of-
Structures), as well as other feasible configurations.

4.2 Scheduler Interfaces

Coroutine schedulers orchestrate the actual execution and resource
management. We offer several built-in schedulers for user conve-
nience. All these schedulers derive from the same base abstract class,
as shown in Listing 6. This setup enables convenient experimenta-
tion with different schedulers for the same coroutine.
Specifically, derived schedulers are required to implement the

virtual method _dispatch, which creates and dispatches the speci-
fied number of coroutine instances to the command stream. This
process uses the provided coroutine arguments and may occur in a
single pass or multiple passes. Necessary information, such as the
subroutine transition graph and the coroutine frame descriptor, is
accessible through the stored Coroutine object.
Schedulers have complete freedom to organize the transformed

subroutines into kernels, manage coroutine frames, and coordinate
command submission and execution. This flexibility allows for vari-
ous scheduling schemes, including the built-in ones and their diverse
options that we provide. For instance, Listing 7 illustrates how a
naive state-machine scheduler can implement this abstract interface.

� �
1 template <typename ... T>
2 class CoroScheduler {
3 protected:
4 Coroutine <T...> _coro;
5
6 private:
7 virtual void
8 _dispatch(Stream &stream , uint3 size , T... args) = 0;
9
10 public:
11 CoroScheduler(Coroutine <T...> coro) : _coro{coro} {}
12 // for syntactic sugar:
13 // stream << sched(args ...). dispatch(size)
14 // which internally calls the _dispatch () method
15 CoroTaskSubmitter operator ()(T... args) { /*...*/ }
16 };� �

Listing 6. The abstract interface for our built-in coroutine schedulers.

� �
1 template <typename ... T>
2 class StateMachine : public CoroScheduler <T...> {
3 private:
4 Shader3D <T...> _shader;
5
6 private:
7 void _dispatch(Stream &stream , uint3 size , T... args)
8 override {
9 stream << _shader(args ...). dispatch(size);
10 }
11
12 public:
13 StateMachine(Device &device , Coroutine <T...> coro)
14 : CoroScheduler{coro} {
15 Kernel3D state_machine = [&](T... args) {
16 /* see definition in Listing 4 */
17 };
18 _shader = device.compile(state_machine );
19 }
20 };� �
Listing 7. Implementation of the naive state-machine scheduler using the

abstract scheduler interface defined in Listing 6.

Wewill provide further details on the implementation of the built-in
schedulers in Sec. 6.
If beneficial, users can opt to implement customized schedul-

ing schemes in addition to the built-in ones, allowing application-
specific knowledge to be leveraged together with the rich infor-
mation we expose. One example is provided in Sec. 7.3, where an
external finite-difference pass is inserted at the suspension point to
estimate the ray differentials before texture evaluation. Additionally,
multiple common utility classes and functions are provided to fa-
cilitate the implementation of new schedulers, such as task queues
with atomic counters and device-side sorting kernels.

4.3 Comparison with the Alternative Model

Readers might wonder why we chose to expose explicit suspension
marks, along with supplemental low-level management interfaces
for advanced usage. An alternative approach could have solely of-
fered the more established async/await constructs, delegating all
scheduling to the compiler, as is common in many CPU languages.
However, we found our decision necessary to guarantee the desired
flexibility and performance when scaling to GPU programming:
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• Our model handles massively parallel GPU threads rather
than a few standalone coroutine instances. Efficient schedul-
ing requires fine-grained control over the frame layout and
the ability to reorganize subroutines. The async/await model
would be too opaque for implementing schedulers.

• The $suspend keyword marks the splitting point of the origi-
nal kernel. Making it explicit allows users to experiment with
different splitting strategies without altering the logic.

• We target the conventional kernel-based GPU programming
model, not the array-based style where each operation is itself
asynchronous. Rewriting a mega-kernel with complicated
logic, such as a path tracer, into async function chains requires
significant control-flow restructuring, which is non-trivial,
especially when handling nested branches and loops.

• High-level patterns such as await and generators can be con-
structed atop the low-level interfaces, but not vice versa.

Admittedly, this preference for flexibility and performance does
come at a cost. When directly operating the low-level interfaces, it is
the developers’ responsibility to ensure (1) the appropriate creation,
storage, and recovery of coroutine frames and (2) the correct choice
and invocation of the expected continuation subroutines with the
corresponding frames. Otherwise, undefined behavior might oc-
cur. However, such safety constraints mostly pertain to advanced
usage cases, such as custom scheduling. For typical users, using
the built-in schedulers is generally sufficient and recommended, as
demonstrated by the path tracing example in Fig. 3.

5 LANGUAGE FEATURE IMPLEMENTATION

To implement the language features for the coroutine model, we
perform a set of compiler transformations and analysis passes to
lower the DSL Coroutine constructs to ordinary device-compatible
functions and data types in Luisa.

5.1 Subroutine and State Frame Extraction

As mentioned in Sec. 3.2, our coroutines are equivalent to the CPS
transformation on the original program: a coroutine suspension
transfers the current continuation and the program context to the
scheduler, so when the scheduler calls back the continuation with
context, instructions in succession of the suspension point are exe-
cuted as if the original program resumes.
From this view, the substantial objective of our implementation

is to solve two problems for each suspension point:
(1) Which instructions would be executed in the continuation?
(2) What context should be passed on to the continuation?

Their solutions are supplied by the two major stages of the code
transformation passes: continuation extraction and state frame ma-
terialization. Besides, auxiliary pre and postprocessing passes are
also employed to canonicalize the input programs and organize the
transformed programs into a frontend-friendly form, respectively.
Details of the compiler analysis and transformation passes can

be found in Appendix C. Although the implementation follows a
similar outline to that of existing compilers, such as LLVM [Lattner
and Adve 2004] and Kotlin [Elizarov et al. 2021], special attention
must be paid to the critical per-thread resource efficiency when tar-
geting massively parallel GPUs. We combine intra-scope use-define
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Fig. 6. An example coroutine transition graph. Each node in the graph rep-

resents a continuation subroutine. The suspension-resumption relations

between them are modeled as directed edges with field-wise usage infor-

mation of the state frame. The states to load on subroutine resumption and

to store on suspension are also recorded in the graph.

analysis (Sec. C.3.1) and inter-scope liveness analysis (Sec. C.3.2) on
a per-aggregate-member basis to compute the involved live states at
each suspension-resumption boundary and pack them into a com-
pact state frame. The analysis results are fed back to the frontend
via the transition graph to aid scheduler implementation.

Besides, to accommodate the source-to-source transformation
within Luisa’s structured IR, we perform a control flow normal-
ization pass in the preprocessing step (Sec. C.1.1) and develop a
condition replay strategy to reconstruct the control flow of the
extracted continuations (Sec. C.2.3).

5.2 Subroutine Transition Graph Construction

The products of the compiler passes — the split subroutines and the
state transitions between them — are encoded into graphs. Fig. 6
depicts the structure of an example coroutine state transition graph.
Specifically, the split subroutines, each associated with an entry

or a suspension point, are represented as graph nodes. They are
materialized into normal device functions (i.e., Callables in Luisa)
that manipulate the live state frame and can be invoked both from
kernels and other device functions, allowing users to conveniently
wrap them into various scheduler styles.

Continuation relations between the subroutines are modeled as
graph edges, each connecting the source and target subroutines
of a suspension-resumption pair. We also embed field-wise usage
information (from the coroutine transformation) in the state frame
for each edge, detailing which fields should be written to at suspen-
sion and which are read upon resumption. Such information helps
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Table 1. A characteristic comparison between the built-in coroutine sched-

ulers. The table lists the general performance concerns and overhead sources

in GPU programming, where the “Low” ones are desired while the “High”

ones are better to avoid.

Scheduler Naïve Wavefront Persistent

Scheduling Granularity Thread Device Block

Thread Divergence High Low Low
Register Pressure High Low High

Global Memory Traffic Low High Low
Scheduling Overhead Low High High

reduce memory traffic, especially when utilized in a wavefront-style
scheduler with the SoA layout.

Schedulers might exploit the subroutine transition graph to opti-
mize the execution of the coroutines.

5.3 Support for High-Level Asynchronous Patterns

Like in many CPU languages, we support Generators and the $await
operator to facilitate structured asynchronous programming with
coroutines. As detailed inAppendix B, they are implemented through
the coroutine interfaces described in Sec. 4.1. This demonstrates the
expressiveness of our GPU coroutine model and the flexibility of
the provided interfaces. Other patterns are similarly possible.

6 BUILT-IN SCHEDULER IMPLEMENTATION

The coroutine transformation splits a mega-kernel into smaller sub-
routines, each carrying the continuation at the corresponding sus-
pension point. Calling a subroutine with the state frame effectively
runs the continuation with the stored context, as if the original
program resumes. When reaching the next suspension point (or
the final termination), the subroutine updates the state frame and
transfers control back to the caller.

Therefore, the design space of a coroutine scheduler includes two
major dimensions:

(1) The management of the coroutine state frames; and
(2) The arrangement of the subroutine execution occasions.

Modern GPUs provide quite rich options for both dimensions.
For example, the state frame can be stored locally, in the block-
shared memory, in the global memory, and so forth; either with
the layout of array-of-structures (AoS), structure-of-arrays (SoA),
or even their mixtures. Subroutines can be one-to-one wrapped
into kernels or selectively grouped, with each kernel executed by
a fixed thread or dynamically acquired by a persistent thread, etc.
Davidovič et al. [2014] reviewed various kernel organization and
scheduling strategies for GPU renderer implementation.

We provide three representative built-in schedulers out of the nu-
merous choices for user convenience. They are in the state-machine,
wavefront, and persistent-threads styles, respectively. Table 1 com-
pares their characteristics. We hope they can act as good starting
points for users to test different coroutine splitting schemes and
develop their application-specific scheduling strategies.
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Fig. 7. The design of our wavefront coroutine scheduler.

6.1 Naïve State-Machine Scheduler

The simplest way to run the subroutines is to reassemble them back
into a mega-kernel state machine. The aforementioned example
code in Listing 7 already provides the implementation.
This scheduler one-to-one maps a coroutine instance to a GPU

worker thread. A thread-local state frame is created first and the
entry subroutine is called. Then the kernel starts the state machine,
repeatedly polling the target token to determine and invoke the
associated subroutine until the special termination token is encoun-
tered. Note that the entry subroutine may not be the continuation
of any subroutine, thus called only once at the beginning and never
included in the state machine.
The forth-and-back conversion seems rather redundant. The

mega-kernel merely cycles its way back to yet another form of
mega-kernel without any possible performance or flexibility gains
from the coroutine transformation. However, its extreme simplicity
serves well as a testbed to validate the coroutine transformation
and a performance baseline in the experiments.

6.2 Wavefront Scheduler

The wavefront scheduler is a straightforward generalization of the
wavefront path tracing technique. As shown in Fig. 7, the basic
idea is to decompose the state machine into multiple sub-kernels,
each handling a subroutine. The state frames are stored in a global
buffer, loaded by the subroutines on resumption, and updated on
suspension. Transitions between subroutines are tracked by the
target token field in the frame.
In each iteration, we check the global frame buffer and collect

the indices of alive instances into a queue. A stable multi-split al-
gorithm [Ashkiani et al. 2016] is employed to cluster the indices
by their corresponding subroutines, ensuring physical coherence
and reducing the scheduling overhead. The sub-kernels are then
dispatched to process their attached instances referenced in the
queue. When a coroutine reaches termination, a new instance (if
any more) can be generated in place at the same frame buffer slot.
In this way, control flows are more likely to converge since all

threads execute the same subroutine during a dispatch. Register
pressure is also alleviated, with each sub-kernel containing only
a portion of the computation from the original mega-kernel and
hence fewer temporary states to keep.
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Fig. 8. Ablation study of the SoA frame layout and frame buffer compaction
optimizations in the wavefront coroutine scheduler. The figure shows the

rendering time (in seconds, shorter is better) of two backends: CUDA and

DirectX. The comparison is performed on the Lone Monk scene rendered at

1920x1440/1024spp, with 10 maximum bounces and Russian Roulette (RR)

applied from the 2
nd

bounce, on RTX-2080Ti. Both the SoA frame layout

and frame buffer compaction options help to reduce global memory traffic,

improving the overall performance.

Pragmatic details are yet to be arranged, such as the state frame
layout and sub-kernel launch order, which can have a significant
impact on performance. To improve the adaptation to different
scenarios, we provide several tuning options, inspired by exist-
ing works [Aila and Laine 2009; Blender Online Community 2024;
Garanzha and Loop 2010] on accelerating wavefront path tracing.

SoA frame layout. The SoA layout is a “transposition” of the con-
ventional AoS layout by storing each field of the state frame as a
separate scalar buffer. This enables sub-kernels to load and store
only the necessary state frame fields with the information from the
transition graph, reducing the required memory bandwidth. Also,
the scalar-stride layout may better fit the cache units on modern
GPUs, which can coalesce adjacent memory accesses into the same
cache sectors. However, for random access patterns without much
locality, the SoA layout may on the contrary waste the cache sectors.

Frame buffer compaction. Coroutine instances usually have uneven
lifetimes and thus terminate at varying times. Gaps are left in the
frame buffer when no more new instances are generated for replace-
ment, which hurts the locality of memory access. Users can enable
compaction to collect all active instances to the beginning of the
buffer when the load factor (percentage of non-terminated coroutine
instances) is below some threshold. However, the relocation of large
frames can consume a considerable memory bandwidth.
The effects of this option are studied in Fig. 8, together with the

aforementioned SoA layout optimization.

6.3 Persistent-Threads Scheduler

The mega-kernel state machines use only thread-local storage but
can often suffer from thread divergence and register pressure; while
the wavefront scheduler improves thread coherence but at the cost
of an undesired increase in global memory traffic, despite the opti-
mization options we support. Modern GPUs organize threads in a
block-wise manner on the stream-multiprocessors. Therefore, the
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Fig. 9. The design of our persistent-threads coroutine scheduler.

hidden balance between thread coherence and memory traffic might
be sought with the block-wise storage and computation resources.

The persistent-threads [Gupta et al. 2012] scheduler attempts to
exploit the fast block-shared memory (a programmable low-latency
on-chip L1 cache on modern GPUs shared by threads per block) for
state frame storage instead of frequent expensive global memory
accesses, and run block-wise state machines with batched coroutine
instances to improve intra-block thread coherence. Scheduled in
this style, threads are no longer transient with the same lifetime as
a single task but persist over multiple batches of tasks, hence the
name. Fig. 9 illustrates our persistent-threads scheduler design.

Task acquisition. A thread block acquires a batch of pending tasks
when the block decides to generate new tasks. The request is made
by a single atomic addition operation on a global task index counter,
issued from the leader thread in the block. To reduce global memory
atomic operations and ensure sufficient parallelism, the batch size
should be reasonably large (but not too large), typically a few times
of the block size.
The thread block then loops over the fetched coroutine tasks,

initializing their state frames in the shared memory. Block-wise
counters (stored in the shared memory, too) are also updated to
track the instance count of each subroutine.

Block-wise state-machine execution. Subroutines are organized into a
single-kernel state machine but executed blockwise-synchronously.
On each step, the leader thread peeks the subroutine counters to
pick the most common continuation in the block. Analogous to the
wavefront scheduler, indices of the interested instances are collected
into a queue, but stored in the fast sharedmemory this time. Then, all
threads run the same selected subroutine on the collected instances,
with the associated frames loaded from the shared memory into
local storage before invocation and written back after. Updates on
the target token field effectively drive the instances to the next stage
or the termination. When all coroutine instances are complete, the
block is available again to acquire new work from the global pool.

The block-wise state-machinemodel replaces the expensive global
memory operations and global synchronization in the wavefront
scheduler with the low-cost shared memory accesses while achiev-
ing comparable thread coherence when configured with a sufficient
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Fig. 10. Ablation study of the bank conflict avoidance with SoA layout (de-
noted as “SoA”) and global memory extension (denoted as “GME”) optimiza-

tions in the persistent-threads scheduler. The figure shows the rendering

time (in seconds, shorter is better) of two different settings: (left) 10 maxi-

mum bounces with Russian Roulette (RR) applied from the 2
nd

bounce and

(right) 24 maximum and RR from the 5
th
. The comparison is performed on

the Kitchen scene rendered at 1280x720/1024spp using the DirectX backend.

Both optimizations improve parallelism, SoA by avoiding shared memory

bank conflicts, and GME by reducing the working set storage.

batch size. However, register pressure can still impede parallelism
since subroutines are all arranged into a single kernel.

Bank conflict avoidance with SoA layout. Bank conflicts occur in
GPU shared memory when threads within a warp access different
addresses in the same memory bank simultaneously. In such cases,
the memory requests must be serialized, resulting in performance
degradation. To mitigate this, our persistent-threads scheduler can
be configured to use the SoA memory layout for state frames, reduc-
ing the likelihood of bank overlaps due to large aligned structures.
Fig. 10 shows the ablation study results for this option.

Global memory extension. If the persistent-threads implementation
preserves all frames only in the shared memory, parallelism would
be partly limited by the available shared memory size (typically tens
of kilobytes for each block on the latest GPU generations), since
just some of the threads in a block might be used in execution.

To sidestep this limitation, we use a global buffer as an extension
for state frame storage, which together with the shared memory
keeps enough frames to ensure that every launch fills all threads
in the whole block. When the shared memory size is not enough
to hold all frames for the selected instances in a state machine
step, some currently unused ones will be swapped to the global
memory. However, frequently accessed fields, such as the coroutine
indices, are always independently kept in the shared memory to
avoid undesired overhead.

With this extension, we trade small costs in global bandwidth for
better thread occupancy. The strategy is especially beneficial when
the latency-hiding ability outweighs the increased memory I/O. The
effects of this optimization are studied in Fig. 10.

7 DEMONSTRATION APPLICATIONS

To examine the practicality and performance of GPU coroutines,
we apply them to three demonstration applications: path tracing

(Sec. 7.1), signed distance field (SDF) rendering (Sec. 7.2), and texture
filtering as an inserted custom pass during suspension (Sec. 7.3). All
the experiments are conducted on RTX-2080Ti (11GB VRAM) with
Luisa’s DirectX and CUDA backends.

7.1 Path Tracing with Coroutines

Our GPU coroutine can be applied to conveniently split a mega-
kernel path tracer into subroutines and schedule them in different
styles: users could place suspension marks at proper occasions in
the path tracing logic and use a built-in or customized scheduler to
launch the rendering.
In our experiments, we fork the mega-kernel path integrator in

LuisaRender1 and suspend the radiance computation at 4 locations:
(1) before ray intersection at each bounce; (2) when the ray misses
the scene geometry; (3) before sampling the direct lighting; and
(4) before surface material evaluation. Other suspension points are
also possible but we find that these are generally good choices and
also correspond to the logical stages of path tracing. This process
effectively splits the mega-kernel into five sub-stages: camera ray
generation, ray intersection, miss ray handling, light sampling and
occlusion checking, and surface evaluation and sampling. Fig. 3
illustrates this rewriting process.
For scheduling, we use the wavefront and persistent-threads

schedulers. The naïve state-machine scheduler is excluded since it
gives similar results to the original mega-kernel, as expected. The
wavefront scheduler is configured with 224 coroutine instances per
kernel dispatch, SoA frame layout, and frame buffer compaction.
Effects of the SoA and compaction options are evaluated as in Fig. 8.
The persistent-threads scheduler is configured to use 215 working
threads, with 128 threads per block each fetching 16 coroutine in-
stances on task acquisition. The bank conflict avoidance and global
memory extension optimizations are both turned on.

We test five scenes. Bathroom2, Salle de Bain3, Kitchen4, andWhite
Room5 are from Rendering Resources [Bitterli 2016]. Lone Monk6

is converted from [Bergonzini 2021]. All scenes are rendered in
spectral mode at 1024spp with two maximum/Russian Roulette (RR)
tracing depth settings, on CUDA and DirectX backends. The results
are shown in Fig. 11.
In most cases, both schedulers outperform the original mega-

kernel version from LuisaRender on the test scenes. Additionally,
the wavefront scheduler performs slightly better than the persistent-
threads scheduler. This indicates that register pressure and thread
divergence might be the dominant bottlenecks in complex rendering
tasks like path tracing.

To better understand the performance gains, we profiled the regis-
ter usage, compute throughput, memory throughput, and branch ef-
ficiency of the original mega-kernel and our coroutine-transformed
wavefront versions. Table 2 shows the results using the CUDA back-
end on the Lone Monk scene, rendered with a maximum of 10 ray
bounces. Our coroutine-transformedwavefront version significantly

1We use the open-source version at https://github.com/LuisaGroup/LuisaRender.
2Courtesy of Mareck. Licensed under CC0 1.0.
3Courtesy of nacimus. Licensed under CC BY 3.0.
4Courtesy of Jay-Artist. Licensed under CC BY 3.0.
5Courtesy of Jay-Artist. Licensed under CC BY 3.0.
6Courtesy of Carlo Bergonzini, Monorender. Licensed under CC0 1.0.
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Fig. 11. Rendering time comparison for the path tracing application with GPU coroutines. The figure shows the time (in seconds, shorter is better) to render 5

test scenes on CUDA and DirectX backends, with 10 maximum bounces, Russian Roulette (RR) applied from the 2
nd

bounce (10, 2) and 24 maximum bounces,

RR applied from the 5
th
bounce (24, 5). The persistent-threads scheduler is not available on CUDA due to the absent support for thread block synchronization

when ray tracing with OptiX. Bathroom is rendered at a resolution of 1024x1024; Salle de Bain, Kitchen and White Room at 1280x720; Lone Monk at 1920x1440.

In most cases, both schedulers outperform the original mega-kernel version from LuisaRender, and the wavefront scheduler performs slightly better than the

persistent-threads scheduler. The naïve state-machine scheduler is excluded since it gives similar results to the original mega-kernel, as expected.

reduces register pressure and thread divergence in the intersection
and light sampling stages by isolating the most resource-intensive
surface evaluation computations into a separate kernel. In contrast,
the original mega-kernel’s performance is limited by live registers
and diverged branches in shading, resulting in overall low hardware
utilization.

It is not surprising that our automated solution still exhibits no-
ticeable performance gaps compared to the hand-written wavefront
version from LuisaRender. This disparity is partly due to our solu-
tion’s less mature optimization capabilities. For instance, the hand-
written version features a smaller, manually optimized state frame,
where some simple values are recomputed rather than stored in
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Table 2. Profiling results for the path tracing application comparing the original mega-kernel and coroutine-transformed wavefront versions on the Lone Monk
scene, rendered using the CUDA backend with a maximum of 10 ray bounces. The coroutine-transformed version shows reduced register pressure and thread

divergence by isolating the most resource-intensive surface evaluation into a separate kernel, thereby optimizing the intersection and light sampling stages

and improving overall hardware utilization. In contrast, the original mega-kernel’s performance is constrained by its low overall hardware utilization.

Implementation Mega-Kernel Coroutine (Wavefront)
Ray Generation Intersection Miss Light Sampling Surface Evaluation Scheduling

Time Proportion 100% 3.0% 19.7% 2.7% 13.2% 51.7% 9.7%

Register Usage 128 64 86 72 82 200 —
Compute Throughput 6.4% 34.2% 4.6% 1.97% 18.7% 6.9% —
Memory Throughput 23.9% 55.4% 52.1% 45.3% 42.5% 22.7% —
Branch Efficiency 88.7% 100% 98.34% 100% 97.6% 86.2% —

the frame to reduce memory traffic. Moreover, the hand-written
version leverages knowledge of the path tracing logic to arrange the
kernel launch order without needing to read back the path queue
sizes. In contrast, our general-purpose scheduler implementation
incurs a non-negligible amount of scheduling overhead (e.g., 9.7%
of the overall time on the Lone Monk scene, as shown in Table 2).
Nevertheless, we remain optimistic that continued research and
development will eventually bridge the gap between the two.

7.2 SDF Rendering with Coroutines

We also extend our usage of coroutine to SDF rendering. SDF ren-
dering uses iterative ray marching to find intersections with the
(usually procedural) geometry. Uneven ray marching iterations with
varying numbers of distance evaluations in this procedure often
create imbalanced and divergent workloads in nearby pixels inside
the same block. Leveraging our automatic coroutine transforma-
tion and the built-in schedulers, we can test different optimizing
configurations to improve hardware utilization.
We test this idea on an SDF rendering example ported from

Taichi [Hu et al. 2019]. A single suspension point is placed before the
ray marching process. The wavefront and persistent-threads sched-
ulers are tested and results are displayed in Fig. 12. The persistent-
threads scheduler outperforms in this task. This might be due to the
relatively simple shading, which does not stress the registers but sen-
sitively exposes the wavefront overhead in memory bandwidth and
scheduling. Whereas the persistent-threads scheduler improves the
thread coherence and load balance without an analogous overhead.

7.3 Custom Texture Filtering Passes during Suspension

The previous two applications focus on the performance benefits
of splitting mega-kernels for optimized scheduling. That said, GPU
coroutines in essence are powerful control structures, upon which
many programming patterns may be built.

For example, suspension can serve as a barrier, during which the
applicationmay swap in another task before the coroutine’s deferred
resumption. This facilitates the incorporation of custom computa-
tional passes, especially those inexpressible in an embarrassingly
parallelized manner, inside arbitrarily nested control flows.
We demonstrate this idea on texture filtering in path tracing.

Standard point or bilinear texture filtering is prone to aliasing at low
sample rates, while trilinear and anisotropic filtering works well but
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Fig. 12. Rendering time comparison for the SDF rendering application with

GPU coroutines. The figure shows the rendering time (in seconds, shorter is

better) on two backends, CUDA and DirectX. The comparison is performed

on the SDF renderer, rendered at 1280x720/16384spp on RTX-2080Ti. The

persistent-threads scheduler outperforms the wavefront scheduler, which

might be due to the relatively simple shading.

(a) Bilinear (b) Anisotropic

Fig. 13. An example that incorporates custom texture filtering passes in

path tracing with coroutines. Our GPU coroutines can be used as a general

control construct that splits device functions at suspension points. This

allows the flexible insertion of custom passes during suspension inside

arbitrary control flow without manually rewriting the entire kernel. Both

images are rendered at 2spp, with (a) standard bilinear texture filtering

without ray differentials and (b) anisotropic filtering using a custom finite-

difference pass to compute ray differentials during suspension, respectively.

requires tracking of ray differentials. In traditional path tracing, each
path is independently computed so a trivial finite-difference-based
method (as in rasterization) is inaccessible.
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1 // global memory for inter -shader communication
2 auto uv_img =
3 device.create_image <float >(FLOAT2 , width , height );
4 auto surface_id_img =
5 device.create_image <uint >(UINT1 , width , height );
6 auto duvdxy_img =
7 device.create_image <float >(FLOAT4 , width , height );
8
9 // define the coroutine for kernel splitting
10 Coroutine coro = [&]( UInt sample_id) {
11 Float3 Li = make_float3 (0.f);
12 Float3 beta = make_float3 (1.f);
13 UInt2 p = dispatch_id ().xy();
14 sampler ->start(p, sample_id );
15 auto ray = camera ->generate_ray(sampler , p);
16 $for (depth , max_depth) {
17 auto hit = scene ->intersect(ray);
18 /* ... */
19 uv_img.write(p, hit.uv);
20 surface_id_img.write(p, hit.surface_id );
21 $suspend("surface eval");
22 hit.duvdxy = duvdxy_img.read(p);
23 auto surf_eval = scene ->evaluate_surface(hit);
24 /* ... */
25 };
26 film ->accumulate(p, Li);
27 };
28 // create the coroutine state frame buffer and
29 // reorganize the subroutines into separate kernels
30 auto frame_buffer = device.create_buffer <CoroFrame >(
31 coro.frame_desc (), width * height );
32 Kernel2D entry = [&]( UInt sample_id) {
33 UInt2 p = dispatch_id ().xy();
34 CoroFrame frame = coro.instantiate(p);
35 coro.entry ()(frame , sample_id );
36 frame_buffer.write(p.y * width + p.x, frame);
37 };
38 Kernel2D continuation = [&]( UInt sample_id) {
39 UInt2 p = dispatch_id ().xy();
40 UInt i = p.y * width + p.x;
41 CoroFrame frame = frame_buffer.read(i);
42 $if (!frame.is_terminated ()) {
43 coro["surface eval"](frame , sample_id );
44 frame_buffer.write(i, frame);
45 };
46 };
47 auto entry_shader = device.compile(entry);
48 auto cont_shader = device.compile(continuation );
49 // create an external finite -difference pass to
50 // estimate ray differentials from adjacent pixels
51 Kernel2D duvdxy = [&]() {
52 UInt2 p = dispatch_id ().xy();
53 Float4 duvdxy = fd(p, uv_img , surface_id_img );
54 duvdxy_image ->write(p, duvdxy );
55 };
56 auto duvdxy_shader = device.compile(duvdxy );
57
58 // execute the shaders with the application -specific
59 // knowledge of the suspension point and max_depth
60 for (uint i = 0; i < spp; i++) {
61 stream << entry_shader(i). dispatch(width , height );
62 for (uint d = 0; d < max_depth; d++) {
63 // insert the external pass during the suspension
64 stream << duvdxy_shader(i). dispatch(width , height)
65 << cont_shader(i). dispatch(width , height );
66 }
67 }� �
Listing 8. An example of incorporating an external finite-difference pass

during path tracing, facilitated by coroutines. Coroutines may serve as a

versatile control flow manipulation tool, allowing the kernel logic to be par-

titioned at arbitrary points. This simplifies the insertion of external passes

that require global synchronization during embarrassingly parallel execu-

tion, such as in the finite-difference process, where the texture coordinates

of adjacent pixels are needed.

With coroutines, however, we can suspend the path tracing logic
before surface evaluation, with the texture evaluation contexts
stored in global memory. An extra finite-difference pass is then
launched to estimate the derivatives by differentiating the texture
coordinates of adjacent paths in image space, with the results writ-
ten back to global memory. Upon resumption, the paths use the
differentials for anisotropic filtering and continue the rendering.
Listing 8 provides the implementation, and Fig. 13 shows the exam-
ple renderings.
Although this is a basic application, it promisingly showcases

the potential of the coroutine concept on GPUs. We anticipate that
more sophisticated use cases will arise, e.g., the integration of neural
network passes into a computation kernel.We look forward to future
research exploiting the full expressive capacity of this model.

8 CONCLUSION

We introduced coroutines into GPU kernel programming as a uni-
fied and automated approach to splitting and scheduling intricate
rendering tasks. We designed an asymmetric stackless coroutine
model suitable for modern GPUs and reified it with programming
language support and built-in schedulers by extending the DSL and
runtime facilities in Luisa. We applied our GPU coroutine implemen-
tation to several demonstration applications, including path tracing,
SDF rendering, and interaction with external passes, to showcase
its flexibility in task scheduling and control representation.

However, there remains a distance to optimal performance. Due to
the limited compiler optimization techniques available in the system,
the current implementation may not always yield optimal code
transformation and state frame analysis results, leaving observable
gaps compared to manual splitting. Optimization opportunities also
exist for the built-in schedulers, where more high-performance
parallel primitives could be exploited to further reduce scheduling
overhead. On the other hand, the placement of suspension points
and the selection and configuration of schedulers still require human
labor. It will be interesting to explore how automatic tuning schemes
might be incorporated.

Another direction worth investigating is how to further enhance
the expressiveness of the GPGPU programming model and how this
expressiveness can be effectively utilized. Our GPU coroutine model
serves as a good example of such exploration, and we believe that
there are broader open areas in the GPU world for other constructs
that can be transplanted from well-developed CPU languages.
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1 int main(int argc , char *argv []) {
2 Context context{argv [0]};
3 Device device = context.create_device("cuda");
4 Stream stream = device.create_stream ();
5 Image <float > device_img = device.create_image <float >(
6 PixelStorage ::BYTE4 , 512u, 512u);
7 Callable to_srgb = []( Float3 x) {
8 $if (x <= 0.00031308f) {
9 x = 12.92f * x;
10 } $else {
11 x = 1.055f * pow(x, 1.f / 2.4f) - .055f;
12 };
13 return x;
14 };
15 Kernel2D fill_image_kernel = [&]( ImageFloat image) {
16 auto coord = dispatch_id ().xy();
17 auto size = make_float2(dispatch_size ().xy());
18 auto rg = make_float2(coord) / size;
19 auto srgb = to_srgb(make_float3(rg, 1.f));
20 image.write(coord , make_float4(srgb , 1.f));
21 };
22 auto fill = device.compile(fill_image_kernel );
23 std::vector <std::byte > host_img (512u * 512u * 4u);
24 stream << fill(device_img ). dispatch (512u, 512u)
25 << device_img.copy_to(host_img.data ())
26 << synchronize ();
27 save_image("color.png", host_img , 512u, 512u, 4u);
28 }� �

Listing 9. A usage example of Luisa.
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A REVIEW OF THE LUISA SYSTEM

In this section, we briefly review the original Luisa system to provide
readers with an overview of its architecture and capabilities. Luisa
offers an embedded DSL in C++ for kernel programming, a runtime
abstraction layer for resource management, and multiple optimized
compute backends. Listing 9 shows a usage example of Luisa.

A.1 Embedded DSL for Kernel Programming

The DSL is embedded in pure C++, imitating native C++ syntax.
The language constructs include

• Types and variables. The DSL variables are typed using wrap-
per templates such as Var<T> (e.g., Var<uint2>, alias UInt2).

• Expressions and statements. Arithmetic, logic, and assignment
operators for DSL variables are overloaded to record opera-
tions rather than perform calculations.

• Control flows. Special macros prefixed with the $ sign (e.g.,
$if, $for) are used to generate control-flow statements for
recording purposes.

• Kernels and callable functions. Both can be constructed as
C++ template classes from C++ functions or function objects,
including lambda expressions.

Kernels written in the DSL are dynamically tracked and recorded
into abstract syntax trees (ASTs) at runtime. The tracing of the syn-
tax tree is based on the proxy objects of the Var<T> template class.
Mathematical operators or function calls involving Var<T> do not
compute results but instead add nodes to the ASTs.
After being traced, ASTs, along with captured runtime informa-

tion, are later forwarded to backends for device code generation,
compilation, and pipeline creation.

A.2 Unified Runtime Interfaces

Luisa provides a unified runtime abstraction layer across different
compute backends. The interfaces support two major capabilities:
(1) resource management, which supports common resources used by
graphics APIs, including buffers, textures, bindless arrays, meshes,
acceleration structures, shaders, streams, and events; and (2) com-
mand encoding and submission that abstracts GPU tasks such as
data transferring and shader execution into commands, which are
submitted via streams to the backends.

A.3 Dynamic Multi-Stage Programming

With the DSL embedded in the host C++ language and dynami-
cally traced and compiled at runtime, developers have deep control
over the backend shader code composition. This facilitates multi-
stage programming [Taha 2004] with Luisa. Fig.14 shows an example
of such a capability, where developers can write real loops with the
DSL control-flow macros, programmatically unroll loops with na-
tive C++ control flows, or even dynamically compose device-side
logic using a mix of both.

We exploit this ability to write generic coroutine schedulers. For
example, we can instantiate state-machine schedulers with an arbi-
trary number of states that are only known at runtime.

B IMPLEMENTATION OF THE HIGH-LEVEL PATTERNS

Many high-level asynchronous programming patterns and primi-
tives can be effectively implemented using our relatively straight-
forward coroutine model. We take the aforementioned Generators
and $await features as examples and discuss their implementations.

B.1 Generators

A generator is indeed an object that yields a sequence of values to
its caller lazily, producing each value only as needed upon each call.
We can use the asynchronicity in coroutines to realize this laziness:
the generator suspends itself after generating a value, and the caller
resumes it only when more values are needed.
We follow this basic idea to implement the Generator class with

our coroutine interfaces, shown in Listing 10. Note that since we
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1 Callable f = []( UInt n) {
2 UInt sum = 0u;
3 $for (i, 0u, n) {
4 sum += i;
5 };
6 return sum;
7 }� �

� �
1 __device__ uint f(uint n) {
2 uint sum = 0u;
3 for (uint i = 0u; i < n; i++) {
4 sum += i;
5 }
6 return sum;
7 }� �� �

1 Callable f = []() {
2 UInt sum = 0u;
3 for (uint i = 0u; i < 3u; i++) {
4 sum += i;
5 }
6 return sum;
7 }� �

� �
1 __device__ uint f() {
2 uint sum = 0u;
3 sum += 0u;
4 sum += 1u;
5 sum += 2u;
6 return sum;
7 }� �� �

1 std::vector <float > numbers {3.1f, 2.2f, -9.8f, 1.7f};
2 Callable f = []( UInt index) {
3 Float ans = 0.f;
4 $switch (index) {
5 for (uint i = 0; i < numbers.size (); i++) {
6 $case (i) { ans = numbers[i]; };
7 }
8 $default { ans = 3.14159f; };
9 };
10 return ans;
11 }� �

� �
1 __device__ uint f(uint index) {
2 float ans = 0.f;
3 switch (index) {
4 case 0u: { ans = 3.1f; break; }
5 case 1u: { ans = 2.2f; break; }
6 case 2u: { ans = -9.8f; break; }
7 case 3u: { ans = 1.7f; break; }
8 default: { ans = 3.14159f; }
9 }
10 return ans
11 }� �

Fig. 14. An example of multi-stage programming with Luisa. The left column shows device functions written in Luisa’s DSL, and the right column displays the

(pseudo-)code of the generated backend shaders. Top: we can use the DSL control-flow macro $for to generate a real loop in the backend shader code. Middle:

using the native C++ for-statement repeats the AST recording steps and generates unrolled device code. Bottom: mixed use of the native and DSL control

flows allows developers to dynamically compose the kernel logic with host-side runtime information.

have restricted Coroutines to a void return type, the yielded value
is passed through the coroutine frame via the __yielded_value field.
The $yield DSL keyword is a macro that simply designates the
yielded value and suspends the generator. Additionally, to accom-
modate the range-for syntax, the begin() and end() methods of
GeneratorIter return wrapper objects that record an AST loop with
a single-time pseudo-execution of the C++ for loop.
In graphics tasks, Generators might be used to implement ran-

dom number samplers, with the advantage of managing internal
states without exposing them to the caller. Listing 11 provides an
example of a uniform sampler based on a linear congruential gener-
ator (LCG) [Rotenberg 1960; Thomson 1958].

B.2 Chained Suspension with await

In many high-level CPU programming languages, a coroutine can
use the await operator to suspend its execution until the awaited
task (usually another coroutine) completes. This feature enables
a logically chained suspension pattern for nested coroutine invo-
cations, which is essential for managing complex asynchronous
workflows in a structured manner.

Our GPU coroutine implementation also provides this capability
with the $await keyword. Listing 12 demonstrates how this feature
can aid in software encapsulation by allowing nested coroutine
functions to manage internal suspension points.
Listing 13 provides the core reification for $await. A Coroutine

returns a lambda upon invocation, representing a state machine
that cycles through the subroutines and suspends after each step.
The lambda’s instructions are immediately recorded into the caller

coroutine’s AST, facilitated by the $await keyword. This effectively
inlines the suspension operation into the caller, recursively suspend-
ing it at points where the nested coroutine would suspend.

C COMPILER ANALYSIS AND TRANSFORMATION

C.1 Preprocessing

Luisa’s C++-embedded DSL uses ASTs as the unified representation
for device functions. However, the recursive tree structures are less
suitable for analysis and manipulation. For this reason, we first
translate the ASTs to a streamlined IR to facilitate the coroutine
transformation and analysis passes.
The IR was originally contributed by Tong et al. [2023] for au-

tomatic differentiation with Luisa and has been merged into the
main code repository. It is in the static-single-assignment (SSA) form
with structured control-flow instructions (including If, Switch, Loop,
and GenericLoop, as listed in Fig. 15). Two less SSA-styled and struc-
tured constructs, however, are (1) the Local instruction that declares
thread local storage for variables, similar to alloca in LLVM [Lattner
and Adve 2004] and OpVariable in SPIR-V [Kessenich et al. 2023];
and (2) permission for Break, Continue, and early Return instructions
in the structured control flow. Both exist to relieve the translation
burdens from the frontend ASTs.

C.1.1 Control flow normalization. The control-flow instructions,
GenericLoop, Break, Continue, and early Return, ease frontend pro-
gramming but also complicate the programs’ control flow. To sim-
plify the subsequent passes, we eliminate them in the control flow
normalization pass.
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Fig. 15. Control-flow instructions in Luisa’s IR, including (a) If, (b) Switch, and (c) Loop, which resemble the if, switch, and do-while statements in C++,

respectively; (d) GenericLoop has a relatively more complex semantic, shown as Listing (a) in Fig. 16, which is designed to ease the frontend support of for
loops. Break and Continue instructions, as well as early Returns, are allowed in the loops.

We can rewrite a GenericLoop using do-while loops and if state-
ments with an auxiliary flag tracking whether to leave the loop, as
shown in Fig. 16. This effectively lowers GenericLoops to the Loop

and If instructions. For Break and Continue removal, we adopt an
approach similar to SLANG.D [Bangaru et al. 2023]. The basic idea
is to use auxiliary flags to track if we should break or continue
the loop during each iteration, and mask the successor instructions
accordingly until we reach the loop exit. Unlike SLANG.D, however,
we maintain an instruction stack to recursively mask successor in-
structions in each parent block until the function entry block, so
that we can process early Returns embedded in arbitrarily nested
loops and branches. An example is shown in Fig. 17. Basic constant
folding of the loop conditions is also performed on the fly and triv-
ially redundant loops, like do {...} while (false), are flattened
into their parent blocks if detected.
After this transformation pass, If, Switch, and Loop are the only

remaining control-flow instructions in the program. Effectively, this
ensures a reducible control flow graph (CFG) with back edges only
inside the Loop instructions.

C.1.2 Live state reduction. It is important to Keep coroutine state
frames lean and mean by reducing the live states at each suspen-
sion point. Otherwise, the large number of concurrent threads will
magnify any small waste of per-thread memory access. We employ
a set of passes for live state reduction, among which we find two
passes very effective:

(1) Variable scope decision that attempts to shrink the live interval
of a Local variable by demoting its declaration site to the
innermost possible basic block; and

(2) Load chain deferring that attempts to reduce the used states
by replacing the element extraction of a loaded aggregate
with the loading of the pointer to that element (i.e., from
ExtractElem(Load(v), i) to Load(GetElemPtr(v, i))).

For example, in the path tracing task (Sec. 7.1) on the Lone Monk
scene, the coroutine state frame size decreases from 736 bytes to

224 bytes with the variable scope decision pass and further to 208
bytes with load chain deferring.

C.2 Continuation Extraction

The continuation at a suspension point is the instructions to be
executed when resumed. Therefore, the general task is to identify
and collect all instructions reachable from each suspension point.
The control flow in the continuation should also be reconstructed so
the transformed program produces identical results to the original.
Note that for compatibility with the structured IR design, the

reconstructed control flow must stay structured, using only the
instructions listed in Fig. 15; arbitrary jumps like goto are disallowed.

C.2.1 CFG distillation. The continuation extraction process reor-
ganizes a coroutine into per-suspension-point code scopes, during
which instruction motion, duplication, deletion, etc., may occur. To
avoid destructive modification on the original IR and ignore the un-
related details about non-control instructions, we distill the program
into a control flow graph (CFG).
A graph may contain multiple code scopes, each representing

the entry or an individual continuation. The IR instructions in the
original program are wrapped into graph nodes, constituting the
scopes. Three node categories are present:

(1) Simple nodes that reference (rather than duplicate) the non-
control instructions in the original IR;

(2) Control-flow nodes, including If, Switch, and Loop, which repli-
cate the program’s logical structure; and

(3) Terminator nodes, Suspend and Terminate, which end the cur-
rent scope and transfer the control back to the scheduler.

Initially, the graph is a trivial dump of the original program, with a
single, preliminary scope of nodes wrapping all IR instructions in the
coroutine body. Successive stages then collect the reachable nodes
into individual continuation scopes and reconstruct the control flow
at each suspension point.
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1 Prepare:
2 /* ... */
3 goto (condition ? Body : Exit);
4 Body:
5 /* ... */
6 continue => { goto Update; }
7 break => { goto Exit; }
8 /* ... */
9 goto Update;
10 Update:
11 /* ... */
12 goto Prepare;
13 Exit:� �

(a) The semantic of the GenericLoop instruction

� �
1 do {
2 [[ instructions in the Prepare block ]]
3 if (! condition) break;
4 bool should_leave = false;
5 do {
6 [[ instructions in the Body block , where
7 continue => { break; }
8 break => { should_leave = true; break; }
9 ]]
10 } while (false );
11 if (should_leave) break;
12 [[ instructions in the Update block ]]
13 } while (true);� �

(b) The lowered GenericLoop using if and do-while with an auxiliary flag

Fig. 16. Code template that lowers the GenericLoop. We rewrite a GenericLoop using the if statements and do-while loops (i.e., the If and Loop instructions
in the IR). An auxiliary flag tracking is created to track whether we should leave the loop.

� �
1 do {
2 /* ... */
3 if (c1) {
4 return; // early return
5 }
6 /* ... */
7 } while (c2);
8 /* ... */
9 return;� �

� �
1 bool early_returned = false;// auxiliary tracking flag
2 do {
3 /* ... */
4 if (c1) {
5 // the original early return is tracked by the flag
6 early_returned = true;
7 }
8 // mask the successor instructions
9 if (! early_returned) {
10 /* ... */
11 }
12 } while (c2 && !early_returned );// changed condition
13 // mask the successors in parent blocks recursively
14 if (! early_returned) {
15 /* ... */
16 }
17 // until the function -level return
18 return;� �

Fig. 17. An example of the early Return removal pass.

C.2.2 Reachable node collection. The CFG is always reducible with
the only back edges inside the Loop nodes, as ensured by the control
flow normalization pass (Sec. C.1.1). This property leads to a series
of simple rules in reachable node identification. For any node 𝑝 in
the CFG, let R(𝑝) denote the reachable node set from 𝑝 , we have

(1) If 𝑝 is a Loop node, then 𝑝 ∈ R(𝑝);
(2) If 𝑞 is the successor of 𝑝 , then 𝑞 ∈ R(𝑝);
(3) If 𝑞 ∈ R(𝑝), then R(𝑞) ⊆ R(𝑝); and
(4) If 𝑞 is a control-flow node (i.e., If, Switch, or Loop), let B(𝑞)

denote a nested basic block inside it, then
• ∀𝑠 ∈ B(𝑞), R(𝑞) ⊆ R(𝑠); and
• ∀𝑠 ∈ B(𝑞), 𝑞 ∈ R(𝑝) ⇒ 𝑠 ∈ R(𝑝).

Practically, these rules can be implemented as a depth-first traver-
sal over the CFG from the entry. We maintain a stack of the parent
control-flow nodes along the traversal path. When a Suspend node is
encountered, we backtrack the node stack and collect the reachable
nodes recursively into a newly created code scope (Fig. 18). Some
on-the-fly simplification strategies are also considered. For exam-
ple, nodes dominated by another Suspend node are not considered
reachable from the current suspension point.

C.2.3 Control flow reconstruction. The program logic must be re-
covered from the collected reachable nodes, so the resumed corou-
tine produces the same results as if never suspended.

For suspension points not contained in a Loop, the reconstruction
is straightforward by simply joining the reachable nodes in the
depth-first order. Otherwise, back edges may require the inclusion
of predecessor nodes visited before. A direct idea might be unrolling
all successor nodes before the re-entrance into the outermost loop.
However, this possible solution may duplicate an unpredictable
amount of unrolled code when loops are deeply nested.
Instead, we duplicate the relevant control-flow nodes once and

replay the condition values that lead to the current suspension
point at the first run after resumption. Also, during the first run,
the nodes preceding the suspension point should be skipped, so a
new control-flow node, SkipOnReplay, is added to each parent block
to contain these preceding nodes. Fig. 19 shows an example of this
transformation strategy.
After this stage, the CFG is populated with appropriately struc-

tured subroutine scopes, each corresponding to the continuation of
a suspension point; plus a special one for the entry.
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Fig. 18. Recursive splitting of the coroutine control flow graph into subroutine scopes of reachable nodes.� �
1 template <typename T, typename ... Args >
2 struct Generator <T(Args ...)> {
3 Coroutine <Args...> coro;
4 GeneratorIter <T> operator ()( Args ... args) const {
5 CoroFrame frame = coro.instantiate ();
6 coro.entry ()(frame , args ...);
7 return GeneratorIter <T>{
8 .n = coro.subroutine_count (),
9 .frame = std::move(frame),
10 .resume = [=, this]( CoroFrame &f, CoroToken i) {
11 coro[i](f, args ...);
12 },
13 };
14 }
15 };
16
17 template <typename T>
18 struct GeneratorIter {
19 uint n;
20 CoroFrame frame;
21 function <void(CoroFrame &, CoroToken)> resume;
22
23 Bool is_terminated () const {
24 return frame.is_terminated ();
25 }
26
27 void update () const {
28 // state machine to select the next subroutine
29 $switch (frame.target_token) {
30 // note: entry (token 0) is included as well
31 for (uint i = 0; i < n; i++) {
32 $case (i) { resume(frame , i); };
33 }
34 };
35 }
36
37 T value() {
38 return frame.get <T>("__yielded_value");
39 }
40
41 // wrappers to support the range -for syntax
42 GeneratorRangeForIter begin() {/*...*/}
43 GeneratorRangeForIter end() {/*...*/}
44 };
45
46 #define $yield(x) \
47 do { $promise("__yielded_value", x); \
48 $suspend (); \
49 } while (0)� �
Listing 10. Implementation of the Generator class based on our coroutine

interfaces. The asynchronicity of coroutines facilitates the lazy evaluation

of the yielded values. Listing 1 demonstrates its usage.

� �
1 Generator <float(uint)> lcg_sampler = []( UInt seed) {
2 UInt state = seed;
3 $loop { // infinite loop: as many numbers as desired!
4 state = 1664525u * state + 1013904223u;
5 Float u = state * 0x1p -32f; // map to [0, 1)
6 $yield(u);
7 };
8 };
9
10 // usage
11 auto rng = lcg_sampler (2024u);
12 Float a = rng.update (). value ();
13 Float b = rng.update (). value ();
14 ...� �
Listing 11. Example implementation of a uniform sampler based on a linear

congruential generator (LCG), using the built-in Generator feature.

� �
1 // nested coroutine for ray intersection
2 Coroutine trace = [&](Var <Ray > ray , Var <Hit > &hit) {
3 $suspend ();
4 hit = scene ->intersect(ray);
5 };
6 // nested coroutine for surface shading
7 Coroutine shade = [&](Var <Hit > hit , Float3 &Li) {
8 $if (hit ->miss ()) {
9 Li = make_float3 (0.f);
10 } $else {
11 $suspend ();
12 Li = scene ->sample_direct_lighting(hit);
13 };
14 };
15 // main coroutine that implements the rendering logic
16 Coroutine render = [&](...) {
17 Var <Ray > ray = camera ->generate_ray(pixel_id );
18 Var <Hit > hit;
19 $await trace(ray , hit);
20 Float3 Li;
21 $await shade(hit , Li);
22 film ->accumulate(pixel_id , Li);
23 };� �
Listing 12. Example usage of the $await keyword for software encapsula-

tion, where nested coroutine functions designate internal suspension points

for ray intersection and surface shading.

C.3 State Frame Materialization

When resuming a coroutine, the program context, i.e., the data
and states that the continuation requires, should also be passed
on. Nevertheless, it is impractical to simply dump all the variables
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1 template <typename ... Args >
2 auto Coroutine <Args ...>:: operator ()( Args ... a) const {
3 return [=, this ]() {
4 CoroFrame frame = this ->instantiate ();
5 this ->entry ()(frame , a...);
6 $while (!frame.is_terminated ()) {
7 $suspend (); // this will suspend the caller
8 $switch (frame.target_token) {
9 uint n = this ->subroutine_count ();
10 for (uint i = 1; i < n; i++) {
11 $case (i) { (*this)[i](frame , a...); };
12 }
13 };
14 };
15 };
16 }
17
18 // helper class for the $await syntactic sugar
19 struct CoroutineInvocationAwaiter {
20 template <typename F>
21 void operator %(F &&f) const { f(); }
22 };
23
24 #define $await \
25 CoroutineInvocationAwaiter {} %� �
Listing 13. Implementation of the $await keyword based on our coroutine

interfaces. This feature enables a logically chained suspension pattern for

nested coroutine invocations, as demonstrated in Listing 2.
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Fig. 19. Control flow reconstruction with condition value replay. To resume

the program logic at the suspension point (a), we duplicate the whole related

nodes and replay the condition values (b) that have led the control flow

(green arrows) to the suspension point. Preceding nodes to the original

suspension point are wrapped into a special SkipOnReplay node at the first
loop entrance after the resumption.

and then restore them on resumption. Memory traffic and register
pressure might soon become the performance bottleneck.

The ideal approach is to only load and store the necessary subset
of the live states. In our implementation, we honor the rules below:

(1) If a value used in the current subroutine might reference
external definitions in other subroutines, then it should be
loaded on resumption; and

(2) If a value defined in the current subroutine might be loaded
by other subroutines, then it should be stored on suspension.

We perform data-flow analysis on the CFG to compute these sets:
first with an intra-scope use-define analysis on each subroutine to
find the internal definitions and external references; then with an
inter-scope liveness analysis on the transition graph to determine
the values to store and load on each suspension-resumption edge.
Notably, for aggregates (i.e., vectors, matrices, arrays, and struc-

tures), the analysis is done at the field level as they are decomposed
into scalar elements. This helps reduce the frame size by discarding
inactive fields (Fig. 21).

C.3.1 Intra-scope use-define analysis. While the standard SSA form
implicitly conveys the use-define information, our extension of the
Local instruction allows updating a variable multiple times and thus
requires extra explicit handling.
A forward data-flow analysis is leveraged for this purpose. For

each subroutine scope 𝑠 in the CFG, we traverse its nodes to track
three cumulative sets of variables when reaching a node 𝑝 (before it
has been processed and stepped over):

(1) K(𝑝) for variables whose definitions are confirmed killed in
the current scope, i.e., their values are always overwritten on
all code paths since the resumption to 𝑝;

(2) E(𝑝) for variables that might reference external definitions in
other scopes, i.e., their values are not internally killed when
reaching some of their users before 𝑝; and

(3) T (𝑝) for variables that are possibly touched (i.e., values mod-
ified) in the current scope before 𝑝 .

All sets are initialized empty. The following rules are then applied
at each node 𝑝 during the traversal, to update the sets when reaching
𝑝’s successor node 𝑞:

• If 𝑝 is a simple node that locally uses variables ofU(𝑝), de-
fines D(𝑝), and modifiesM(𝑝), then

E(𝑞) = U(𝑝) − K(𝑝),
K(𝑞) = D(𝑝) ∪ K(𝑝),
T (𝑞) = M(𝑝) ∪ K(𝑝).

• If 𝑝 is an If or Switch, we process each child block B𝑖 inde-
pendently with K(𝑝), E(𝑝), and T (𝑝) inherited as its input,
and then merge the block-wise results as

E(𝑞) =
⋃
𝑖

E(B𝑖 ),

K(𝑞) =
⋂
𝑖

K(B𝑖 ),

T (𝑞) =
⋃
𝑖

T (B𝑖 ) .
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Fig. 20. An example of the intra-scope use-define analysis process.

• If 𝑝 is a Loop, we can simply process the nodes in its body as
if they are inlined into the parent block.

• If 𝑝 is a Suspend, we record K(𝑝) with the suspension token
𝑡 as K𝑠→𝑡 for later inter-scope analysis (Sec. C.3.2).

• The Terminate node may only appear at the last of the scope,
thus requiring no special handling.

After this analysis, per-scope sets of the external references E𝑠
and the internally touched variables T𝑠 are computed for each
scope 𝑠; as well as the per-suspension sets of the killed variables
K𝑠→𝑡 for each reachable suspension token 𝑡 inside each scope 𝑠 .
Fig. 20 gives an example of the data-flow analysis process.

C.3.2 Inter-scope liveness analysis. The union set of external refer-
ences in all scopes constitutes the coroutine state frame. However,
not all states are necessarily loaded on every resumption or stored
on every suspension: a subroutine might access only a portion of it.

To determine the demanded load/store subsets, we first construct
a coroutine transition graph for the subroutine scopes. As described
in Sec. 5.2, each graph node corresponds to a subroutine and the
directed edges between nodes represent the suspension-resumption
relations (Fig. 6).

Liveness analysis is then performed on the graph to identify the
live states at the beginning of each scope, i.e., the variables that are
needed by this scope or any reachable scope from it. Let L𝑠 denote
the live state set at the beginning of a scope 𝑠 , it is the solution to
the following data-flow equation:

L𝑠 = E𝑠 ∪
⋃
𝑠→𝑡

(L𝑡 − K𝑠→𝑡 ) .

a
.y .w

c
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b
float4 uint array<int, 6>

…

State Frame

…

.x .z [2] [3] [5]

Fig. 21. Layout compaction of the coroutine state frame. We employ field-

level data-flow analysis on aggregate variables to detect their live elements.

Inactive elements are excluded from the resulting frame to reduce its size.

We start with L𝑠 = ∅ for each scope 𝑠 and iterate over the transition
graph until the fixed point to solve this equation.
Based on the liveness information, we can now easily compute

the input set

I𝑠 = E𝑠 ∪
⋃
𝑠→𝑡

((L𝑡 − K𝑠→𝑡 ) ∩ T𝑠 )

for a scope 𝑠 to load on resumption and the output set

𝑂𝑠→𝑡 = L𝑡 ∩ T𝑠
for 𝑠 to store on each suspension with 𝑡 as the resumption target.

Intuitively, I𝑠 includes states that are either (1) directly required
by the current scope 𝑠 or (2) needed by adjacent scopes but unfortu-
nately touched but not killed by 𝑠; and in 𝑂𝑠→𝑡 are the live states
that are needed by the target scope 𝑡 but possibly modified in the
current scope 𝑠 .

C.3.3 Frame structure layout. We then arrange the coroutine states
into a frame. In the current implementation, we simply flatten and
tile the fields of each state in the state frame structure. As men-
tioned before, since the data-flow analysis passes are performed at
the field level for aggregates, we can compact the frame layout by
excluding the uninvolved aggregate members (Fig. 21). This may
help reduce the memory traffic in state frame management. A future
implementation may further condense the state frames via register
allocation algorithms such as graph coloring [Chaitin 1982].

C.4 Postprocessing

Now that we have a full knowledge of the control transfer and
state transition of the coroutine, we can instantiate it into concrete
Callable functions.
We first reconstruct the IR from the outlined and transformed

subroutine scopes in the CFG. Coroutine-specific intrinsic nodes
are lowered and rewritten as normal IR instructions. For example,
Suspend is converted to an update of the target token field in the state
frame followed by a Return instruction. Then the IR is translated
back to Callable ASTs so the frontend may conveniently reorganize
the subroutines into other forms.

The transition graph is fed back to the frontend as well, which can
be later leveraged for runtime optimization, as done in the built-in
schedulers.

ACM Trans. Graph., Vol. 43, No. 6, Article 281. Publication date: December 2024.


	Abstract
	1 Introduction
	2 Related Work and Background
	2.1 GPGPU Programming
	2.2 Domain-Specific Graphics Frameworks
	2.3 Coroutines
	2.4 Kernel Reorganization for Scheduling

	3 Design Overview
	3.1 Objectives and Principles
	3.2 Choice of the GPU Coroutine Model

	4 Programming Interfaces
	4.1 Language Constructs
	4.2 Scheduler Interfaces
	4.3 Comparison with the Alternative Model

	5 Language Feature Implementation
	5.1 Subroutine and State Frame Extraction
	5.2 Subroutine Transition Graph Construction
	5.3 Support for High-Level Asynchronous Patterns

	6 Built-in Scheduler Implementation
	6.1 Naïve State-Machine Scheduler
	6.2 Wavefront Scheduler
	6.3 Persistent-Threads Scheduler

	7 Demonstration Applications
	7.1 Path Tracing with Coroutines
	7.2 SDF Rendering with Coroutines
	7.3 Custom Texture Filtering Passes during Suspension

	8 Conclusion
	Acknowledgments
	References
	A Review of the Luisa System
	A.1 Embedded DSL for Kernel Programming
	A.2 Unified Runtime Interfaces
	A.3 Dynamic Multi-Stage Programming

	B Implementation of the High-Level Patterns
	B.1 Generators
	B.2 Chained Suspension with await

	C Compiler Analysis and Transformation
	C.1 Preprocessing
	C.2 Continuation Extraction
	C.3 State Frame Materialization
	C.4 Postprocessing


