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Fig. 1. A Stanford Dragon made of chromium rendered under a D65 illuminant. The light source is moderately coherent with a coherence radius of roughly
≃ 30 µm on average when incident upon the Dragon’s surface. The surface was modelled statistically only, therefore the scattered intensity, 𝐼 , can be considered
as a stochastic process. In order to render this scattered intensity we decompose it, in a physically and mathematically consistent manner, into its ensemble
average, ⟨𝐼 ⟩, and a fluctuating intensity, ℑ: (left) The ensemble average of the process, ⟨𝐼 ⟩, dominates the scattered energy and is the averaged scattered
intensity over all possible realizations of the surface. (middle) The fluctuating intensity is a zero-mean process (only positive values were visualised) that gives
rise to diffraction patterns—known as subjective optical speckle—that depend on the statistical properties of the light, surface and the imaging device. (right)
The final intensity is then the superposition of the ensemble averaged lobe and fluctuating field.

Tremendous effort has been extended by the computer graphics community
to advance the level of realism of material appearance reproduction by
incorporating increasingly more advanced techniques. We are now able to
re-enact the complicated interplay between light and microscopic surface
features—scratches, bumps and other imperfections—in a visually convincing
fashion. However, diffractive patterns arise even when no explicitly defined
features are present: Any random surface will act as a diffracting aperture
and its statistics heavily influence the statistics of the diffracted wave fields.
Nonetheless, the problem of rendering diffraction effects induced by surfaces
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that are defined purely statistically remains wholly unexplored. We present
a thorough derivation, from core optical principles, of the intensity of the
scattered fields that arise when a natural, partially-coherent light source
illuminates a random surface. We follow with a probability theory analysis
of the statistics of those fields and present our rendering algorithm. All of our
derivations are formally proven and verified numerically as well. Our method
is the first to render diffraction effects produced by a surface described
statistically only, and bridges the theoretical gap between contemporary
surface modelling and rendering.
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1 INTRODUCTION
Appearance reproduction remains a challenging, important task in
computer graphics. Over the years a significant body of work has
been dedicated to modelling the interaction between light and a ma-
terial’s surface. In particular, rendering of diffraction phenomena—
the rainbow patterns that appear on oily surfaces, colour shifts on ox-
idisedmetals, and iridescent glints from scratches or rough surfaces—
has received significant attention from the computer graphics com-
munity, as well as the applied optics community.

However, a disconnect arises between how the scientific and pro-
fessional communities model surfaces and the way current work
addresses rendering surface diffraction. Representing surfaces via
statistically-defined, instead of explicitly-defined, models carries
significant practical appeal. Such models are used extensively and
have been proven to be exceptionally useful [Dorsey et al. 2007]: A
cornerstone of modern surface modelling in computer graphics is
themicrofacet theory, which postulates that surfaces are a collection
of microfacets and the facet orientation is described statistically. It
has been shown that microfacet models effectively reproduce the
appearance of some classes of materials [Ngan 2006], and a myr-
iad of extensions to the microfacet theory have been developed,
e.g., thin-film interference [Belcour and Barla 2017], multi-layered
microfacet materials [Guo et al. 2019; Weidlich and Wilkie 2007]
and multiple scattering [Lee et al. 2018]. Additionally, more phys-
ically rigorous modern scatter theories have been developed by
the applied optics community, and have seen use in rendering (see
Section 2). Amongst the most capable of those are the modified
Beckmann-Kirchhoff model [Harvey et al. 2007] and generalised
Harvey-Shack model [Krywonos 2006]. These models consider a sur-
face’s power spectral density (that is, the autocorrelation function in
Fourier space) to formulate a BRDF. In sharp contrast, most current
computer graphics techniques that aim to render surface diffraction
effects require knowledge of the explicit geometry: for example,
analytic 1D scratch profiles [Velinov et al. 2018; Werner et al. 2017]
or high-resolution height fields [Yan et al. 2018]. This data needs
to be provided or procedurally generated at the sub-wavelength
resolution required to model wave interactions, and can be difficult
to measure, compute and store.

We present the first work that considers only the statistical prop-
erties of the surface, specifically, the surface power spectral density,
to render diffraction patterns. To do so, we derive an optically accu-
rate formalism that relates the statistics of the scattered intensity to
the statistics of the scattering surface, taking into account the sta-
tistical properties of the incident radiation, i.e. its optical coherence,
and the parameters of the employed imaging system (e.g., eye or
camera). We then proceed with rendering the scattered intensity
by drawing a pattern that conforms to the required statistics. The
rendering is done via a Monte Carlo process inspired by Bar et al.
[2019] and the rendered pattern corresponds to scatter produced by
some realization of the surface statistics. Nonetheless, throughout
the entire process we do not draw or consider any explicit geometry.
Our motivation for this work is accurate reproduction of surfaces
under natural lighting, targeting applications that strive for photo-
realistic rendering. Scientific applications are secondary, as those

would typically employ fully coherent (e.g., laser) radiation, which
is out of scope of this paper and is left for future work.

Speckle. When rendered using current methods, statistical sur-
faces appear smooth and unblemished. However, numerical experi-
ments performed by Lanari et al. [2017] show noise-like variations
in the intensity of light scattered off rough surfaces that neither
the microfacet model nor the modified Beckmann-Kirchhoff model
can reproduce. Those intensity variations are optical speckle [Good-
man 2007], noise-like patterns that arise in practically any coherent
imaging modality. When the incident radiation arises from natural
light sources, this speckle becomes superposed with the incoher-
ently scattered energy, i.e. the energy that dominates the scatter
and shapes the scattered lobe (that is, the BRDF). Following this
insight, we mathematically decompose the intensity of the scattered
field into its ensemble averaged mean field and a fluctuating field.
We show that for many classes of rough surfaces, the fluctuating
field is indeed fully developed speckle. While speckle may appear
chaotic, it possesses strong statistical properties, and the bulk of
our theoretical contributions are the result of a statistical analysis
of the scattered fluctuating field.

2 RELATED WORK
Explicit models. There has been a large body of work focusing

on the rendering of glints, scratches and fine surface structures,
however most of this work has been confined to a scenario where
the geometry is known a priori. We summarize this work here.
Werner et al. [2017] present a framework for the rendering of

scratches: Under a Fourier optics formalism, the optical response
of a surface that contains a multitude of scratches is formulated as
a superposition of the optical transfer functions of those scratches.
Then, the (spatially varying) BRDF is formulated via distinct base
and scratch response terms. This separation conceptually bears
some likeness to our decomposition of the scattered intensity into
its mean and fluctuating speckle field, however our decomposition
is physically and mathematically exact. Additional related work has
also focused on rendering surface diffraction effects that result from
arbitrary micro-scale structures modelled by a heightmap [Falster
et al. 2020; Yan et al. 2018] and real-time rendering of diffractive
scratches [Velinov et al. 2018]. Along another line of research, the
rendering of non-iridescent glints and scratches, with explicitly de-
fined geometries, has received extensive focus in computer graphics
[Chermain et al. 2019; Gamboa et al. 2018; Yan et al. 2014, 2016].

Statistical models. In contrast to work on modelling diffraction
effects from explicitly formulated models, work that considers only
the statistics of the scattering medium or surface to render inter-
ference phenomena is scarce. Stam [1999] presents one of the first
works to consider diffraction from a random surface. Jakob et al.
[2014] describe a discrete variant to the microfacet model for the
purpose of multiscale rendering of non-diffractive glints. To main-
tain temporal correlation between rendered frames, they generate a
deterministic seed. Their approach shares some similarity with our
technique: The integration phases (discussed in Subsection 6.1) that
we draw serve to ensure our rendered speckle fields maintain correct
and accurate (spatial and angular) correlation. Multiscale methods
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for rendering granular materials that are composed of large homoge-
neous collections of randomly oriented grains is discussed by Meng
et al. [2015], and generalised to dynamic heterogeneous grain as-
semblies with spatially varying concentration and size [Müller et al.
2016]. Holzschuch and Pacanowski [2017]; Löw et al. [2012] employ
the Harvey-Shack scatter theory to render surface diffractions, how-
ever the Harvey-Shack model only considers the ensemble averaged
scattered field, while we draw a field that corresponds to some re-
alization of the statistical surface. Raymond et al. [2016] present a
framework for multi-scale rendering of scratches defined statisti-
cally. The microfacet model is extended with the aim of accounting
for statistical flakes by Guo et al. [2018] and a method for the ren-
dering of metal flakes suspended in car paint is presented by Golla
and Klein [2018]. A framework for the rendering of iridescence in
pearlescent materials is presented by Guillén et al. [2020].

Optical speckle. Of particular interest is the work by Bar et al.
[2019, 2020], who introduce a Monte Carlo framework for drawing
fully developed speckle patterns that arise on scatter by partici-
pating media under idealised conditions. Those conditions can be
summarised as a perfectly coherent radiation source and a scat-
tering medium. In contrast, we deal with scattering off a random
surface illuminated by a natural light source, a scenario where none
of those assumptions apply. Therefore, while our rendering algo-
rithm is based on the Monte Carlo framework that was presented by
them, our presented theoretical formulations are entirely different
(Section 4). Furthermore, we extend the algorithm to handle the
different requirements that arise in our framework, and we formally
prove its correctness under general conditions (Section 6).
Other work that aims to render speckle considers the simplified

case where we are bereft of any (explicit or statistical) knowledge
of the scattering medium and assume perfect optical coherence.
Synthesis of arbitrary, realistic-looking speckle patterns is discussed
by Bergmann et al. [2016], and simple general algorithms are intro-
duced by Duncan and Kirkpatrick [2008].

Optical speckle has also been used for non-light-of-sight imaging
[Smith et al. 2018] and motion tracking [Smith et al. 2017].
Outside computer graphics, speckle phenomena have given rise

to a massive body of research and applications, e.g., methods in
speckle reduction [Dainty 2013], extraction of surface roughness
information via speckle interferometry [Dhanasekar and Ramamoor-
thy 2008]. Speckle has also been used to carry or store information
[He et al. 2003], perform sensing, e.g., to detect malaria-infected
blood cells [Cojoc et al. 2012], and to deduce information in very
short-exposure photography as used in astronomy [Scott et al. 2018].

Partial optical coherence. Also relevant are formalisms that aim
to handle partially coherent light sources in a physically consistent
manner. A common approach in computer graphics is to model the
spatial coherence as a Gaussian footprint centred at the sampled
point [Dhillon et al. 2014; Toisoul et al. 2018;Werner et al. 2017]. Sim-
ilarly, a surface patch of interest can be partitioned into “coherence
kernels”, modelled as Gaussian windows [Yan et al. 2018], or simply
as rect functions [Levin et al. 2013]. Partitioning the integration area
into kernels only remains physically sound when the coherence area
is very small compared to the surface patch in question, however it
simplifies the formulation as the mutual coherence between pairs

of arbitrary points does not need to be considered. Nonetheless, a
two-point characterization of the mutual coherence provides much
richer information about the diffracted field’s properties [Mandel
and Wolf 1995]. Our derivations consider mutual intensities with re-
spect to their mutual spatial and temporal coherence. Furthermore,
we avoid making any assumptions regarding the mutual coherence
function during our theoretical formulations.

Other related work. We list here additional related work in the
realm of computer graphics that model different wave-interference
related phenomena. Belcour and Barla [2017] present an analytic
formulation for the spectral integration of phase shifts produced
by reflections off a base layer covered by a dielectric thin-film, and
an extension capable of handling rough surfaces is developed by
Kneiphof et al. [2019]. Steinberg [2019] present another spectral
integration approach under the context of optical anisotropy, and
a framework for real-time rendering of surface diffraction from
measured data was presented by Toisoul and Ghosh [2017].
As part of our statistical analysis, we also present an extension

to Isserlis’ theorem [Isserlis 1918] for circularly-symmetric complex
Gaussian random variables. Extensions for other distributions have
been developed: For mixed-Gaussians [Michalowicz et al. 2009] and
Gaussian matrix mixtures [Grigelionis 2009].

Table 1. List of symbols and notation (location of definition on the right)

SYMBOLS
⟨a, b⟩ Inner product between a and b
𝛿 (𝑥) Dirac delta
𝛿𝑥𝑦 Kronecker delta
ℱ Fourier transform operator
k Wavevector
𝜆 Wavelength
Re {·} Real value operator
Im {·} Imaginary value operator
arg (·) Complex argument
⟨·⟩ Ensemble averaging operator
E [·] Expected value of a random variable
𝜎 [·] Standard deviation of a random variable
cov [·, ·] Covariance
Pr{𝑋 = 𝑎} Probability of random variable 𝑋 taking value 𝑎
★ Complex conjugate
† Conjugate transpose
∗ Convolution operator
Γ Gamma function
𝐾𝜈 Modified Bessel function of second kind
𝑃2 Surface power spectral density (PSD)
𝐶S Surface autocorrelation function
𝜎rel Surface relative roughness
𝑙cor Surface correlation length
Γ𝑐 Mutual coherence function in the object (surface) plane
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3 BACKGROUND: SURFACE STATISTICS AND THE
POWER SPECTRUM

Surface roughness is a key surface attribute that affects the optical
properties and wave scattering characteristics of a surface. Nonethe-
less, despite being an intuitive concept, optical roughness of a sur-
face is difficult to capture analytically, and different disciplines and
applications employ different formalisms. The measure of roughness
commonly used in computer graphics—the variance of the slope or
height profile—is inadequate for appropriately describing the optical
behaviour, especially under the context of “wave optics”. Instead we
describe the surface micro-scale features statistically using a more
flexible construct that is employed in contemporary scatter theories:
the power spectrum of the surface’s spatial frequencies.
Let ℎ : R2 → R denote a height field function describing a

deterministic surface. The Fourier transform of the height field de-
composes the signal into the contributing frequencies and is defined
as

ℎ̂ (f) = ℱ{ℎ}(f) =
∫
R2

ℎ (x) 𝑒−𝑖2𝜋 ⟨f,x⟩ dx , (1)

where ⟨·, ·⟩ denotes the inner product. When ℎ and its transform
pair ℎ̂ are absolutely integrable, the surface profile can be recovered
via the inverse transform:

ℎ (x) = ℱ-1
{
ℎ̂
}
(x) =

∫
R2

ℎ̂ (f) 𝑒𝑖2𝜋 ⟨x,f ⟩ df , (2)

with x ∈ R2 being a point and f ∈ R2 representing the spatial
frequency.

The key quantity in analysing surface characteristics is the surface
power spectral density (PSD), defined as follows:

𝑃2 (f) = lim
𝑑→+∞

1
𝑑

�������
∫
∥x∥<𝑑

ℎ (x) 𝑒−𝑖2𝜋 ⟨f,x⟩ dx

�������
2

, (3)

The contributions from the spatial frequencies composing a surface
are responsible for the surface’s scattering behaviour [Bass et al.
2010], and this information is fully described by the PSD. For this
reason, the surface PSD plays a crucial role in predicting average
scattered energy, i.e. the BRDF, from surface characteristics [Church
et al. 1990; Harvey and Pfisterer 2016]. Furthermore, using PSDs
to formulate surface statistics is practical as a PSD can be directly
measured from a physical surface [Siewert et al. 2008]. However, the
phase information is lost in the process of computing (or measuring)
the PSD, therefore the PSD does not define an explicit surface, but
instead describes the surface statistically.
Useful statistical properties can be inferred from the PSD. The

surface autocorrelation function 𝐶S is the spectral decomposition of
the PSD (a consequence of the Wiener–Khinchin theorem). Then,
assuming its Fourier transform exists, the following holds:

𝐶S (x) = ℱ-1{𝑃2}(x). (4)

In this paper we use the K-correlation model to describe the surface
and its autocorrelation function. See Appendix A for details.

The surface relative roughness—the standard deviation of the sur-
face height function ℎ—is the 0th-moment of the PSD:

𝜎2
rel =

∫
∥f ∥< 1

𝜆

𝑃2 (f) df , (5)

where the integration is bandwidth-limited as frequencies greater
than 𝜆−1 produce evanescent waves and do not contribute to sur-
face scatter [Harvey et al. 2012]. Finally, another related statistic is
the correlation length—the spatial distance required to decrease the
surface autocorrelation by 𝑒−1—which can be extracted from the
PSD as follows:

𝑙cor = 𝜎
−1
rel

∫
∥f ∥< 1

𝜆

𝑃2 (f)2 df . (6)

Drawing surfaces from the PSD. While the source profile cannot
be recovered from the PSD, drawing explicit, statistically indistin-
guishable surfaces from the PSD is nonetheless useful. The PSD is
a real function with all the phase information discarded, therefore
in order to synthesise conforming surfaces we need to introduce a
phase for each frequency. Being Fourier transform pairs, the PSD
and the correlation function, 𝐶S, convey essentially the same infor-
mation and contain no insight into the distribution of the phases or
the height, ℎ, of the surface. Devoid of any such explicit formula-
tion, it is reasonable to assume that the phases are independently,
identically and uniformly distributed:

h (x) = ℱ-1
{
𝑒𝑖2𝜋 ·𝔯 (f)

√︁
𝑃2 (f)

}
(x), (7)

where 𝔯 (f) ∼ U[0,1) is an anti-symmetric function of random
phases.

Surface scatter theory: the generalised Harvey-Shack model. The
key quantity of interest in formulating scatter characteristics is the
scattered intensity observed at the far-field region [Stover 2012], ex-
pressed by a bidirectional reflectance distribution function (BRDF),
i.e. the power ratio between the outgoing radiance and incident
irradiance. As discussed briefly in the previous subsection, modern
surface scatter theories attempt to relate the scattering characteris-
tics of a surface—the BRDF—to the surface’s statistics described by
the PSD. While scattering off rough surfaces generally gives rise to
high-frequency details and fluctuations in the scattered intensity
(as will be discussed in Section 4), these fine-scale details are lost
in the BRDF as the scattered energy is averaged over all possible
statistically identical realizations of the surface [Bass et al. 2010].
We will take advantage of this fact later in our discussion.

We now briefly outline the generalised Harvey-Shack scatter
BRDF. The Harvey-Shack scatter theory is a linear system formula-
tion of the scatter behaviour, which came into being by the empirical
observation that scatter is shift-invariant in direction cosine space
[Krywonos 2006]. Some noteworthy simplifying assumptions are
made: First, the optical principles in effect are assumed to conform to
the Rayleigh hypothesis and the Kirchhoff approximation; likewise,
a few assumptions are made with regards to the surface statistics,
namely the Gaussianity of the height function, stationarity and
ergodicity [Harvey and Pfisterer 2016]. Multiple and subsurface
scattering effects are also ignored. Furthermore, note that this is a
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scalar diffraction theory that fails to properly account for the direc-
tion of polarization of the incident field. Nonetheless, experimental
validations of the theory show good results even at far-from-normal
incident angle and with rough surfaces that violate the classical
Rayleigh-Rice smooth surface approximation [Choi and Harvey
2013], and the Harvey-Shack surface scatter theory has also been
used effectively in rendering [Holzschuch and Pacanowski 2017;
Löw et al. 2012; Yan et al. 2018]. See Krywonos [2006] for a com-
prehensive overview of some of the current scatter theories and
additional information.

The generalised Harvey-Shack BRDF is defined as follows: Given
the surface PSD 𝑃2, a wavelength 𝜆, the normal n of the mean of the
scattering surface, direction of incident irradiance i and outgoing
direction of scatter o, the BRDF becomes

BRDFgHS (o, i) = 𝑠𝐹 · 𝛿 (refl (i) − o) + (1 − 𝑠)𝑄 · 𝑃2 (f) , (8)

where 𝑠 = 𝑒−(2𝜋𝜎rel𝜆−1 ⟨i+o,n⟩)2 is the energy fraction that remains
in the specularly reflected beam [Harvey et al. 2012]. As we will
discuss later, for the rough surfaces that we are interested in and
non-grazing angles we can assume that 𝑠 ≈ 0, i.e. the specular term
is negligible. 𝐹 is the well-known specular Fresnel power term, 𝛿
is the Dirac delta and refl (v) is the reflection operator. While the
first term is the specular reflectance, the second term of the BRDF
is the scattered energy, with f being the spatial frequency of the
diffraction lobe. f can be expressed succinctly in vector form as the
projection [Holzschuch and Pacanowski 2017]:

f =
1
𝜆

(
𝐼𝐼𝐼 − nn𝑇

)
(refl (i) − o) = − 1

𝜆

(
𝐼𝐼𝐼 − nn𝑇

)
(i + o) , (9)

where 𝐼𝐼𝐼 denotes the identity matrix. Finally, the term𝑄 is the Fresnel
power term that arises in the Rayleigh-Rice theory [Krywonos 2006].
For completeness, we provide the expressions for 𝑄 in Appendix D.

Assumptions. We make a few assumptions about the surface
model and we summarize them here: In similar fashion to the gen-
eralised Harvey-Shack theory, we assume that the surface statistics
describe a stationary and weakly ergodic (different regions of the
surface are weakly correlated) stochastic process. Further, we as-
sume that the height profile, ℎ, of the random scattering surface is
point-wise Gaussian as well as any two points, ℎ (x1), ℎ (x2), are
jointly Gaussian. Note that this also follows directly from our as-
sumption that the phases ofℱ{ℎ} are independent (Equation (7)),
due to the functional extension of the central limit theorem [Billings-
ley 1995]. We also explicitly formalise the roughness of the surfaces
that we limit our discussion to, via the order-of-magnitude relation

𝜎rel ≫
1
2𝜆. (10)

Given ameanwavelength of∼ 0.50 µm this implies that the standard
deviation of the surface height profile is greater than 0.25 µm. This
implies that the random scattering surface is rough with respect to
the light’s wavelength. That is, very smooth surfaces and artificial
surfaces with a highly periodic structure, e.g., surfaces used for
diffraction gratings, are ignored.
Note that those are very reasonable assumptions: Consider the

BRDF listed in Equation (8), for smooth surfaces or grazing angles

the term 𝑠 becomes significant, meaning a greater fraction of energy
is lost to the specular beam causing the speckle pattern to diminish.

4 FUNDAMENTALS: SPECKLE ON SCATTERING FROM
RANDOM ROUGH SURFACE

In this section we formulate our theoretical optical foundation. The
study of light scatter off rough surfaces is concerned with under-
standing the physical relationship between the surface detail and
the amplitudes or intensities of the scattered waves. In the case of a
random surface described statistically, the interest is in understand-
ing the statistics of the scattered light. Those statistics model the
spatial distribution of the intensities that form due to scattering off
a rough surface and give rise to a granular pattern known as speckle,
which is a widely-studied optical phenomenon [Goodman 2007].

4.1 Far-Field Speckle Statistics
We first briefly review the basic statistical properties of speckle
patterns, formed due to scattering from a random rough surface and
observed at the Fraunhofer region (far field). In the far-field region,
we are discussing only fully formed propagating electromagnetic
radiation fields (fields that decay in amplitude as 1

𝑟 , with 𝑟 being
distance from the source). See Dainty [2013]; Goodman [2007] for a
more complete discussion of optical speckle.
For this subsection we assume coherent light, that is monochro-

matic light that consists only of in-phase contributions (waves), e.g.,
light generated by a (single-mode) laser. Let 𝑢 be the phasor of a
scattered electric field, observed far from the scattering surface. 𝑢
is then a superposition of a multitude of reflected contributions—
called elementary phasors—each arising from reflection off a distinct
microscopic element of the scattering surface:

𝑢 =
∑︁
𝑘

𝑎𝑘𝑒
−𝑖𝜙𝑘 , (11)

with 𝑎𝑘 , 𝜙𝑘 ∈ R. A few practical assumptions are typically made
with regards to the phasor 𝑢 when discussing speckle [Goodman
2007]: First, it is assumed that the phases 𝜙𝑘 of the elementary pha-
sors contributing to a scattered field are uniformly distributed over
[−𝜋, 𝜋); and second, the contributions contain many uncorrelated or
weakly correlated phasors. Both these assumptions follows directly
from our roughness and weakly ergodic surface statistics assump-
tions (discussed in Section 3). Speckle fields conforming to those
assumptions are described by Goodman [2007] as “fully developed”.
Under those assumptions, the amplitudes and phases in the sum in
Equation (11) can be considered as being mutually independently
distributed and thus model a recurrent random-walk in the complex
plane [Dainty 2013]. Therefore𝑢 averaged over statistically-identical
realizations of the random surface has negligible value:

⟨𝑢⟩ ≃ 0, (12)

where the brackets ⟨·⟩ denote ensemble averaging with respect to
the stochastic process of scatter off a random surface. The ensemble
average is the average over all surfaces that conform to the given
surface statistics, i.e. have the same PSD, 𝑃2 (Equation (3)). For a
weakly ergodic stochastic process, this is equivalent to averaging
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Fig. 2. Speckle angular correlation: The Dragon at the top left is made of iron and is illuminated by a D50 illuminant that slowly rotates around the Dragon at
an angular velocity of 0.10° s−1. Close-ups on the area marked by an orange square are shown on the right. The close-ups (displayed with artificially increased
brightness and contrast for visualization purposes) were rendered at very high resolution of 50 µm × 50 µm per pixel. As the observed intensity at each pixel is
composed of many unresolved speckle, the effect is subtle. Nonetheless, as the light rotates, the speckle pattern shifts and changes until it dissolves into a
different pattern and visible examples of this correlation are circled. The correlation of the centre pixel in each marked circle as a function of time are plotted
on the bottom left. We expect the (long range) correlation of speckle to follow a negative exponential correlation [Akkermans 2007], therefore we have fitted a
negative exponential to the red and blue plots (dashed black line). The fitting suggests that small errors cause overestimation by our method (especially visible
in the green plot), however the exponential drop in correlation is well captured.

over the entirety of one such surface:

⟨𝑢⟩ =
∫

d2x𝑢 (ℎ(x)), (13)

where ℎ is any drawn surface height field that conforms to the
given surface PSD, and 𝑢 (ℎ(x)) is the scattered electric field that is
produced due to scattering from the surface at height ℎ(x).
The average intensity of the field described by 𝑢 can be written

as the ensemble average

⟨𝐼 ⟩ = ⟨𝑢𝑢★⟩, (14)

where the superscript ★ denotes the complex conjugate.
We turn our attention to the second-order statistics of speckle

observed at two different directions and far from the surface. Let 𝑢1
and 𝑢2 be a couple of phasors. Then, the second-order moment of
the phasors that form the speckle pattern is known as the mutual
intensity [Mandel and Wolf 1995] and can be expressed as:

𝐶2 (𝑢1, 𝑢2) = ⟨𝑢1𝑢
★
2 ⟩. (15)

The mutual intensity describes not only the spatial correlation of
speckle viewed by a single observer, but also the correlation between
speckle observed from different directions. That is, if the observer’s
position, light source’s position or surface characteristics were to
change slowly over time the speckle pattern would shift and morph
as well up until it bears no relation to the original pattern. This
correlation of speckle is known as the memory effect [Feng et al.
1988] (see Figure 2). For our context, of most interest is the corre-
lation of the formed speckle pattern between multiple successive

rendered frames with a slowly moving light source. We refer to this
phenomenon as the angular correlation of speckle.
Our assumptions imply that the spatial correlation of the rough

surface that contributes to the formation of speckle is low and
therefore the set of contributing elementary phasors contains many
weakly-correlated phasors. Thus, assuming favourable mixing condi-
tions of the weakly-dependent random phasors [Billingsley 1995], by
the central limit theorem, as the number of weakly-correlated pha-
sors increases,𝑢 asymptotically tends towards a circularly-symmetric
complex Gaussian distribution. Therefore, speckle field obey mul-
tivariate Gaussian statistics and we do not consider higher-order
moments. Treating 𝑢 as a circularly-symmetric complex Gaussian
random variable, the intensity 𝑢𝑢★ becomes a negative exponential
random variable [Goodman 2007].

4.2 Subjective Speckle from Partially Coherent Sources
The theory reviewed in Subsection 4.1 considers idealised condi-
tions where the light source is a monochromatic point light source,
ergo the incident radiation is assumed to be perfectly spatially and
temporally coherent. Furthermore the scattered fields are observed
at the far-field region. However, both those assumptions do not hold
in practical conditions: Physical light sources have positive extent
and spectral width and therefore a limited coherence size and length.
In addition, an imaging system will be used to measure the inten-
sities of the speckle pattern at discrete positions and times. This
results in a speckle pattern known as a subjective speckle pattern.
The term “subjective” refers to the fact that the imaging system’s
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Fig. 3. (a) Depiction of a focused optical system used to image scatter off a rough surface. The surface plane S (green thick line) is defined as the mean of the
random surface and an explicit realization (green surface) is described by ℎ (s) : S → R, the height deviations from the mean. A light source (not shown)
illuminates the rough surface giving rise to an incident field which scatters off the surface. The light fields are depicted in blue and some incident and scattered
wavevectors—directions of electromagnetic flux—are illustrated as k𝑖 (light blue arrow), and k𝑠 (blue arrow), respectively. Imaging is then performed via
sensing of the incident flux by a discrete set of image sensors located on the image plane, P (purple thick line). Because the impulse response of some imaging
sensor w ∈ P (red point), described by the impulse response function K , has positive extend, all image points within the impulse response power (depicted in
grey, left side of the image plane) contribute to the intensity sensed by that sensor. (b) A far-field light source (top right) gives rise to a couple of incident and
scattered wavefronts, illustrated in violet and orange, and the scattered fields result in the phasors 𝑢1, 𝑢2 as they are observed by a distant imaging device (not
shown). Both scatters fall within the impulse response of a single image sensor (illustrated in grey above the surface plane), thus their superposition results in
wave interference effects when imaged by the imaging system. The optical path difference between the phasors (depicted in thick orange highlight) can be
computed geometrically by taking into account the surface and height differences, Δs and Δℎ respectively, between the scatter points.

properties, e.g., aperture size and resolution, influence the imaged
speckle pattern.

In this subsection we discuss speckle generated by a light source
with limited optical coherence and observed through an imaging sys-
tem. For simplicity, we begin by assuming a quasi-monochromatic
light source. Quasi-monochromatic radiation is defined as light with
a low temporal frequency spread, and therefore can be assumed to
have very good temporal coherence. Polychromatic radiation will
be discussed at the end of this subsection.

Imaging and the scale-normalised coordinate system. Before we
proceed with our discussion of subjective (imaged) speckle, we
briefly describe a general optical imaging system and the geome-
try we consider (see Figure 3). Let S be the surface plane, which
is defined to be the mean of the random rough surface. Further-
more we denote by P the image plane and let {w1,w2, . . .} ⊂ P
be a finite set of imaging sensors, referred to as the image elements
or just pixels henceforth, located on the image plane. The optical
properties of the (possibly focused) imaging system are defined via
the impulse response function, denoted as K , and we refer to KK★

as the impulse response power. The impulse response function is a
complex-valued function that describes the aperture size and shape
as well as imperfections and aberrations induced by the optical
system.
For convenience, we will at times abuse notation and refer to

points on the image plane interchangeably with points on the sur-
face (in similar fashion to Born and Wolf [1999]). For example, the

notations 𝑢 (s) and 𝑢 (x) refer to the phasor scattered at point s ∈ S
and observed at point x ∈ P, and are equivalent.

Transmission of mutual intensity. Let 𝑢 (x) be the phasor giving
rise to a scattered electric field observed at a point x ∈ P on the
image plane, and denote by 𝐼 (w) the intensity measured at an image
element centred at coordinatew ∈ P of the formed image. Assuming
a stationary process, the quantity 𝐼 (w) can be regarded as a partially
coherent sum, weighted by the impulse response function, of all
speckle patterns produced by each point of the scattering surface.
That is, the intensity 𝐼 can be written as an operation that consists
of convolving 𝑢 with the complex impulse response function of the
imaging system with respect to the mutual coherence between the
phasors [Mandel and Wolf 1995]:

𝐼 (w) =
∫
P

∫
P

Γ𝑐 (𝝃 , 𝜻 ) 𝑢 (𝝃 ) 𝑢 (𝜻 )★ ·

· K (w − 𝝃 ) K (w − 𝜻 )★ d𝝃 d𝜻 , (16)

where Γ𝑐 ∈ C is themutual coherence function [Born and Wolf 1999],
which describes the cross-correlation between wave ensembles on
the surface plane, and it holds that Γ𝑐 (x1, x2) = Γ𝑐 (x2, x1)★. The
mutual coherence function will be discussed in more detail in Sub-
section 4.3. Equation (16) describes the transmission of the mutual
intensity through an optical system under partial coherence [Born
and Wolf 1999]. Note that while the integrands are complex-valued
quantities, due to the integration symmetry the intensity 𝐼 (w) is
real-valued, as expected. Looking at the limit case where the scat-
tered radiation is perfectly incoherent, viz. Γ𝑐 (𝝃 , 𝜻 ) ≡ 𝛿2 (𝝃 − 𝜻 ),
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with 𝛿2 being the two-dimensional Dirac delta function, we can
observe that the intensity reduces to

𝐼incoherent (w) =
[ (
𝑢𝑢★

) ∗ (KK★) ] (w) ,
with ∗ denoting convolution. Therefore in the incoherent case the
intensity is simply the convolution of the intensity of the contribu-
tions with the impulse response power. At the other extreme, when
Γ𝑐 = 1 the intensity becomes

𝐼coherent (w) = [(𝑢 ∗ K) (w)] [(𝑢 ∗ K) (w)]★ ,

that is, the intensity is the intensity of the coherent convolution of
the contributions with the impulse response.

Polychromatic light. We consider the correlation of speckle in-
tensity formed by a polychromatic light source with limited spatial
and temporal coherence. Under polychromatic radiation a scattered
electric field 𝑢 becomes wavelength-dependent and the observed
intensity becomes

𝐼 (w) =
∫
Λ

∫
P

∫
P

𝑆 (𝜆) Γ𝑐 (𝝃 , 𝜻 , 𝜏) 𝑢 (𝝃 , 𝜆) 𝑢 (𝜻 , 𝜆)★ ·

· K (w − 𝝃 ) K (w − 𝜻 )★ d𝝃 d𝜻 d𝜆 , (17)

where Λ is the spectrum and 𝑆 (𝜆) is the intensity of each spec-
tral line. The integration over the spectral contributions is justified
when the polychromatic light is observed over a period long com-
pared to the temporal coherence of the light. The mutual coher-
ence functions is now replaced with its temporal cross-correlation
equivalent, Γ𝑐 (𝝃 , 𝜻 , 𝜏), i.e. is the time-averaged mutual coherence
function [Mandel and Wolf 1995] and with 𝜏 being the time dif-
ference between the observations of the two phasors, 𝑢 (𝝃 , 𝜆) and
𝑢 (𝜻 , 𝜆). Spatial and temporal coherence will be discussed further
in Subsection 4.3.

Statistics of partially-coherent speckle. While for coherent contri-
butions it is the phasors that are linearly summed up, incoherent
contributions are linear with respect to their intensities. Our dis-
cussion is centred on surfaces lit by a weakly-coherent incident
radiation (natural light sources) and imaged by an imaging device.
Under most typical scenarios the resolution of the imaging device
will be lower than the light’s spatial coherence on the surface. In
such a scenario, the intensity of a speckle pattern, imaged by a
single image element, is actually a superposition of multiple inde-
pendent speckle patterns. Such independent speckle patterns arise
in a couple of ways: first, incoherent contributions from different
surface regions, due to the light’s limited spatial coherence; and, sec-
ond, contributions from uncorrelated spectral components (which,
for a high-bandwidth natural light source, can be many). Because
each such contribution is a fully-coherent, monochromatic speckle
pattern, each contributing intensity follows negative exponential
statistics, and thus the superposition of those is gamma distributed.
The order parameter of such a gamma distribution will typically be
large, and therefore the distribution is very-well approximated by a
Gaussian. See Appendix B where we formalise this argument.

4.3 The Mutual Coherence Function Γ𝑐
In this paper we are satisfied with approximating the mutual co-
herence based on the spatial and temporal distance differences be-
tween the observed electric fields 𝑢 and do not take a more rigorous
approach. Therefore, for simplicity, we neglect here an accurate ex-
plicit expression for Γ𝑐 (𝝃 , 𝜻 , 𝜆) and the reader is referred to Mandel
and Wolf [1995] for a far more in-depth discussion about optical
coherence.
Let 𝑢 (𝝃 ) and 𝑢 (𝜻 ) be the observed phasors at the points 𝝃 and

𝜻 , respectively. The mutual coherence function Γ𝑐 characterizes the
correlation between electromagnetic vibrations at two space-time
points, thus both the spatial distance ∥𝝃 − 𝜻 ∥ as well as the time
difference between the observations play a role. However, instead of
time difference we consider the (physically equivalent) difference in
the spatial distance travelled by the light from the source to the two
points of observations, denoted Δ𝑙 . The optical coherence properties
of a light source are then related via the light’s coherence radius and
coherence length [Mandel and Wolf 1995], given by the order of
magnitude relations:

𝜖𝑟 ≈ 𝜆√
𝜋
√
Δ𝛼

𝜖𝑙 ≈
𝜆2

Δ𝜆
, (18)

where Δ𝛼 is the solid angle subtended by the light source, 𝜆 is the
mean wavelength and Δ𝜆 is the effective wavelength range. Clearly,
𝜖𝑟

Δ𝛼→0−−−−−→ ∞, that is radiation from a point light is perfectly spatially
coherent, and likewise a monochromatic light source is perfectly
temporally coherent (𝜖𝑙 = ∞). While not a very physically rigorous
approach, those quantities are directly related to experimental data,
are easy to understand and simplify the importance sampling of the
mutual coherence Γ𝑐 (will be discussed in Subsection 6.1), as it can
now be approximated simply by a product of Gaussians:

Γ𝑐 (𝝃 , 𝜻 , 𝜆) ≈ 1
2𝜋𝜖2

𝑟
𝑒
− ∥𝝃−𝜻 ∥2

2𝜖2
𝑟 𝑒
− Δ2

𝑙
2𝜖2
𝑙 , (19)

with l being the direction to the light source. At non-normal inci-
dence anisotropy arises in the coherence area, however for simplicity
this was ignored. In our implementation we use Equation (19) with a
preset source-dependent coherence length, e.g., 𝜖𝑙 ∼ 0.50 µm−10 µm
for a natural unfiltered white source, and we assume that 𝜖𝑟 remains
constant over a single image element.

5 THE FLUCTUATING INTENSITY
Further analysis can be performed in order to obtain more tractable
approximate expressions for Equation (16) and its covariance under
various simplifying assumptions [Dainty 2013; Goodman 2007]. We
take a different approach, and our primary technical contributions
are developed in this section. We decompose the intensity 𝐼 into a
pair of intensities as follows:

𝐼 = ⟨𝐼 ⟩ + ℑ, (20)

where the ensemble average is over all possible realizations of the
random scattering surface. By taking the ensemble averages on
both sides of Equation (20) we immediately observe that ⟨ℑ⟩ ≡ 0,
therefore ℑ, referred to as the fluctuating intensity, represents the
deviation from the mean of the imaged speckle pattern. ⟨𝐼 ⟩ is then
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simply the average (with respect to the random surface) reflected
energy and disregards effects that arise from a distinct realization
of the surface. We proceed by examining the statistics of ℑ.

Consider the second-order moment ofℑwhen speckle is observed
at two image elements centred at w1,w2 ∈ P. As ⟨ℑ⟩ ≡ 0 the
autocovariance becomes

C̃ (w1,w2) = ⟨ℑ (w1) ℑ (w2)⟩ − ⟨ℑ (w1)⟩⟨ℑ (w2)⟩ =
= ⟨𝐼 (w1)⟩⟨𝐼 (w2)⟩ + ⟨𝐼 (w1) 𝐼 (w2)★⟩, (21)

and by plugging in Equation (16) we get the following expression:

C̃ (w1,w2) = ⟨𝐼 (w1)⟩⟨𝐼 (w2)⟩+

+
∫
P

∫
P

∫
P

∫
P

Γ𝑐
(
𝝃 1, 𝜻 1

)
Γ𝑐

(
𝝃 2, 𝜻 2

)★𝐶4
(
𝝃 1, 𝜻 1, 𝝃 2, 𝜻 2

) ·
· K2

(
𝝃 1, 𝜻 1,w1

) K2
(
𝝃 2, 𝜻 2,w2

)★ d𝝃 1 d𝜻 1 d𝝃 2 d𝜻 2 ,
(22)

where the integration is over tuples of four points on the image
plane and 𝐶4 is the fourth-order moment of the observed fields

𝐶4
(
𝝃 1, 𝜻 1, 𝝃 2, 𝜻 2

)
= ⟨𝑢 (

𝝃 1
)
𝑢
(
𝜻 1

)★ (
𝑢
(
𝝃 2

)
𝑢
(
𝜻 2

)★)★⟩. (23)

The fourth-order moment will be discussed in greater detail in
Subsection 5.1. K2 is defined for convenience as the shorthand

K2 (𝝃 , 𝜻 ,w) = K (w − 𝝃 ) K (w − 𝜻 )★ . (24)
In an analogous manner to Equation (22), the autocovariance of

the fluctuating intensity in the case of polychromatic light becomes:

C̃ (w1,w2) = ⟨𝐼 (w1)⟩⟨𝐼 (w2)⟩+

+
∫
Λ

∫
P

∫
P

∫
Λ

∫
P

∫
P

𝑆 (𝜆1) 𝑆 (𝜆2) Γ𝑐
(
𝝃 1, 𝜻 1, 𝜏1

)
Γ𝑐

(
𝝃 2, 𝜻 2, 𝜏2

)★ ·
·𝐶4

(
𝝃 1, 𝜻 1, 𝜆1, 𝝃 2, 𝜻 2, 𝜆2

) K2
(
𝝃 1, 𝜻 1,w1

) K2
(
𝝃 2, 𝜻 2,w2

)★ ·
· d𝝃 1 d𝜻 1 d𝜆1 d𝝃 2 d𝜻 2 d𝜆2 , (25)

where integration is now over tuples of positions and wavelengths
and the fourth-ordermoments𝐶4 now becomewavelength-dependent
as well. The derived autocovariance of an imaged speckle field (Equa-
tion (25)) is the fundamental theoretical foundation in our discussion
and will be at the core of our rendering framework.

Why decompose into mean and fluctuating intensities? Decompos-
ing a field into its mean and fluctuating parts is a common technique
in scatter theory [Tsang et al. 2002] and our reasons for taking this
approach are as follows: We are, essentially, overlaying a speckle
field—corresponding to a specific realization of the surface—on top
of the scattered mean field in an optically and mathematically accu-
rate manner. The overlaid speckle field is described by the zero-mean
fluctuating intensity ℑ, and the scattered mean field, ⟨𝐼 ⟩, is then the
“smooth” BRDF lobe—the lobe that arises under fully incoherent
lighting. This makes the mean field highly sensitive to approxima-
tion errors, as small inaccuracies would adversely effect the smooth
appearance of the specular lobe. On the other hand, small errors
in the standard deviation of the fluctuating speckle field do not
produce significant artefacts (see Figure 8). Therefore, while inte-
grating the total intensity 𝐼 (Equation (20)) directly appears to be,
at worst, no more challenging than integrating the autocovariances

(Equations (22) and (25)), generating visually-pleasing results this
way is difficult. Our decomposition allows us to overcome this diffi-
culty by applying contemporary surface scatter theories to produce
decently-accurate, computationally-tractable approximations to ⟨𝐼 ⟩
(as discussed in Section 3). This immediately solves the problem of
computing the mean of the distribution, and we are left with the
task of approximating the overlaid (zero-mean) speckle field ℑ.

5.1 The Scattered Phasors and Their Moments
In this subsection we discuss the phasors scattered off a random
rough surface and their moments in greater detail. The moments
are of interest as the fourth-order moment, 𝐶4, appears in the ex-
pressions for the autocovariance of the fluctuating intensity (Equa-
tions (22) and (25)). Our primary theoretical contributions are devel-
oped here and will be used later in Section 6 to derive our rendering
algorithm.
Consider a wavefront incident upon the surface. Denote by k𝑖

the incident wavefront’s wavevector—the vector describing the
direction of propagation of a wave and its spatial frequency. Assume
the wave’s wavelength is 𝜆 and, therefore, its wavenumber is 𝑘 =
|k𝑖 | = 2𝜋𝜆−1. Also assume that thewavefront scatters off the surface
at some point x ∈ S and let a scattered wave’s wavevector be k𝑠 . The
scattered wave gives rise to phasors that are observed at the image
plane P. Different phasors will admit a different phase, and a phase
difference between observed phasors manifests due to the geometric
distance difference travelled by the wavefronts (see illustration in
Figure 3b), as well as a phase shift potentially induced on scatter.
Let a specific surface realization be defined via its point-wise height
deviation from the mean, ℎ(x) : S → R. Then, by employing simple
geometry, the relative phase variation of the wave scattered off the
surface can be expressed as [Harvey and Pfisterer 2016; Krywonos
2006]:

Φ
(
x, ki, ks

)
= ℎ (x) ⟨n, ks − ki⟩ + ⟨x, ks − ki⟩, (26)

(in the rightmost inner product the projection of the term ks − ki
onto the plane S was omitted as the projection operator is self-
adjoint). In general, only a fraction of the energy carried by the
incident wave is present in the scattered wave and the observed
phasor. Neglecting any energy loss due to the imaging system and
volumetric attenuation, the peak amplitude ratio between the inci-
dent wave, denoted 𝑎0, and the scattered wave, 𝑎, is the complex
Fresnel coefficient 𝔣:

𝑎 = 𝔣
(
x, ki, ks

)
𝑎0 . (27)

Note that the Fresnel coefficient is generally a complex-valued func-
tion, representing a phase shift induced by the surface scatter (see
Appendix D for explicit expressions for the polarization-dependent
coefficients 𝔣 and their relation to the factor 𝑄 in Equation (8)).

Moments. Denote 𝑢 𝑗 = 𝑎 𝑗𝑒
−𝑖𝜙 𝑗−𝑖Φ(x𝑗 ,ki 𝑗 ,ks 𝑗 ) as some observed

phasors and we proceed by considering the phasors’ moments. Un-
der the context discussed above we observe the following well-
known corollary [Goodman 2007].
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Corollary 5.1. Treating ℎ (x) as a random variable, a phasor’s
phase can be regarded as uniformly distributed on (−𝜋, + 𝜋], that is

arg
(
𝑢 𝑗

) ∼ U(−𝜋, + 𝜋] .
Proof is given in Appendix C. By Corollary 5.1 a phasor 𝑢 𝑗 can be

assumed to follow circularly-symmetric complex Gaussian statistics.
As a side note, we can observe that the first-order moment vanishes,
viz. ⟨𝑢 𝑗 ⟩ ≡ 0, when averaged over all possible realizations of the
surface, as expected of fully developed speckle.
We turn our attention to the fourth-order moment, 𝐶4, which

plays a crucial role in the speckle autocovariance function (Equa-
tion (25)). In general, evaluating the fourth-order moment can be
difficult, however we use the fact that under the rough surface as-
sumption the phasors follow circularly-symmetric complex Gauss-
ian statistics in order to derive a simpler analytic expression to
𝐶4. To that end, by remembering a beautiful result in computer
graphics—that uniform values on a sphere can be drawn by drawing
Gaussian vectors [Muller 1959]—we present a generalization to the
well known Isserlis’ Theorem in probability theory:

Theorem 5.2. Denote 𝑋 =
[
𝑎1𝑒𝑖𝜃1 , . . . , 𝑎2𝑚𝑒𝑖𝜃2𝑚

]𝑇 to be a 2𝑚-
dimensional (𝑚 > 1) multivariate complex random vector, such that
the magnitudes 𝑎 𝑗 are real-valued constant values and the phases
are uniformly distributed, viz. 𝜃 𝑗 ∼ U(−𝜋, + 𝜋]. Then, the 2𝑚-order
moment can be decomposed in an identical fashion to Isserlis’ Theorem
[Isserlis 1918], as follows

E


2𝑚∏
𝑗=1

𝑎 𝑗𝑒
𝑖𝜃 𝑗


=
©«

2𝑚∏
𝑗=1

𝑎 𝑗
ª®¬
·

∑︁
𝑝∈𝑃2

2𝑚

∏
{ 𝑗,𝑙 }∈𝑝

E
[
𝑒𝑖 (𝜃 𝑗+𝜃𝑙 ) ] ,

where the sum is over all possible pairings of indices and the product
is over each pair in the pairings.

Proof. Proof given in Appendix E □

Corollary 5.3. The fourth-order moment can be decomposed as
follows:

𝐶4 (𝑢1, 𝑢2, 𝑢3, 𝑢4) = 𝐶2 (𝑢1, 𝑢2) ·𝐶2 (𝑢3, 𝑢4)★

+𝐶2 (𝑢1, 𝑢3) ·𝐶2 (𝑢2, 𝑢4)★

+𝐶2 (𝑢1, 𝑢4) ·𝐶2 (𝑢2, 𝑢3)★ .

Proof. ByCorollary 5.1, the phasor𝑢 𝑗 follows circularly-symmetric
complex Gaussian statistics with fixed magnitude, therefore the de-
sired decomposition is obtained directly by applying Theorem 5.2.

□

Corollary 5.3 allows us to write the fourth-order moment 𝐶4 as
an expression of second-order moments 𝐶2 only, and we proceed
by examining 𝐶2.

As discussed, we consider the height function ℎ at any two points
to be jointly Gaussian, thus a closed-form expression for second-
order moment, 𝐶2, can be easily derived. The derivation of 𝐶2 is
outlined in Appendix F and the final expression is listed here:

𝐶2 (𝑢1, 𝑢2) = ⟨𝑢1𝑢
★
2 ⟩ =𝑊2 (𝑢1, 𝑢2) 𝑍1 (𝑢1) 𝑍1 (𝑢2)★ , (28)

where

𝑍1 (𝑢) =𝑎𝑒−𝑖𝜙𝑒−𝑖 ⟨x,k
s−ki ⟩

𝑊2 (𝑢1, 𝑢2) =𝑒𝜎rel
2𝐶S (x1,x2) ⟨n,ks1−ki1 ⟩ ⟨n,ks2−ki2 ⟩ ·

· 𝑒−
𝜎rel

2
2 ⟨n,ks1−ki1 ⟩2𝑒−

𝜎rel
2

2 ⟨n,ks2−ki2 ⟩2 , (29)

with𝑊2 ∈ R and 𝑍1 ∈ C. Equation (28) is applicable for any surface
correlation function 𝐶S. It is noteworthy that while the assumption
of Gaussianity of the surface height is used to obtain a closed-form
expression for𝐶2, Gaussianity is not strictly required for our discus-
sion and any other distribution will do with minor modifications as
long as 𝐶2 can be written in closed-form.

5.2 Spatial and Angular Covariances

We now decompose the autocovariance C̃ into a spatial autocovari-
ance and angular autocovariance, viz. C̃ = C̃spatial + C̃ang, and the
motivation will become apparent once we present our rendering
algorithm in Section 6.

Consider a couple of observations
(
w𝑗 , 𝑡 𝑗

)
and (w𝑙 , 𝑡𝑙 ) such that

w𝑗 ≠ w𝑙 . Inline with the discussion in Subsection 4.1, we assume
𝑙cor ≪

w𝑗 −w𝑙

, that is the surface correlation length (Equa-
tion (6)) is small compared to the spatial distance between the image
elements. Then, given a sharp enough impulse response function, ob-
serve that for most points x, ywhere |K (

w𝑗 − x
) | and |K (w𝑙 − y) |

are not negligible it holds that 𝑙cor ≪ ∥x − y∥, ergo 𝐶S (x, y) ≈ 0,
and thus𝑊2 ≈ 0 (directly from Equation (29), for rough surfaces
at non-grazing angles). Therefore, the fourth-order moment for
some observed phasors 𝑢1,2,3,4 where 𝑢1,2 are far, with respect to
the correlation length, from 𝑢3,4 simplifies to

𝐶4 (𝑢1, 𝑢2, 𝑢3, 𝑢4) ≈ 𝐶2 (𝑢1, 𝑢2) ·𝐶2 (𝑢3, 𝑢4)★ . (30)

Apply now Equation (30) to the covariance between the fluctuat-
ing imaged speckle intensities formed at a couple of observations
C̃ (

w𝑗 , 𝑡 𝑗 ,w𝑙 , 𝑡𝑙
)
(where we abuse notation and introduce the time-

dependence of each observation into C̃). Then, the autocovariance
decomposes into

C̃spatial
(
w𝑗 , 𝑡 𝑗 ,w𝑙 , 𝑡𝑙

)
= ⟨𝐼 (w𝑗

)⟩⟨𝐼 (w𝑙 )⟩+

+
∭

X (
w𝑗 , 𝝃 , 𝜻 , 𝜆

)∭ X (w𝑙 , 𝝃 , 𝜻 , 𝜆)★ , (31)

with

X (w, 𝝃 , 𝜻 , 𝜆) = 𝑆 (𝜆) Γ𝑐 (𝝃 , 𝜻 , 𝜆) K2 (𝝃 , 𝜻 ,w) ·
·𝐶2 (𝑢 (𝝃 , 𝜆) , 𝑢 (𝜻 , 𝜆)) . (32)

The “spatial” subscript expresses that C̃spatial approximates C̃ under
the assumption of w𝑗 ≠ w𝑙 .
Consider now the case when w𝑗 = w𝑙 : We would like to add

a term, denoted C̃ang, which would account for the second-order
moments that were ignored in C̃spatial. Observe from Equation (25)
that when Γ𝑐 = 𝛿2 we expect that C̃ ≈ 0 and thus C̃ang ≈ 0 (with
the physical interpretation being that under incoherent radiation
no fluctuating field arises), while when the coherence area is on
the order of magnitude of the image element, Γ𝑐 is approximately
constant, and by relabelling the integration variables in Equation (25)
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(a) 𝛼 = 6, 𝛽 = 20 µm, 𝜖𝑟 = 8 µm
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(b) 𝛼 = 7, 𝛽 = 15 µm, 𝜖𝑟 = 15 µm
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(c) 𝛼 = 4, 𝛽 = 5 µm, 𝜖𝑟 = 22 µm
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(d) 𝛼 = 4, 𝛽 = 5 µm, 𝜖𝑟 = 6 µm
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(e) 𝛼 = 3, 𝛽 = 12 µm, 𝜖𝑟 = 20 µm

Fig. 4. Plots of the relative errors 𝑒 = | C̃ − C̃′ | /C̃′ of the covariance matrices C̃, computed using the decomposition into spatial and angular covariances
(see Subsection 5.2), compared against the ground-truth C̃′, which is the numerically integrated Equation (22). The simulations were done in flatland for
different coherence radii 𝜖𝑟 and a variety of statistical rough surfaces, with the surface autocorrelation analytically described via the K-correlation model and
parametrized by 𝛼 and 𝛽 (see Section 3). The comparison is performed in flatland as numerical integration of the 8-dimensional integral (Equation (22)) is
infeasible. Plots (a-c) plot the behaviour of the spatial covariance of an imaging device consisting of multiple image elements where each image element covers
a surface area of 50 µm and the light source is located 1 mm above the surface at position 𝑤 = 0 mm. In plot (b) the light is moved to position 𝑤 = −1 mm and
some loss of accuracy can be seen at grazing angles. In (d-e) the angular covariance is plotted for a single image element with a moving light source. The time
difference between two subsequent time points is 1 second and the light rotates at an angular velocity of 1° s−1 around the surface. Plots (c) and (e) show that
some errors, up to 0.10 relative to the ground truth, arise with larger coherence areas.

we get that C̃ ≈ 3C̃spatial. Thus, we approximate C̃ang via a simple
first-order approximation:

C̃ang
(
w𝑗 , 𝑡 𝑗 ,w𝑙 , 𝑡𝑙

)
= 2𝑔

(
w𝑗

) · C̃spatial (w𝑗 , 𝑡 𝑗 ,w𝑙 , 𝑡𝑙
)
, (33)

with
𝑔
(
w𝑗

)
=

𝜋𝜖2
𝑟∫

S KK★
,

i.e. the ratio between the coherence area and the area of a surface
patch that falls under the impulse response power of an image
element. From the above analysis we can also deduce that under
partially coherent radiation it holds that |C̃ang | ≪ |C̃spatial | as Γ𝑐
constricts the integration (in Equation (25)) to a region small com-
pared to the impulse response K . We are, therefore, satisfied with
the rough approximation for C̃ang listed in Equation (33). Despite
its simplicity numerical analysis suggests that C̃ang + C̃spatial ap-
proximates C̃ very well, especially when dealing with natural light
source with small coherence areas (see Figure 4).

6 RENDERING SPECKLE FORMED ON PARTIALLY
COHERENT SCATTER FROM ROUGH SURFACES

In this section we present our rendering framework to render op-
tically accurate speckle patterns produced by some distinct real-
ization of the random surface. As before, let P be the image plane
and let the plane S, with normal vector n, be the mean of the
random scattering surface. Given a sequence of 𝑁 observations,
O =

[(w1, 𝑡1) , . . . , (w𝑁 , 𝑡𝑁 )
]𝑇 , each observation being a spacetime

point, where w𝑗 ∈ P is the spatial position of an image element
and 𝑡 𝑗 is the time point (e.g., pixels in different frames of a ren-
dered animation), our problem statement is as follows: We would
like to draw a sequence of fluctuating intensities ℑ, one for each
observation, from the distribution of the fluctuating speckle field
described by the autocovariance function C̃. The superposition of
the drawn fluctuating speckle field with the mean intensity field

⟨𝐼 ⟩—interpreted as the convolution of the imaging impulse response
power with the BRDF—would then be a physically correct scattered
intensity field for some realization of the random scattering surface.

6.1 Monte Carlo Rendering of a Speckle Pattern
The purpose of the decomposition outlined in Equation (31) is to
enable us to Monte Carlo approximate the integral

∭
X and draw

values from the fluctuating field distribution, as discussed. However,
observe that our decomposed covariance is a superposition of two
covariances, the spatial covariance, C̃spatial, and its angular counter-
part, C̃ang, and there is a crucial conceptual difference between the
two: The former applies to all observation pairs, while the second
applies only to pairs wherew𝑗 = w𝑙 . A major difficulty in rendering
the speckle pattern is devising a feasible approach for estimating
those covariances, and drawing values from that distribution for a
large count of observations, while correctly accounting both for the
spatial and angular correlations. In this subsection we present our
general-purpose extension to the Monte Carlo sampling algorithm
by Bar et al. [2019] that is capable of drawing values under such
constraints as well as handling temporal adaptation induced by
scene change.

Our rendering algorithm (see Algorithm 1) comprises three steps:
We first compute the intensity of the mean field ⟨𝐼 ⟩. We continue
with drawing a value, denoted ℑ̆, from the distribution of the fluctu-
ating intensity field ℑ. Finally, those quantities give rise to the final
intensity of the speckle field 𝐼 .

Mean field intensity. We start with computing the mean intensity
⟨𝐼 (w)⟩, which is required to compute both the final intensity 𝐼 (w)
(Equation (20)) and the fluctuating field covariance. As discussed in
Subsection 4.2, we employ the tractable expressions for the surface
BRDF, provided by existing scatter theories, to compute a good ap-
proximation for the mean intensity field. Then, for each observation(
w𝑗 , 𝑡 𝑗

)
, we compute the mean intensity, ⟨𝐼 (w𝑗

)⟩, by convolving
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the BRDF (e.g., Equation (8)) with the impulse response power:

⟨𝐼 (w𝑗
)⟩ = ∫

P
BRDF (x) K2

(
x, x,w𝑗

)
dx =

=
[
BRDF ∗ (KK★) ] (w𝑗

)
. (34)

Drawing fluctuating intensity values. Let𝑀 > 0 be the count of
Monte Carlo iterations, which we consider to be known a priori
and constant throughout the rendering process, and let 𝐻 > 0
be the count of distinct image elements w𝑗 , which we can also
reasonably assume to remain constant. We begin by drawing a
couple of𝑀-dimensional discrete random vectors, referred to as the
mean integration and spatial integration phases and denoted 𝑝 (mean)
and 𝑝 (spatial) , respectively. We further draw a matrix of 𝑀 × 𝐻
discrete random values, denoted 𝑝 (ang) , i.e. the angular integration
phases. All integration phases are i.i.d. from the two-point uniform
distribution in {−1, +1} (known as the Rademacher distribution), i.e.

𝑝
(mean)
𝑚 , 𝑝

(spatial)
𝑚 , 𝑝

(ang)
𝑚,𝑞 ∼ U {−1, +1} . (35)

(1 ≤ 𝑚 ≤ 𝑀 , 1 ≤ 𝑞 ≤ 𝐻 ). Observe that all integration phases are
zero-mean and pair-wise orthonormal, that is

E
[
𝑝 𝑗
]
= 0 E

[
𝑝 𝑗𝑝𝑙

]
= 𝛿 𝑗𝑙 , (36)

where 𝑝 𝑗,𝑙 are any (mean, spatial or angular) integration phases,
and 𝛿 𝑗𝑙 is the Kronecker delta. The way we draw the phases is the
key to our algorithm and will be discussed further in Section 7.
We then proceed via the following Monte Carlo process: For

each observation
(
w𝑗 , 𝑡 𝑗

)
, we draw the data needed to evaluate

the integrand, X, in Equation (31); that is an 𝑀-tuple consisting
of wavelengths 𝜆 𝑗,𝑚 , as well as pairs of points 𝝃 𝑗,𝑚 , 𝜻 𝑗,𝑚 (with𝑚
indexing the Monte Carlo iteration), and finally, we also need to
draw incident wavevectors ki𝜉 𝑗,𝑚 , ki𝜁 𝑗,𝑚 for each point by selecting
a source of radiation. Note that the image elementw𝑗 and the drawn
surface points uniquely determine the scattered wavevectors, ks𝜉 𝑗,𝑚
and ks𝜁 𝑗,𝑚 . Denote

𝔛𝑗 =



X
(
w𝑗 , 𝝃 𝑗,1, 𝜻 𝑗,1, 𝜆 𝑗,1

)
X

(
w𝑗 , 𝝃 𝑗,2, 𝜻 𝑗,2, 𝜆 𝑗,2

)
...

X
(
w𝑗 , 𝝃 𝑗,𝑀 , 𝜻 𝑗,𝑀 , 𝜆 𝑗,𝑀

)


, (37)

and we draw values from the speckle fluctuating intensity distribu-
tion via the following procedure

ℑ̆𝑗 =
1√
𝑀

𝑀∑︁
𝑚=1

[√︃
2𝑔

(
w𝑗

) · 𝑝 (ang)𝑚,w𝑗

(
𝑝
(mean)
𝑚 ⟨𝐼 (w𝑗

)⟩ + 𝔛𝑗,𝑚

)

+ 𝑝 (spatial)𝑚

(
𝑝
(mean)
𝑚 ⟨𝐼 (w𝑗

)⟩ + 𝔛𝑗,𝑚

)]
, (38)

where we slightly abuse notation and we index the angular integra-
tion phases, 𝑝 (ang) , directly via the image element. Equation (38)
outlines our rendering procedure and the correctness of it is ensured
formally by the corollary that follows.

Corollary 6.1. The drawn fluctuating intensity ℑ̆ (using the pro-
cedure outlined in Equation (38)) converges to the true fluctuating

Algorithm 1: Speckle rendering algorithm
1 begin

// Draw random integration phases as discussed in

Subsection 6.1

2 draw 𝑝 (mean) , 𝑝 (spatial) and 𝑝 (ang) ;
// Render observation at image element w at time 𝑡

3 for (w, 𝑡) ∈ O do
4 ⟨𝐼 ⟩ ← BRDFgHS (w) ; // BRDF

5 ℑ̆← 0 ; // Fluctuating intensity

// Monte Carlo iterations

6 for𝑚 = 1 to𝑀 do
// Draw a couple of positions, a wavelength and

light source

7 Draw x1, x2, 𝜆, ki1, ki2;
// Compute scattered wavevectors

8 ks1 ← 2𝜋
𝜆

w−x1
∥w−x1 ∥ ;

9 ks2 ← 2𝜋
𝜆

w−x2
∥w−x2 ∥ ;

// Evaluate sample and accumulate

10 𝑡 ← 𝑝
(mean)
𝑚 ⟨𝐼 ⟩ + X (w, x1, x2, 𝜆);

11 ℑ̆← ℑ̆ +
√︁

2𝑔 (w)𝑝 (ang)𝑚,w 𝑡 + 𝑝 (spatial)𝑚 𝑡 ;
// Final intensity for the observation

12 𝐼 ← ⟨𝐼 ⟩ + 1√
𝑀

Re
{
ℑ̆
}
;

intensity ℑ in 𝐿1 asymptotically as 𝑀—the count of Monte Carlo

samples—increases, viz. ℑ̆
𝑀→∞−−−−−→ ℑ.

Proof. Clearly E
[
ℑ̆
]
= 0 and we proceed by examining the

covariance. In Appendix G we prove Theorem G.1, which shows
that under any probability space and for any zero-mean orthonor-
mal integration phases the covariance of two values drawn via the
procedure in Equation (38) is as follows:

cov
[
ℑ̆𝑗 , ℑ̆𝑙

]
=

1
𝑀

𝑀∑︁
𝑚=1

[
⟨𝐼 (w𝑗

) ⟩ ⟨𝐼 (w𝑙 ) ⟩ + 𝔛𝑗,𝑚𝔛★
𝑙,𝑚+

+ 2
√︃
𝑔
(
w𝑗

)
𝑔 (w𝑙 )E

[
𝑝
(ang)
𝑚,w𝑗

𝑝
(ang)
𝑚,w𝑙

] (
⟨𝐼 (w𝑗

) ⟩ ⟨𝐼 (w𝑙 ) ⟩ + 𝔛𝑗,𝑚𝔛★
𝑙,𝑚

)]
.

(39)

Using the fact that the integration phases are orthonormal as well
as Equations (31) and (33) we can deduce that

cov
[
ℑ̆𝑗 , ℑ̆𝑙

]
𝑀→∞−−−−−→

(
1 + 2𝛿w𝑗 ,w𝑙 · 𝑔

(
w𝑗

) ) C̃spatial (w𝑗 , 𝑡 𝑗 ,w𝑙 , 𝑡𝑙
)
=

=C̃spatial + 𝛿w𝑗 ,w𝑙 C̃ang ≈ C̃, (40)
as required. □

It is worth noting that while ℑ represents a physical stochastic
process, ℑ̆ is simply a random variable. This distinction is purely
semantic with no practical consequences, however that change of
semantics serves to draw attention to the fact that ℑ̆, in contrast toℑ,
carries no physical meaning and is drawn via a strictly mathematical
process (Equation (38)). This is also the reason behind us switching
to the use of the expected value operator E [·] in place of ensemble
averaging.
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𝜖𝑟 ≃ 3 µm 𝜖𝑟 ≃ 4.50 µm 𝜖𝑟 ≃ 6 µm 𝜖𝑟 ≃ 9 µm 𝜖𝑟 ≃ 14 µm 𝜖𝑟 ≃ 22 µm

Fig. 5. Simple spheres made of (top) silver and (bottom) titanium rendered using our method. The spheres are illuminated with a (top) CIE D65 and (bottom)
CIE D50 standard white daylight sources, and the sources admit increasing spatial coherence areas (right-to-left). All figures are rendered with𝑀 = 2048
Monte-Carlo samples and the right part of each figure (on the right of the grey line) is rendered without speckle (only mean field) for comparison.

Computing the final intensity. Note that even though the fluctu-
ating intensity ℑ computed directly from Equation (16) or Equa-
tion (17) is real as expected—due to the complex parts cancelling
out by the integration symmetry—the integrand is nonetheless com-
plex and values drawn using the discrete Monte Carlo process in
Equation (38) are complex as well. Nonetheless, as ℑ̆ 𝑀→∞−−−−−→ ℑ we
deduce that Im

{
ℑ̆
}

𝑀→∞−−−−−→ 0 and then the final intensity trivially is

𝐼 = ⟨𝐼 ⟩ + Re
{
ℑ̆
}
. (41)

Clearly 𝐼 𝑀→∞−−−−−→ 𝐼 in 𝐿1 and it is easy to see that E
[
𝐼
]
= ⟨𝐼 ⟩.

Furthermore, the covariance between the drawn intensities of a
couple of observations, 𝐼 𝑗 and 𝐼𝑙 , becomes

cov
[
𝐼 𝑗 , 𝐼𝑙

]
=E

[
𝐼 𝑗 𝐼𝑙

] − E [
𝐼 𝑗
]
E
[
𝐼𝑙
]
=

= E
[
Re

{
ℑ̆𝑗

}
Re

{
ℑ̆𝑙
}]

𝑀→∞−−−−−→ cov
[
ℑ̆𝑗 , ℑ̆𝑙

]
(42)

and thus the final intensity 𝐼 admits the desired statistics.

Temporal adaptation. The angular integration phases (Equation (35))
give rise to the E

[
𝑝
(ang)
𝑚,w𝑗

𝑝
(ang)
𝑚,w𝑙

]
= 𝛿w𝑗 ,w𝑙 term in Equation (39). As

described in Subsection 5.2, this term is designed to selectively factor
in the angular covariance approximation, C̃ang (Equation (33)), into
Equation (40) when w𝑗 = w𝑙 . The implication of this approach is
that we effectively assume that the surface patch giving rise to scat-
ter observed at a couple of space-time points

(
w𝑗 , 𝑡 𝑗

)
and (w𝑙 , 𝑡𝑙 )

is identical when w𝑗 = w𝑙 , i.e. the scene is static. We would like
then to adapt to angular changes in the covariance between phasors
observed by the same image element but at different time points.

Let
(
w, 𝑡 𝑗

)
and (w, 𝑡𝑙 ) be a couple of observations, which share an

image element. Assume that the surface patch that contributes to w
was displaced by d = 𝛿x between time points 𝑡 𝑗 and 𝑡𝑙 . By studying
Equation (29) and using the same arguments as in Subsection 5.2
we claim that𝑊2, and in turn the angular covariance, decays, when

the underlying surface shifts by d, approximately by a factor of

Δx (d) = 𝑒2𝜋𝜎2
rel𝜆
−1 [𝐶S ( ∥d∥)−1] , (43)

where 𝜆 is themeanwavelength andwe simplified the expression via
the order-of-magnitude relation ⟨n, ks1 −ki1⟩ ∼ ⟨n, ks2 −ki2⟩ ∼ 2𝜋

𝜆
.

𝐶S is the surface autocorrelation function at surface point x. Our
intention is then to scale the Kronecker delta in Equation (40) by Δx.
To that end, instead of drawing a single set of angular integration
phases 𝑝 (ang) , we draw a set for each time point, denoted 𝑝 (𝑡 𝑗 ) ,
recursively: Given 𝑝 (𝑡 𝑗 ) the angular phases for the next time point
𝑡 𝑗+1 are drawn as follows

𝑝
(𝑡 𝑗+1)
𝑚,w = 𝑝

(𝑡 𝑗 )
𝑚,w · (−1)Bernoulli

(
1−Δx (d)

2

)
, (44)

where x is the surface point observed by image element w at time
𝑡 = 𝑡 𝑗+1, d is the surface displacement from 𝑡 = 𝑡 𝑗 and Bernoulli (𝑘)
(0 ≤ 𝑘 ≤ 1) denotes a draw from the Bernoulli distribution, i.e.

Pr{Bernoulli (𝑘) = 1} = 𝑘 and Pr{Bernoulli (𝑘) = 0} = 1 − 𝑘.
(45)

Then, the following property of the angular integration phases
holds:

E
[
𝑝
(𝑡 𝑗 )
𝑚,w𝑙

𝑝
(𝑡 𝑗+1)
𝑛,w𝑞

]
= E

[
𝑝
(𝑡 𝑗 )
𝑚,w𝑙

𝑝
(𝑡 𝑗 )
𝑛,w𝑞

]
E
[
(−1)Bernoulli

(
1−Δx (d)

2

) ]
=

= 𝛿𝑚𝑛𝛿w𝑙w𝑞Δx (d) (46)

as desired.

6.2 Practical Considerations
Importance sampling. To evaluate X (Equation (32)) we require

drawing data from a few sources: First, we need to select a source of
radiation; and second, we need to draw a couple of scattering points
on the surface. The former is relatively straightforward to handle, a
point on a light source is chosen and a wavelength is importance
sampled with respect to the light’s spectral density. For the latter we
start by drawing a position, 𝜉 , with respect to the impulse response

, Vol. 1, No. 1, Article . Publication date: June 2021.



14 • Shlomi Steinberg and Ling-Qi Yan

Copper — D50𝜖𝑟 ≃ 7 µm 𝛼 = 1.3 𝛽 = 13 µm Cobalt — D65𝜖𝑟 ≃ 49.70 µm 𝛼 = 2.1 𝛽 = 20 µm

Magnesium — F1𝜖𝑟 ≃ 18 µm 𝛼 = 1.9 𝛽 = 17 µm (anisotropic) Platinum — D65𝜖𝑟 ≃ 20 µm 𝛼 = 2.2 𝛽 = 5 µm

Fig. 6. The Stanford Dragon made of different metals and surface statistics (bottom right of each Dragon), rendered under incident illumination consisting of
different spectra and coherence properties (bottom left of each Dragon). The CIE D50 and D65 are standard white daylight light sources with wide spectrum,
while the F1 illuminant represents a white Fluorescent light source with sharp peaks in its spectrum. The insets at the top right corner of each Dragon display
a close-up of the produced patterns. The Dragon’s dimensions are 50 cm × 29.50 cm (L×H) and each rendered pixel covers roughly ∼ 250 × 250 µm2 surface
area. The Magnesium Dragon (bottom left) exhibits a high degree of anisotropy in its surface statistical properties. All figures are rendered with𝑀 = 2048
Monte-Carlo samples.

function |K (w − 𝝃 ) | . The importance sampling strategy for the
second position, 𝜁 , depends on the light coherence properties as
well as the surface statistics:

• When the rough order-of-magnitude relation 𝜖𝑟 ≪ 𝑙cor holds,
that is when the light coherence radius 𝜖𝑟 is less than the
surface correlation length 𝑙cor, then the contributions to the in-
tegral in Equation (31) are dominated by the coherence radius.
Then, we importance sample 𝜁 with respect to the coherence
area Gaussian (which is formulated in Subsection 4.3).
• More commonly, however, the surface correlation length is
small and the opposite relation 𝜖𝑟 ≫ 𝑙cor holds. In this case
our implementation samples 𝜁 with respect to the distribu-
tion of the surface autocorrelation function, approximated by
an exponential distribution (as described in Section 3). This
however, is a rough approximation as the actual distribution
is dictated by the moment𝐶2 (Equations (28) and (29)). Better
importance sampling of the second-order moment 𝐶2 could
potentially greatly speed up convergence and is left for future
work.

When the coherence radius and the surface correlation length are
roughly similar, any strategy can be used. See our supplemental
material for a sample implementation.

Random-number generators. Our integration phases are sensitive
to non-optimal random-number generators and small biases can

induce significant errors in the drawn fluctuating intensity ℑ̆. As
an experiment, assume that the random-number generator used to
draw the integration phases has a constant bias 𝑏, such that it draws
a value of 1 with probability 1+𝑏

2 and a value of −1 with probability
of 1−𝑏

2 . Observe the sum in Equation (38) and note that when the
integration phases are drawn using the biased random-number
generator the following holds:

Pr
{
𝑝
(spatial)
𝑚 𝑝 (mean)

𝑚 = 1
}
=

1 + 𝑏2

2 , Pr
{
𝑝
(spatial)
𝑚 𝑝 (mean)

𝑚 = −1
}
=

1 − 𝑏2

2 .

Therefore, we deduce that

E

[
1√
𝑀

𝑀∑︁
𝑚

𝑝
(spatial)
𝑚 𝑝

(mean)
𝑚 ⟨𝐼 ⟩

]
= 𝑏2√𝑀 ⟨𝐼 ⟩, (47)

that is, a bias of 𝑏 introduces an error of magnitude 𝑏2√𝑀 in the
final intensity 𝐼 . For a large count of Monte Carlo samples,𝑀 , this
error can become significant and the magnitude of the error grows
non-linearly with 𝑏.

To alleviate the problem, we simply keep redrawing the integra-
tion phases until each set of phases is balanced (sums up to zero),
and we leave a more sophisticated solution for future work.

Rendering coloured speckle. For a typical tristimulus renderer, we
redefine the function 𝑆 (𝜆) (the intensity of a spectral line, see Equa-
tion (17)) to be a function that maps wavelengths to colour tuples,
usually of the CIE XYZ colour-space, scaled by the intensity of the
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𝑑 = 1.50m 𝑑 = 4m 𝑑 = 25m

Fig. 7. A Buddha statue, 12.20 cm × 37.10 cm (W×H), made of iron and partially coated in gold (coating assumed thick enough to neglect layered effects). The
gold coating admits a smoother surface with greater correlation length compared with the base iron. The Buddha is illuminated by a couple of light sources: A
large 1 m2 D65 illuminant from the right, and a small F2 (warm fluorescent) located behind and above the camera. The large light source is placed close to the
statue initially and then is quickly retracted away. The distance from the light source, 𝑑 , is displayed at the bottom left of each figure. Being close to the
surface it admits poor spatial coherence, however its spatial coherence increases as it is moved farther away. This is appreciable by examining the produced
speckle pattern, which is visible in the insets to the left of each image (artificially increased contrast and brightness for visualisation purposes). We can see
additional speckle appear both on the iron head (purple and red insets) and the gold coating (blue inset). Also notice that the speckle transitions smoothly
between the metals, and different surfaces as well as different light sources induce starkly different speckle statistics: The smoother surface gives rise to more
vibrant and tightly clustered speckle compared to the rougher surface. See our supplemental material for a rendered video of the Buddha.

spectral line 𝜆. This in-turn also redefines X, 𝐼 and ℑ̆ to also be
colour-space tuples. The rest remains unchanged.

Saving the integration phases. A requirement that arises at times
in practice is to be able to re-render a portion of a rendered sequence,
or append additional frames. However, if we were to do so with a
newly drawn set of integration phases, the new speckle would be
inconsistent with the previously rendered one as the speckle would
correspond to a different realization of the random surface. To re-
render speckle correctly we would need to store the integration
phases and reuse the same phases when rendering the new speckle.

7 RESULTS AND DISCUSSION
We have presented a method for rendering speckle formed on scat-
ter by rough statistical surfaces. Some assumptions with regards to
the surface statistics were made along the way the most notable of
which is the surface roughness assumption formalised as the order-
of-magnitude relation 𝜎rel ≫ 1

2𝜆 (Equation (10)). This assumption
defines what surfaces fall under our purview, and is also required for
our extension to Isserlis’ theorem (Theorem 5.2) to apply. Nonethe-
less, the moment decomposition that follows (Corollary 5.3) remains
valid also at the rough limit and for smoother surfaces and the rest
of our framework still applies. A decomposition for smooth surfaces
would require a slightly different mathematical treatment of the mo-
ments, however that would be of limited interest as smooth surfaces
do not exhibit any significant speckle.

The only assumptionwith regards to the properties of the incident
radiation is that it is a natural (i.e. weakly coherent) light source.

Indeed, as the rendering is done via Monte Carlo integration, our
method is flexible and can work with light sources of arbitrary shape,
spectrum and coherence properties (see Figure 7). Some of our re-
sults are demonstrated in Figure 6 and rendered videos are available
in our supplemental material. For simplicity, we used a simple rect
function for the impulse response function K , though any other
function can be used (as long as the imaging resolution remains
low enough to give rise to speckle that is Gaussian in intensity). To
render the metal surfaces accurately, we use databases of measured
wavelength-dependent complex refractive indices, which are easy
to incorporate into our rendering framework as we draw singular
wavelengths during integration. The rendered Cobalt Dragon (top
right in Figure 6) is illuminated by a highly-coherent light source
with a coherence radius of ∼ 50 µm which implies that most of the
surface subtended by a single pixel gives rise to non-negligible mu-
tual intensities. This stretches our assumption of weakly coherent
light, nonetheless the rendered Dragon exhibits colourful speckle,
as expected, with stable statistics.

As discussed, an important part of our theoretical formulation is
the decomposition of the intensity field into its mean and fluctuating
parts in an optically and mathematically consistent manner. This
formulation leverages substantial existing work done in applied
optics in order to compute the mean field in closed-form, and the
rendering algorithm focuses on the fluctuating field. This has multi-
ple advantages: As discussed in Section 3, existing scatter theories
are well studied, extensively validated and are being employed both
in computer graphics and applied optics. In addition, errors induced

, Vol. 1, No. 1, Article . Publication date: June 2021.



16 • Shlomi Steinberg and Ling-Qi Yan

(a) Iridium 50 cm × 50 cm surface

𝑀 = 8 𝑀 = 32 𝑀 = 128 𝑀 = 512 𝑀 = 2048 𝑀 = 16384

(b) Speckle patterns rendered with different values of Monte-Carlo samples𝑀
𝑀 = 8 𝑀 = 32 𝑀 = 128

0.002 0.004 0.014 0.016𝑀 = 512 0.002 0.004 0.014 0.016𝑀 = 2048

ℑ̆ luminance ℑ̆ red ℑ̆ green ℑ̆ blue

0.002 0.004 0.014 0.016𝑀 = 16384 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Re{ℑ̆}

𝑀 = 8
𝑀 = 32
𝑀 = 128
𝑀 = 512
𝑀 = 2048
𝑀 = 4096
𝑀 = 16384

(c) Fluctuating speckle field histograms

8 16 32 64 128 256 512 102420484096819216384
Monte-Carlo samples𝑀

luminance
red
green
blue

(d) Standard deviation of ℑ̆

Fig. 8. Analysis of the statistics and convergence of our rendering algorithm. (a) A flat 50 cm× 50 cm surface made of iridium and illuminated by a moderately-
coherent light source (illuminant D65) rendered using our method with𝑀 = 16 384 samples, as a reference. (b) The fluctuating field ℑ̆ (top) as well as the final
intensity 𝐼 (bottom) were captured after various counts of Monte-Carlo iterations. Note that the fluctuating speckle patterns only show the positive part of
the field, and the displayed images have artificially increased brightness and contrast for visualization purposes. Visual inspection reveals that colourful
speckle outliers are polluting the image for𝑀 ≤ 512. We also studied the statistics of the rendered fluctuating speckle fields: (c) Histograms and (d) standard
deviations of the ℑ̆ field were computed for various values of𝑀 . The six plots (plots (c) left) display logarithmic histograms of the low intensity range of the
fluctuating intensity distribution. The luminance histogram (plot (c) right) shows that the speckle field reproduces a Gaussian curve, as theoretically expected,
beginning at roughly𝑀 = 512 samples. The shape of the histogram as well as the standard deviation stabilises at around𝑀 = 2048 samples, and the pattern
effectively becomes fully developed and converges in statistics: Higher count of samples do not have an effect on the statistics of the pattern.

by the Monte Carlo integration process only affect the fluctuating
field, which is generally of lower intensity than the mean field. Fi-
nally, the decomposition ensures that our method is agnostic to
the way we compute the mean field, and essentially any method or
scatter theory would work.

Some of our results (Figures 1, 5 and 7) were rendered with image-
based lighting, in the form of an environment map, in addition to a
natural light source. We assume that the incident light that arises
due to the environment map is incoherent, and thus we do not
draw a speckle field for the environment map reflections. However,
our method can be applied to image-based lighting methods if the
coherence properties (i.e. the coherence radius 𝜖𝑟 ) of the incident
light are quantified. This can be done, for example, by specifying
the distance to the source for every pixel in the environment map.

Integration into a rendering framework. At its core our rendering
method is simply a spectral Monte Carlo sampler, with one impor-
tant caveat: We sample mutual intensities, meaning that we draw a
pair of points for each evaluation. Nonetheless, the incident radia-
tion can be sourced directly form a light source, or potentially be
arriving from multiple directions and secondary sources, therefore
the method is compatible with essentially any spectral ray-tracing
rendering framework.

Our implementation draws wavelengths by importance sampling
the spectrum of the light source. Though we have not tried other
sampling strategies, a fixed spectral sampling should work as well
as long as the sampling is dense enough to avoid spectral aliasing.
Another potential difficulty arises due to the integration phases. As
discussed, the integration phases are highly sensitive to imperfect
random-number generators and it is advisable to store the drawn
integration phases for future reuse.
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−3 −2 −1 0 1 2 3

·10−3intensity (mean shifted to 0)

Gaussian fit (ours)
Gaussian fit (numeric solver)

Histogram (ours)
Histogram (numeric solver)

RMSE = 0.1212
RMSE = 0.01579

Runtime (solver): ∼ 50 h
Runtime (ours): ∼ 20 s

Fig. 9. Explicit methods are inefficient in reproducing the high-frequency
speckle noise that arises when partially-coherent light scatters off rough
surfaces: In flatland, we modelled a surface patch of length 200 µm explicitly
using a 150 000 pixel heightmap, drawn from a K-correlation model with
𝛼 = 2, 𝛽 = 8 µm. A light source is positioned directly above the surface and
the incident radiation is assumed to admit a coherence radius of 𝜖𝑟 = 15 µm.
We rendered the radiation scattered into an arc of 0.10° (centered about 6°
off the normal) as a BRDF slice consisting of 20 000 pixels using our method
(blue plot) and established methods in Fourier optics (brown plot), and the
resulting histograms are plotted above. The rendering was done with 40
spectral samples. Due to discrepencies between the means produced by
the generalised Harvey-Shack and the explicit numeric solver, a highpass
filter is used to extract the relevant data from each of the rendered BRDFs,
effectively normalizing the data to the samemean.While the explicit method
produces a histogram of roughly Gaussian shape, the poor fit suggests
that non-Gaussian noise (due to numeric inaccuracies and resolved surface
features) is still present, despite the massive heightmap resolution.

Table 2. Rendering runtimes of our method for the different scenes that
appear throughout the paper as well as the videos in the supplemental mate-
rial. Rendering was done on an Intel® Core™ i9-9900K CPU. The rendering
time of the Buddha is dominated by integrating the area lights.

Scene Rendering time (per frame)

Dragon
(2560 × 1440,𝑀 = 2048, 1 light)

3 min 59 s

Buddha
(1600 × 2560,𝑀 = 2048, 2 area lights)

25 min 56 s

Teapot
(1920 × 1080,𝑀 = 128, 1 light)

6.50 s

Surface (Figure 8)
(2048 × 2048,𝑀 = 16384, 1 light)

6 min 37 s

Complexity and performance. Time-wise the rendering algorithm
requires 𝒪 (𝑁𝑀) operations, where 𝑁 is the count of observations
and𝑀 is the count of Monte Carlo samples. As𝑀 is chosen a priori,
the algorithm is linear with respect to resolution and frame count
of the rendered sequence. Space-wise we only store the drawn
integration phases, as described in Subsection 6.1. This requires𝑀-
bits of space for the mean and spatial phases, as well as (𝑀 × 𝐻 )-bits
for the angular phases, where 𝐻 is the count of image elements. To
perform temporal adaptation we could also be required to redraw
some of the angular integration phases. However, once a frame

has been rendered, we can draw the next frame’s phases (using
the procedure outlined in Equation (44)) and discard the rendered
frame’s phases. Therefore, with 𝑀 and 𝐻 assumed constant, the
space requirements can also be considered to be constant.
Nonetheless, evaluating X (Equation (32)) can be expensive in

practice, and a large number of Monte Carlo samples might be
needed. All of our results have been rendered on a desktop CPU
and the rendering times are summarised in Table 2.

7.1 Validation and convergence

The speckle covariance decomposition into C̃spatial and C̃ang, as
described in Subsection 5.2, is the driving formalism behind our
rendering algorithm. We have numerically tested the correctness of
this decomposition on a variety of surfaces, see Figure 4. In addition,
the Monte Carlo rendering framework described in Subsection 6.1
has been formally proven to draw fully developed speckle patterns
with the desired statistics (see Corollary 6.1). We empirically test
the convergence of the Monte Carlo integration in Figure 8. Con-
vergence is slow and the speckle does not converge to a singular
pattern, however it does converge in statistics: That is, after a certain
number of samples, 𝑀 , the statistics of the rendered field remain
constant. This, however, can give rise to a small amount of residual
temporal noise that can be observed in the rendered sequences (see
our supplemental material). Nonetheless, our results (see Figure 6)
are founded on optically rigorous theory and produce plausible
speckle with consistent statistics.

We also compare our method against the explicit surface diffrac-
tion rendering method of Yan et al. [2018], see Figure 10. The ren-
dering method by Yan et al. [2018] operates on a heightmap, and
in order to perform the comparison we draw an explicit surface
height profile. However, to capture the statistics of the surface, a
high-resolution heightmap is needed, which results in a large inte-
gration area (roughly 250 000 texels) as well as very high rendering
times. Despite that, visible surface features are still resolved and the
statistics strongly suggest that those features are not fully developed
speckle.
This is not suprising: It well-known that the (far-field) angular

distribution of the scattered fields is related to the field distribu-
tion on a diffracting aperture via a Fourier transform [Goodman
2017]. A scattering surface can be readily considered as such an
aperture under the Born approximation, i.e. when the interaction
of the scattered radiation with the surface is negligible (away from
steep angles). Thus, it is evident that the angular frequency resolu-
tion of the scattered radiation is proportional to the spatial extend
and sampling frequency of the surface heightmap, and simple cal-
culations show that heightmaps with extremely fine resolution are
needed to reproduce speckle. In an attempt to reproduce optical
speckle with an explicit method, we work in flatland and draw a
high-resolution 150 000 pixel heightmap. We compute the scattered
field by taking the discrete Fourier transform of the incident field
distribution on the surface. To simulate partially-coherent radiation,
the light source is assumed to consist of many uncorrelated radiators.
Assigning random initial phase to each such radiator can be thought
of as applying a random phase screen to a coherent source—an estab-
lished technique for simulating partially-coherent radiation [Xiao
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16 × 16 32 × 32 64 × 64 128 × 128 256 × 256 512 × 512

16 × 16 32 × 32 64 × 64 128 × 128 256 × 256 512 × 512

16 × 16 32 × 32 64 × 64 128 × 128 256 × 256 512 × 512

Explicit surface (Yan2018)

Statistical surface (ours)

Speckle only (ours)

Render time: 3min

Render time: 40 h

Drawn surface

(a) Comparison against [Yan et al. 2018]

Speckle Yan2018Ours

Histograms (512 × 512)
Total (Yan 2018)
Total (Ours)

Speckle (Yan 2018)
Speckle (Ours)

(b) Statistics

Fig. 10. (a) We compare against Yan et al. [2018] by drawing an explicit surface heightmap that conforms to the K-correlation model statistics with
𝛼 = 2, 𝛽 = 12 µm, and we use their method to render the drawn surface. The drawn surface is visualised inside the cyan frame in Figure (a), and the histogram
inset confirms the point-wise Gaussianity of the heightmap. The dimensions of the rendered surface patch are 25 mm × 25 mm, with the viewer located about
250 mm above the centre and the surface illuminated by a directional light source that admits a coherence radius of 15 µm. To capture the surface statistics,
the density of the heightmap is set to 30 texels per 1 µm, nonetheless surface features are clearly resolved when rendering at a resolution of 512 × 512. Due to
the high-density, rendering of that image takes 40 h, and we did not render with higher density heightmaps. Note, as that the surface subtends a solid angle of
0.01 sr, it is unlikely that those features are speckle. Under an identical configuration, we also rendered the surface using our method. The difference in colour
is attributed to different shading models. As expected, speckle is produced when the resolution of the imaging device increases, and the contributions to
each pixel are more coherent. In contrast to Yan et al. [2018], our method does not suffer from aliasing at lower resolutions. (b) To study the statistics of the
produced patterns, we artificially decompose the 512 × 512 explicit surface rendering into mean (by averaging over 128 × 128 moving window) and speckle
(top). We then plot the histograms of the total intensities as well as the speckle intensities (bottom). Note that while our rendering clearly follows Gaussian
statistics, as expected, the explicit surface renderings do not. This, in addition to the visible features, suggests that despite the high-density heightmap the
rendered explicit surface images do not exhibit fully developed speckle.

and Voelz 2006]—and is a very good model for a natural spontaneous
emission light source. However, in practice such sources consist of
very many independent radiators, and due to the resolution both of
the heightmap and the rendered BRDF slice, it is computationally
feasible to simulate only hundreds of such sources. We used 128
independent radiators, uniformly spatially distributed inside a light
source of radius 1 µm. The average scattered intensity computed
by the numerical method described above is not expected to agree
with the average intensity computed using our method (i.e., as we
use the generalised Harvey-Shack model). However, extracting the
high-frequency details from the computed fields via a highpass filter
yields some agreement in the noise variance between both methods,
see Figure 9. The noise that arises in the numerically computed
field is not fully Gaussian (fit RMSE of 0.1212). It is reasonable to
expect that with additional radiators or with a greater heightmap
resolution the noise histogram will tend closer to a Gaussian shape,
but we did not investigate further. Rendering using this explicit
method takes over 50 hours, while our method requires about 20
seconds.
We conclude that such explicit methods are not suitable for the

reproduction of high-frequency details that arise on scatter by rough
surfaces. Optical speckle is developed due to (essentially random)
reflections by tiny details, such as the conducting electrons at a

metal’s surface, but the exact topology of those nanoscale struc-
tures and particles is of little importance. It is merely their existence
that gives rise to the random phasor sums that are speckle. The
summation of these speckle patterns, reflected from different areas
of the surface under partially-coherent light, is what ensures the
Gaussianity of the final speckle pattern. The above analysis also
makes our decomposition into a mean field—dominated by the first-
order diffraction from low-frequency surface details—and fluctuat-
ing field—dominated by scatter by high-frequency details—pleasing
from a physical persepective: they arise due to rather different pro-
cesses. On the other hand, explicitly modelling those high-frequency
surface details is neither feasible nor methodologically sound (for
our purposes).

7.2 Limitations
We reiterate the assumptions that were made throughout the paper:

(1) Moderate surface roughness: As formalised by Equation (10).
This also implies that the specular lobe is ignored.

(2) Weakly-coherent light: Under strong spatial coherency, i.e.
𝑔 ≫ 0 (see Equation (33)), the decomposition of the autoco-
variance into spatial and angular autocovariance becomes
less accurate. For coherent light sources, the approximation
for 𝑔 will have to be reworked. However, as our focus is on
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material appearance reproduction under natural lighting, we
leave this for future work.

It is of theoretical interest to note that while our method draws a
speckle pattern that corresponds to some realization of the surface,
we have no means of deducing which specific surface realization
induces the drawn pattern. Put differently, it would be of interest
to be able to perform inverse rendering by relating the PSD phases,
required to draw an explicit surface (see Equation (7)),to the drawn
speckle pattern. This important theoretical problem is an active area
of research [Dong et al. 2015] and is left for future work.
It is also important to note that we ignore multiple scattering

and subsurface scattering when integrating the fluctuating intensity.
Contributions from multiply scattered radiation will typically ex-
hibit weaker optical coherence, as well as intensity, than the directly
scattered fields. We, therefore, expect multiple scattering effects
to mainly reduce the speckle contrast—the ratio between the stan-
dard deviation of the fluctuating intensity and the mean intensity.
Nonetheless, the question of how does multiple scattering influence
the statistics of the speckle pattern is an interesting open problem,
and is also left for future work.
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A K-CORRELATION MODEL
While Gaussianity is a common assumption, most physical surfaces
do not admit a Gaussian autocorrelation function and a better model
is required. The K-Correlationmodel of the surface PSD is a common
analytic expression to a physically reasonable surface power spec-
trum [Church et al. 1990; Stover 2012]. The model admits multiple
physically intuitive control parameters to describe different surface
finishes. This allows to model different conventional and fractal
surfaces with a single analytic expression [Dittman 2006]:

𝑃2 (𝑓 ) =
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which is a remapping from the more common form given by Church
et al. [1990], derived by plugging-in the surface relative rough-
ness 𝜎rel (Equation (5)). The remapping is in similar fashion to
Holzschuch and Pacanowski [2017], except that we use the bandwidth-
limited relative roughness. Note that this introduces cumbersome
wavelength-dependence into the PSD (as 𝜎rel is wavelength depen-
dant), and to avoid this dependence in 𝑃2 we set 𝜆 = 0.50 µm in
Equation (48). The control parameters are then 𝛼 , the slope of the
PSD in log-log space, and 𝛽 , which is related to the correlation length
𝑙cor (Equation (6)). The autocorrelation function of the K-Correlation
PSD is then [Stover 2012]:
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where Γ is the Gamma function and 𝐾𝜈 is the modified Bessel func-
tion of the second kind. Due to its popularity and flexibility, the
K-Correlation PSD has been used in all of our results.

Importance sampling the K-Correlation 𝐶S function. A difficulty
that will arise later is the need to importance sample the function
𝐶S. In the case of the K-Correlation model, the behaviour of the
surface autocorrelation is dictated by the Bessel function 𝐾𝜈 , which
admits an asymptotic expansion [Abramowitz 1974]:
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Using the above the autocorrelation function can be written as the
following expression

𝐶S (x) ∼
𝜋
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) ( ∥x∥
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) 𝛼−1
2
𝑒
−2𝜋 ∥x∥𝛽 , (50)

which is dominated by the exponent. Thus for ∥x∥ ≫ 0 we can
deduce that the K-correlation surface autocorrelation function is dis-
tributed similarly to an exponential distribution, i.e. 𝐶S ∼ 𝑒−2𝜋 ∥x∥𝛽 .

B STATISTICS OF PARTIALLY-COHERENT SPECKLE
As stated in Subsection 4.1, when light is monochromatic and fully-
coherent (spatially and temporally), the intensity of the speckle
follows negative exponential distribution, i.e. the probability density
function is

𝑝coherent (𝐼 ) = 1
2𝜎2

𝐼

𝑒
− 𝐼

2𝜎2
𝐼 . (51)

with 𝐼 ≥ 0. For monochromatic light that exhibits partial spatial
coherence, the speckle pattern can be regarded as a sum of multiple
independent speckle patterns, each produced by coherent light con-
tributions and therefore each follows negative exponential statistics.
The count of such independent patterns is readily approximated
as 𝑁 ≃ ⌈ 𝑎surface

𝑎coherence
⌉, where 𝑎coherence is the coherence area of the

light (roughly the spatial region where light remains mutually co-
herent and contributions are summed up on an amplitude basis) and
𝑎surface is the area of the imaged surface that falls under a single
image element. Then, 𝐼monochromatic =

∑𝑁
𝑗=1 𝐼 ( 𝑗) where the 𝐼 ( 𝑗) -s are the

intensities of the contributing coherent speckle patterns. The sum
of 𝑁 negative exponential random variables is known as the gamma
distribution of order 𝑁 (or more specifically, the Erlang distribution
with shape parameter 𝑁 ) and its probability density function is

𝑝monochromatic (𝐼 ) = 𝑁𝑁

Γ(𝑁 )𝐼𝑁0
𝐼𝑁−1𝑒−𝑁

𝐼
𝐼0 , (52)

where 𝐼 ≥ 0, Γ is the gamma function and for simplicity we assume
that the mean intensities of the coherent patterns 𝐼 ( 𝑗) are identical
and denote the total mean intensity 𝐼0 = 𝑁 ⟨𝐼 ( 𝑗) ⟩. In speckle optics,
this is known as a “sum of independent speckle patterns” [Goodman
2007].

When speckle is formed by polychromatic light (of partial tempo-
ral and spatial coherence), the total intensity can still be considered
as a sum of independent (spatially) coherent speckle patterns but
each produced by polychromatic light. Polychromatic speckle pro-
duced by spatially coherent light (e.g. multi-mode laser) is discussed
in detail by Dainty [2013]. When the spectrum is continuous and can
be assumed to consist of many “cells”—correlated spectral regions—
the following familiar solution to the probability density function
was obtained by Scribot [1974]:

𝑝polychromatic (𝐼 ) =
𝑀𝑀

Γ(𝑀)𝐼𝑀0
𝐼𝑀−1𝑒−𝑀

𝐼
𝐼0 , (53)

where 𝐼 ≥ 0,𝑀 is the count of such pair-wise uncorrelated spectral
cells and 𝐼0 is defined as the total mean intensity over all cells, analo-
gously to the case of monochromatic partially coherent speckle. The
mean intensities of the speckles produced by the cells are assumed
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Fig. 11. Plots of the probability density function of the Erlang distribution for
different shape parameters (and scaled by a constant for visualization). The
dashed plots are Gaussian fits. The RMSE of the fits are 6 × 10−3, 3 × 10−3,
2 × 10−3, 5 × 10−4, 2 × 10−4 and 1 × 10−4 for values 1,2,4,8,16 and 32 of Θ,
respectively.

to be identical. We then deduce that the intensity of a polychromatic
(spatially coherent) speckle pattern is also distributed as an Erlang
distribution, with the physical interpretation being that such speckle
is the sum of𝑀 quasi-monochromatic fully-coherent speckle pat-
terns, pair-wise independent due to spectral decorrelation and each
with a negative exponentially distributed intensity.

We can conclude now that the statistics of the intensity of poly-
chromatic partially-coherent speckle follow an Erlang distribution
with shape parameter Θ = 𝑁 ×𝑀 . Indeed, when the light is fully
spatially-coherent, i.e. 𝑁 = 1, and quasi-monochromatic, i.e.𝑀 = 1,
the shape parameter is Θ = 1 and the distribution reduces to the
negative exponential distribution of coherent speckle intensity. It is
reasonable to assume that for high-bandwidth spontaneous emission
light sources𝑀 would be “not small” (though difficult to estimate).
Therefore, even when 𝑁 is small, i.e. the light is strongly spatially
correlated, Θ would still be significant. For numerical examples of
𝑁 , consider Figure 6: The Cobalt dragon is lit by a strongly-coherent
light that admits a coherence radius of roughly 𝜖𝑟 ≃ 49.70 µm and
thus coherence area of 𝑎coherence ≃ 8000 µm2. Each rendered pixel
subtends ≃ 250 × 250 µm2 surface area, thus 𝑁 ≃ 8. The Copper
dragon, on the other hand, is lit by a weakly-coherent light admitting
𝑁 ≃ 400.
It is well-known that the Erlang distribution tends towards a

Gaussian distribution as the shape parameter increases. We plot
the Erlang distribution for different values of the shape parameter
Θ, and fit Gaussians to each (see Figure 11) showing very good
agreement even for shape parameters as low as Θ ≥ 16. A more
quantitative argument, as well as an analytic error upper limit, could
be deduced (e.g., as an immediate application of the Berry–Esseen
inequality). However, as exact values of 𝑁 and especially 𝑀 are
hard to predict, this is of little value. We satisfy ourselves then
by reiterating that the intensity distribution of a weakly-coherent
speckle pattern is the sum of tens pair-wise independent (spectrally
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or spatially) speckle patterns, and is statistically approximated very
well by a Gaussian.

C A PHASOR’S PHASES IS UNIFORMLY DISTRIBUTED
In this appendix we briefly prove the Corollary 5.1.

Corollary C.1. Treating ℎ (x) as a random variable, a phasor’s
phase can be regarded as uniformly distributed on (−𝜋, + 𝜋], that is

arg
(
𝑢 𝑗

) ∼ U(−𝜋, + 𝜋] .
Proof. Let 𝜎 [·] denote the standard deviation, then

𝜎
[
arg

(
𝑢 𝑗

) ]
= 𝜎

[
Φ(x𝑗 , ks 𝑗 , ki 𝑗 )

] ≥ 𝜎 [ℎ (x)] 2𝜋
𝜆
≫ 𝜋,

where we assume that ⟨n, ks − ki⟩ ≥ 2𝜋𝜆−1, that is, we ignore
grazing angles. Therefore the standard deviation of the principal
phase value of the phasor is large, and we can assume that the phase
takes any value in (−𝜋, + 𝜋] with equal probability. □

D THE RAYLEIGH-RICE POLARIZATION FACTOR
The Fresnel power term 𝑄 is known as the Rayleigh-Rice polariza-
tion factor in literature [Maradudin and Mills 1975; Stover 2012].
It can be thought of as an approximative analogue to the Fresnel
term when the reflecting (or more appropriately–scattering) sur-
face cannot be considered as a long (with respect to wavelength)
perfectly smooth slab. It reduces to the common Fresnel term 𝐹
(in Equation (8)) when evaluated along the specular direction (i.e.
o = refl(i)). Because 𝑄 is polarization-dependent, Krywonos [2006]
suggested using it in-place of the reflectance term in the Harvey-
Shack BRDF expression to “quasi-vectorize” the theory, that is admit
awareness of polarization effects, resulting in Equation (8).
Because 𝑄 depends on polarization, it consists of four complex

terms 𝔣 that relate the incident and scattered field amplitudes for
the polarized components, that is

𝑄 = |𝔣𝑠𝑠 |2 +
��𝔣𝑝𝑝 ��2 + ��𝔣𝑠𝑝 ��2 + ��𝔣𝑝𝑠 ��2 . (54)

Those coefficients are given by Stover [2012] and are listed here in
full:

𝔣𝑠𝑠 =
(𝜂 − 1) cos𝜙𝑠(

cos𝜃𝑖 +
√︁
𝜂 − sin2 𝜃𝑖

) (
cos𝜃𝑠 +

√︁
𝜂 − sin2 𝜃𝑠

)

𝔣𝑝𝑝 =
(𝜂 − 1)

(√︁
𝜂 − sin2 𝜃𝑖

√︁
𝜂 − sin2 𝜃𝑠 cos𝜙𝑠 − 𝜂 sin𝜃𝑖 sin𝜃𝑠

)
(
𝜂 cos𝜃𝑖 +

√︁
𝜂 − sin2 𝜃𝑖

) (
𝜂 cos𝜃𝑠 +

√︁
𝜂 − sin2 𝜃𝑠

)

𝔣𝑠𝑝 =
(𝜂 − 1)

√︁
𝜂 − sin2 𝜃𝑠 sin𝜙𝑠(

cos𝜃𝑖 +
√︁
𝜂 − sin2 𝜃𝑖

) (
𝜂 cos𝜃𝑠 +

√︁
𝜂 − sin2 𝜃𝑠

)

𝔣𝑝𝑠 =
(𝜂 − 1)

√︁
𝜂 − sin2 𝜃𝑖 sin𝜙𝑠(

𝜂 cos𝜃𝑖 +
√︁
𝜂 − sin2 𝜃𝑖

) (
cos𝜃𝑠 +

√︁
𝜂 − sin2 𝜃𝑠

) (55)

where 𝜃𝑖 , 𝜃𝑠 are the incident and scatter angles, respectively, 𝜙𝑠 is
the azimuth between the plane of incidence and scatter direction
and 𝜂 is the (possibly complex) refractive-index ratio between the
destination medium and the source medium. The subscripts denote
first the source polarization component and, second, the destination

component, e.g., 𝔣𝑠𝑝 is the scatter term for an s-polarized field to a
p-polarized field.
Clearly, when 𝜙𝑠 = 0, that is the scatter direction lies in the

incidence plane, we observe that the cross-terms vanish, i.e. 𝔣𝑠𝑝 =
𝔣𝑝𝑠 = 0.

E EXTENSION TO ISSERLIS’ THEOREM
In this appendix we prove Theorem 5.2. As before, we denote 𝑋 =[
𝑋1, . . . , 𝑋2𝑚

]𝑇 =
[
𝑎1𝑒𝑖𝜃1 , . . . , 𝑎2𝑚𝑒𝑖𝜃2𝑚

]𝑇 to be a multivariate com-
plex random vector of dimension 2𝑚 (𝑚 > 1) such that the mag-
nitudes 𝑎 𝑗 are fixed real values and the phases are uniformly dis-
tributed random variables, i.e. 𝜃 𝑗 ∼ U(−𝜋, + 𝜋].

Denote the 𝑑-dimensional unit sphere as S𝑑−1. It is a well-known
result in computer graphics and topology, first presented by Muller
[1959], that uniformly distributed values on S𝑑−1 can be drawn
by drawing and normalizing a 𝑑-dimensional Gaussian zero-mean
vector. That is, each 𝑋 𝑗 can be written as

𝑋 𝑗 = 𝑎 𝑗
𝑅 𝑗 + 𝑖𝐼 𝑗√︃
𝑅2
𝑗 + 𝐼2𝑗

, (56)

where ∀𝑗 → 𝑅 𝑗 , 𝐼 𝑗 ∼ N (0, 1) and cov
[
𝑅 𝑗 , 𝐼 𝑗

]
= 0, i.e. 𝑅 𝑗 , 𝐼 𝑗 are

real standard Gaussian random variables such that each pair is
independent. The independence arises due to the circular symmetry
of each 𝑋 𝑗 .
Then, it can be trivially shown by induction that the following

holds

2𝑚∏
𝑗=1
𝑋 𝑗 =

©«
2𝑚∏
𝑗=1

𝑎 𝑗√︃
𝑅2
𝑗 + 𝐼2𝑗

ª®®¬
·

·
2𝑚∑︁
𝑗=0

∏
𝜎 ∈𝐴2𝑚,𝑗

𝑖 𝑗 𝐼𝜎 (1) 𝐼𝜎 (2) . . . 𝐼𝜎 ( 𝑗)𝑅𝜎 ( 𝑗+1) . . . 𝑅𝜎 (2𝑚) , (57)

where𝐴2𝑚,𝑗 is the set of all permutations that partition a 2𝑚 element
set into two sets of 𝑗 and 2𝑚 − 𝑗 elements, and clearly there are��𝐴2𝑚,𝑗

�� = (2𝑚
𝑗

)
ways to do so.

By polar representation of a complex random variable observe
that the magnitude

√︃
𝑅2
𝑗 + 𝐼2𝑗 is independent of 𝑅 𝑗 and 𝐼 𝑗 , that is

cov


𝑅 𝑗 ,

1√︃
𝑅2
𝑗 + 𝐼2𝑗


= cov


𝐼 𝑗 ,

1√︃
𝑅2
𝑗 + 𝐼2𝑗


= 0

(readily verified by direct computation). Furthermore, the magni-
tudes of 𝑋 𝑗 are independent of each other, by assumption. Thus,
by taking the expected value on each side of Equation (57), apply-
ing Isserlis’ theorem and recombining the terms the desired result
follows immediately:

E


2𝑚∏
𝑗=1

𝑎 𝑗𝑒
𝑖𝜃 𝑗


=
©«

2𝑚∏
𝑗=1

𝑎 𝑗
ª®¬
·

∑︁
𝑝∈𝑃2

2𝑚

∏
{ 𝑗,𝑙 }∈𝑝

E
[
𝑒𝑖 (𝜃 𝑗+𝜃𝑙 ) ] . (58)

Likewise, we also deduce that the odd moments vanish.
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Note that this theorem also holds when the magnitudes are Gauss-
ian random variables, such that the phases and the magnitudes are
independent.

F DERIVATION OF SECOND-ORDER MOMENT C2
Under the same notation as in Subsection 5.1 and the assumption
of Gaussianity of the height profile ℎ we derive in this appendix an
expression for the second-order moment C2 of a couple of observed
phasors 𝑢1 and 𝑢2.
Let 𝜈x1,x2 be the Gaussian joint probability density, 𝜎 = 𝜎rel the

surface height standard deviation and 𝜌 = 𝐶S (x1, x2) the surface
autocorrelation between the two points, then

⟨𝑢1𝑢
★
2 ⟩ =

+∞∫
−∞

+∞∫
−∞

𝑢1𝑢
★
2 𝜈x1,x2 (ℎ1, ℎ2) dℎ1 dℎ2 =

=
𝐴

2𝜋𝜎2
√︁

1 − 𝜌2

∞∫
−∞

𝑒−𝑖ℎ1 ⟨n,ks1−ki1 ⟩𝑒
− ℎ2

1
2𝜎2 (1−𝜌2) dℎ1 ·

·
∞∫

−∞
𝑒𝑖ℎ2 ⟨n,ks2−ki2 ⟩𝑒

−ℎ2
2−2𝜌ℎ1ℎ2

2𝜎2 (1−𝜌2) dℎ2 =

=
𝐴√

2𝜋𝜎2

∞∫
−∞

𝑒−𝑖ℎ1 ( ⟨n,ks2−ki2 ⟩−𝜌 ⟨n,ks1−ki1 ⟩)𝑒−
ℎ2

1
2𝜎2 dℎ1 =

= 𝐴𝑒−
𝜎2
2 ( ⟨n,ks1−ki1 ⟩2+⟨n,ks2−ki2 ⟩2)𝑒𝜌𝜎2 ⟨n,ks1−ki1 ⟩ ⟨n,ks2−ki2 ⟩ (59)

where we factored out the terms of 𝑢1𝑢★2 that do not depend on the
integration variables:

𝐴 = 𝑎1𝑎2𝑒
−𝑖 (𝜙1−𝜙2)𝑒−𝑖 ( ⟨x1,ks1−ki1 ⟩−⟨x2,ks2−ki2 ⟩)

The integral identity
∫ ∞
∞ 𝑒𝑐𝑥−𝑏𝑥2 d𝑥 =

√︃
𝜋
𝑏 𝑒

𝑐2
4𝑏 (for 𝑏 > 0) was also

used.

G DRAWING VALUES FROM A DISTRIBUTION VIA A
MONTE-CARLO PROCESS

To show the validity of Corollary 6.1 we prove a simple but more
general theorem:

Theorem G.1. Let (Ω,Π, 𝜇) be a probability space consisting of a
sample space Ω, set of events Π and the probability measure 𝜇. Let
𝑋 =

[
𝑥1, 𝑥2, . . .

]𝑇 be a (possibly infinite) vector of random variables,
𝑥 𝑗 : Ω → F, with F = R or F = C, s.t. E [𝑋 ] = 0. The autocovariance
cov [𝑋,𝑋 ] =

∫
Ω 𝑋 (𝜔)𝑋 (𝜔)† d𝜇 (𝜔) can be Monte-Carlo integrated

by drawing 𝑀 samples 𝜔1, . . . , 𝜔𝑀 with respect to the measure 𝜇.
Then, the autocovariance of the random vector drawn as follows

𝑌 =
1√
𝑀

𝑀∑︁
𝑚=1

𝔭𝑚𝑋 (𝜔𝑚)

converges to 𝐶 in 𝐿1, i.e. cov [𝑌,𝑌 ] 𝑀→∞−−−−−→ 𝐶 , where 𝔭𝑚 are some
i.i.d (of any distribution) random variables that are zero-mean and
orthonormal, i.e. ∀𝑗,𝑚 → E

[
𝔭𝑗
]
= 0 and E

[
𝔭𝑗𝔭𝑚

]
= 𝛿 𝑗𝑚 .

Proof. It is easy to see that E [𝑌 ] = 0. We examine the second-
order statistics of 𝑌 :

cov [𝑌,𝑌 ] = 1
𝑀

E

𝑀∑︁
𝑗=1

𝑀∑︁
𝑚=1

𝔭𝑗𝔭𝑚𝑋
(
𝜔 𝑗

)
𝑋 (𝜔𝑚)†


=

=
1
𝑀

𝑀∑︁
𝑗=1

𝑀∑︁
𝑚=1

E
[
𝔭𝑗𝔭𝑚

]
E
[
𝑋
(
𝜔 𝑗

)
𝑋 (𝜔𝑚)†

]
=

=
1
𝑀

𝑀∑︁
𝑚=1

E
[
𝑋 (𝜔𝑚)𝑋 (𝜔𝑚)†

]
𝑀→∞−−−−−→ cov [𝑋,𝑋 ] (60)

in 𝐿1. □
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