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Fig. 1. We propose stylizing kernel prediction network (SKPN), a new tool for efficiently stylizing translucent volumes with desired color appearance. Once
trained, the proposed SKPN supports arbitrary style transfer and facilitates appearance modelling of many translucent materials, such as different types of
marbles (left) and dynamic fires (right, please use Adobe Acrobat and click the rendering to see it animated). Note that the bunny model and the kitten model
are slightly darker than the input style images because of an additional dielectric coating on these models.

This paper aims to efficiently construct the volume of heterogeneous single-
scattering albedo for a given medium that would lead to desired color appear-
ance. We achieve this goal by formulating it as a volumetric style transfer
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problem in which an input 3D density volume is stylized using color features
extracted from a reference 2D image. Unlike existing algorithms that require
cumbersome iterative optimizations, our method leverages a feed-forward
deep neural network with multiple well-designed modules. At the core of our
network is a stylizing kernel predictor (SKP) that extracts multi-scale feature
maps from a 2D style image and predicts a handful of stylizing kernels as a
highly non-linear combination of the feature maps. Each group of stylizing
kernels represents a specific style. A volume autoencoder (VolAE) is de-
signed and jointly learned with the SKP to transform a density volume to an
albedo volume based on these stylizing kernels. Since the autoencoder does
not encode any style information, it can generate different albedo volumes
with a wide range of appearance once training is completed. Additionally,
a hybrid multi-scale loss function is used to learn plausible color features
and guarantee temporal coherence for time-evolving volumes. Through
comprehensive experiments, we validate the effectiveness of our method
and show its superiority by comparing against state-of-the-arts. We show
that with our method a novice user can easily create a diverse set of realistic
translucent effects for 3D models (either static or dynamic), neglecting any
cumbersome process of parameter tuning.

CCS Concepts: • Computing methodologies → Texturing; Neural net-
works.

ACM Trans. Graph., Vol. 40, No. 4, Article 162. Publication date: August 2021.

https://doi.org/10.1145/3450626.3459799


162:2 • J. Guo et al.

Additional Key Words and Phrases: Volume rendering, Single-scattering
albedo, Stylization, Temporal coherence, Deep learning

ACM Reference Format:
Jie Guo, Mengtian Li, Zijing Zong, Yuntao Liu, Jingwu He, Yanwen Guo,
and Ling-Qi Yan. 2021. Volumetric Appearance Stylization with Stylizing Ker-
nel Prediction Network. ACM Trans. Graph. 40, 4, Article 162 (August 2021),
15 pages. https://doi.org/10.1145/3450626.3459799

1 INTRODUCTION
Simulating the visual effects of heterogeneous media in Computer
Graphics requires carefully fine-tuning a set of material properties,
including the extinction coefficient, the single-scattering albedo and
the phase function [Cerezo et al. 2005; Schmidt et al. 2016]. Often,
the phase function is assumed to be homogeneous and can be set
empirically according to some analytical models, e.g., the Henyey-
Greenstein [1941] model. The other two properties are expected to
vary spatially and their values are typically stored in two volumes
(or a volume with multiple channels). Conventionally, adjusting
these two volumes to produce a desired appearance is a lengthy task
that involves tedious user interference and expensive computation.

To synthesize a density volume that supplies the spatially-varying
extinction coefficients in a medium, we often resort to procedural
approaches [Ebert et al. 2002] or physically-based fluid simulations
[Bridson 2015; Bridson et al. 2006; Fedkiw et al. 2001; Treuille et al.
2003], both of which can achieve controllable behaviors. Despite
the difficulty in controllability and the inefficiency in computation,
physically-based fluid simulations are preferred in general since
they achieve realistic volumes of spatially-varying densities.
As for the single-scattering albedo, fluid simulations do not ap-

ply in a straightforward way. Typically, artistic appearance editing
boils down to a tedious process of trial and error [Schmidt et al.
2016]. In the 2D image space, changing the appearance via adjusting
the albedo only requires manipulating pixel values in local areas,
possibly with some underlying physics of light transport [Carroll
et al. 2011; Dong et al. 2015]. For 3D volumes, the problem however
becomes rather complicated. Due to transparency (or translucency)
and stereoscopic effects, modifying the albedo in one view will af-
fect the entire volume in a non-intuitive manner. This makes the
direct editing of albedo volumes impractical. Although volumet-
ric reconstruction methods based on multi-view inputs make the
problem tractable [Hasinoff and Kutulakos 2007; Ihrke and Magnor
2004; Klehm et al. 2014; Okabe et al. 2015; Shen et al. 2018], they
are subject to correct images from multiple viewpoints. Hence, it is
more attractive and intuitive to artistically control the appearance
of a medium according to only one guided image, which is the goal
of this paper.

Specifically, we aim to determine the spatially-varying albedo vol-
ume of a heterogeneous medium such that its appearance resembles
a source image. This task is very challenging and ill-posed, since
the objective has a very high dimensionality. We show that style
transfer methods can be adapted to transfer color features extracted
from a 2D image to a 3D volume, yielding a similar appearance
to the image after physically-based rendering. Unlike style trans-
fer in the 2D image space [Jing et al. 2019], this volumetric style
transfer (or volumetric appearance stylization) problem faces several
inherent challenges. First, a proper feature extractor is necessary for

extracting useful features from the input image. Second, a similarity
merit is required to measure the distance between the input image
and the stylized volume. Third, the proposed approach is expected
to support multiple styles and can generate temporally coherent
animation sequences with high efficiency.
To ameliorate these issues, we resort to a deep learning-based

framework, inspired by the recent success of deep learning in image
style transfer [Jing et al. 2019]. Fig. 2 gives a high-level overview
of our framework. At the core of our framework is stylizing ker-
nel prediction network (SKPN), a feed-forward neural network that
contains several important components. For feature extraction, we
adopt a pre-trained VGG-16 network [Simonyan and Zisserman
2015], augmented with several fully-connected (FC) layers. These
layers generate important feature maps from the input style im-
age on multiple scales. To allow arbitrary style transfer, we further
compress these feature maps into a group of adaptive convolutional
kernels and the affine parameters of density-aware instance normal-
ization (DAIN), termed as stylizing kernels, with the help of several
additional FC layers. These stylizing kernels are then convolved
with different feature maps in the decoder part of a deep autoen-
coder [Hinton and Salakhutdinov 2006], enabling the autoencoder to
transform a density volume to a stylized albedo volume. To measure
the similarity between the stylized albedo volume and the input
image, we propose a differentiable volume rendering layer to project
the volume into the 2D image space and compute the difference
based on the color statistics in both the feature space and the RGB
space. A temporal loss is introduced to enforce temporal coherence
between adjacent frames for time-evolving volumes. Since all our
components are differentiable, the full network can be trained end-
to-end. With our careful design, the proposed framework has the
generalization ability to new styles at the inference stage and can
efficiently handle different density volumes, without encoding the
style directly in the autoencoder.

To the best of our knowledge, our method is the first to leverage
deep neural networks to generate a high-dimensional albedo volume
given only one input image. Some graphical applications will benefit
from our method. For instance, our method facilitates hallucinating
the appearance of a translucent object according to a single real
image [Song et al. 2009]. It can also be an efficient and intuitive tool
for texturing 3D flows (e.g., fires) with consistent and stable stylized
animations.

In summary, we make the following contributions:

• We propose a novel framework for transferring color fea-
tures from 2D images to 3D volumes, yielding similar visual
appearance.

• We design a multi-scale kernel-based neural network to sup-
port arbitrary style transfer and ensure temporal coherence
for animated volumes.

• We introduce a density-aware instance normalization layer to
avoid color drift easily incurred by very sparse but condensed
density volumes.

• We implement an analytical differentiable volume rendering
layer to convert an albedo volume and its corresponding
density volume to 2D images, facilitating the computation of
the loss function.
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2 RELATED WORK

2.1 Neural Style Transfer for Images
Image style transfer is a long-standing problem that seeks to mi-
grate the style of a reference style image onto another input image.
The pioneer work of Gatys et al. [2016] first studied the way of
using a CNN to reproduce famous painting styles on natural im-
ages. Since then, a surge of follow-up studies are conducted to
improve the performance, opening up a new field named neural
style transfer (NST) [Jing et al. 2019]. Existing NST algorithms are
either image-optimization-based or model-optimization-based. The
former category transfers styles by iteratively optimizing an im-
age, possibly with summary statistics [Gatys et al. 2016; Li et al.
2017b; Luan et al. 2017; Risser et al. 2017; Ruder et al. 2018], while
the second optimizes a neural network offline and generates styl-
ized images with a single forward pass [Chen et al. 2017; Chen and
Schmidt 2016; Cheng et al. 2020; Li et al. 2017a, 2018b; Shen et al.
2018]. Currently, model-optimization-based offline neural methods
are preferred since they can support arbitrary style transfer once
trained. Considering this, we also explore model-optimization-based
strategy to implement our SKPN, allowing it to stylize volumes in
a single forward pass. For a comprehensive review of NST, please
refer to [Jing et al. 2019].

2.2 Neural Style Transfer for 3D Contents
Nowadays, 3D contents are becoming widely available and easier to
capture [Park et al. 2018]. This brings about an increasing interest in
stylizing 3D representations. Several recent methods try to transfer
the style of an image onto a 3D mesh, facilitating the editing of 3D
surfaces [Kato et al. 2018; Liu et al. 2018]. Closer to ours are those
works focusing on stylizing volumetric data either by optimization-
based texture synthesis [Sato et al. 2018] or by deep neural networks
[Chu and Thuerey 2017; Kim et al. 2019, 2020; Xie et al. 2018]. Kim et
al. [2019] proposed TNST to transfer semantic structures given by 2D
image to 3D fluid simulations, achieving complex artistic patterns.
Later, they reformulated TNST in a Lagrangian setting (i.e., LNST) to
ensure better temporal consistency and support color information
[Kim et al. 2020]. These two methods focus on stylizing shapes of
fluid simulations and require a long computational time per frame.
Recently, TNST has been extended to enable color transferring
[Christen et al. 2020] with another lengthy optimization method. In
this paper, we aim to stylize physically-plausible color appearance
which has a complex relationship with intrinsic material parameters.
Due to the feed-forward nature of the proposed network, high-
efficiency stylization is allowed for our method.

2.3 Artistic Appearance Design
Artistic design of appearance in Computer Graphics has attracted
considerable attention in both industry and research community
[Schmidt et al. 2016]. To mimic a desired appearance, a straightfor-
ward strategy is to directly edit the parameters of an underlying
material model. However, this strategy is non-intuitive since the
final appearance can be neither linear nor low-order polynomial
with respect to the parameters. In the field of volumetric appear-
ance design, Song et al. [2009] proposed a new representation that
is amenable to various simple parametric and image-based editing

VolAE

Style Repository SKP

Density Repository

Stylizing Kernels

Stylized Volumes

Fig. 2. High-level overview of the proposed framework.

operations for heterogeneous subsurface scattering. Dobashi et al.
[2012] used genetic algorithms to search for optimal parameters to
create realistic clouds from input images. Hašan and Ramamoor-
thi [2013] built a material designer to interactively set the single-
scattering albedo coefficients, heavily relying on precomputation.
Volumetric reconstruction based on multi-view images is also a
possible way to reach a desired appearance [Hasinoff and Kutulakos
2007; Ihrke and Magnor 2004; Klehm et al. 2014; Okabe et al. 2015;
Shen et al. 2018]. However, preparing correct multi-view inputs is
difficult and expensive. There are also some researches focusing
on editing the appearance of fluids, ensuring temporal consistency
[Bargteil et al. 2006; Gagnon et al. 2016; Kwatra et al. 2007]. Current-
ly, these methods are all based on optimization. Therefore, either
cumbersome precomputation or strong constraints (e.g., correct
multi-view images) are required to ease the computation in opti-
mization. In comparison, our SKPN is free of these and predicts the
desired appearance efficiently.

2.4 Differentiable Rendering
Our work is also closely related to differentiable rendering, the pro-
cess of computing the derivatives of image pixels with respect to
differential changes of virtual scenes. Some approximate differen-
tiable renderers rely on smooth rasterization and ignore global light
transport effects [Kato et al. 2018; Liu et al. 2019; Loper and Black
2014; Petersen et al. 2019]. Recently, there is an increasing interest
in making physically-based renderers differentiable [Bangaru et al.
2020; Li et al. 2018a; Loubet et al. 2019; Nimier-David et al. 2019;
Zhang et al. 2020, 2019]. One line of work leverages boundary sam-
pling to explicitly integrate over the discontinuities along object
silhouettes [Li et al. 2018a; Zhang et al. 2019]. Others try to con-
vert the integral over the object silhouette to an area integral by
either reparameterization [Loubet et al. 2019] or the divergence the-
orem [Bangaru et al. 2020]. Due to the inherent complexities, these
physics-based differentiable renderers are still too slow for training
deep neural networks. In this paper, we propose a lightweight and
efficient differentiable volume rendering layer that is tailored for
the task of volumetric style transfer.
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3 OVERVIEW
We first briefly introduce our framework for volumetric appearance
stylization. An overall pipeline is sketched in Fig. 2. The basic struc-
ture of the proposed framework is a deep neural network that takes
a density volume and a reference style image as input, and outputs
a stylized albedo volume in a sense that its style is “similar” to the
input image. This network, i.e., stylizing kernel prediction network
(SKPN), comprises two subnetworks: a stylizing kernel predictor
(SKP) that extracts color features from an input style image as a
group of stylizing kernels, and a volume autoencoder (VolAE) that
transforms an achromatic density volume to an albedo volume with
the help of the stylizing kernels.
After training end-to-end with a density volume dataset and a

style image dataset, our SKPN is able to produce a wide range of
appearance according to different style images, thanks to our special
design of the stylizing kernels. Unlike some previous networks
that encode each style image directly in a specified neural network
[Johnson et al. 2016; Li and Wand 2016; Ulyanov et al. 2016a], we
generate a group of stylizing kernels for a given style image using
SKP, a specially designed kernel prediction network. Previous kernel
prediction networks [Bako et al. 2017; Chen et al. 2017; Mildenhall
et al. 2018; Vogels et al. 2018] usually produce kernels on a single
layer of feature maps. In SKP, we generate a group of stylizing
kernels from several different layers. Such a design of multi-scale
kernels helps to adapt to image structures with different properties.
These stylizing kernels are decoupled with the VolAE, avoiding
retraining VolAE for every new style. We feed these kernels to the
decoder part of VolAE to generate an albedo volume. With this
albedo volume and the input density volume supplying extinction
coefficients, we are able to render the corresponding participating
medium with desired appearance under arbitrary viewpoints. The
rendered images are expected to guarantee temporal coherence
when changing the viewpoint.

In our framework, SKP and VolAE are jointly trained with two
datasets. One dataset contains 3000 style images selected from the
DTD dataset [Cimpoi et al. 2014], while the other dataset contains
3000 volumetric densities simulated by mantaflow [Thuerey and
Pfaff 2018]. We show by experiments that our framework supports
arbitrary styles and densities once trained.

4 VOLUMETRIC APPEARANCE STYLIZATION
In this section, we first formulate the problem of volumetric ap-
pearance stylization. Then, we unfold the network architecture of
the proposed SKPN, including two subnetworks: SKP and VolAE.
After that, we introduce a lightweight volume rendering layer to
quickly convert a stylized volume into 2D rendered images. Lastly,
we describe the loss function and datasets used to train our SKPN.

4.1 Problem Formulation
Since no ground-truth pairs are supplied for training, the volu-
metric appearance stylization problem can be viewed as an unsu-
pervised learning problem. Specifically, we have a density volume
dataset DV𝜎

= {V(1)
𝜎 ,V(2)

𝜎 , ...,V(𝐾𝜎 )
𝜎 } and a style image dataset

DI𝑠 = {I(1)𝑠 , I(2)𝑠 , ..., I(𝐾𝑠 )
𝑠 }, with 𝐾𝜎 and 𝐾𝑠 denoting the example

numbers of these two datasets, respectively. Our goal is to find a

parameter vector 𝜃 minimizing the following objective:

𝜖 (𝜃 ) =
𝐾𝜎∑︁
𝑘1=1

𝐾𝑠∑︁
𝑘2=1

L(Φ𝜃 (V
(𝑘1)
𝜎 , I(𝑘2)𝑠 ), I(𝑘2)𝑠 ) (1)

where Φ𝜃 is our network with parameters 𝜃 and L is the loss func-
tion. Since no ground-truth albedo volumes exist in our volumetric
appearance stylization problem, the loss functionL becomes crucial
in our framework. In particular, optimizing in the 3D space faces
more instability and inconsistency.
Once trained, our network is expected to quickly generate a

stylized albedo volume V𝛼 from a given density volume V𝜎 and a
specified style image I𝑠 , i.e.,

V𝛼 = Φ𝜃 (V𝜎 , I𝑠 ) . (2)

Ideally, the estimation V𝛼 should have the same appearance with
the style image after rendering from any viewpoint and possesses
plausible stereoscopic effects.

4.2 Network Architecture
To allow arbitrary style transfer, kernel-based strategies, e.g., Style-
Bank [Chen et al. 2017], prevail in the field of image style transfer.
However, StyleBank uses a single kernel to represent different styles.
This is suboptimal for our volumetric style transfer problem since
the style image in our problem is 2D while the output is 3D. A single
kernel would lose many details due to the mismatch between dif-
ferent spaces. Moreover, StyleBank only pre-trains multiple styles
with a fixed number of layers while new image styles are learned
incrementally. In contrast, we leverage adaptive kernels to encode
arbitrary styles in a feed-forward network.
To preserve fine details as much as possible when transforming

from the 2D image space to the 3D space, we propose a multi-scale
kernel-based neural network. Such a hierarchical design can gener-
ate different scales of style elements better since each hierarchical
level contains image formation of a specific level. As shown in Fig.
3, the overall network architecture of the proposed SKPN contains
two subnetworks: a SKP that produces a series of stylizing kernels
and a VolAE that transforms an input density volume to an albedo
volume.

4.2.1 Stylizing kernel predictor (SKP). In SKP, we employ a VGG-16
(pretrained on the ImageNet dataset [Deng et al. 2009]) to extract
feature maps from an input style image, as shown in the top half of
Fig. 3. Previous networks usually use statistical measurements of
VGG-16 feature maps to represent styles, such as the Gram matrix
[Chen et al. 2017; Gatys et al. 2016], the histogram of feature acti-
vations [Risser et al. 2017] and the mean-variance representation
[Huang and Belongie 2017; Li et al. 2017b]. We currently choose the
channel-wise mean-variance representation, since the first two will
yield a too high-dimension style feature, increasing the size of the
network and making training difficult.

As highlighted in the dashed red box of Fig. 3, we extract mean 𝜇
and standard deviation (the square root of the variance) 𝜎 from the
feature maps {𝑙𝑠 } in VGG-16 layers and concatenate them into two
vectors:

V𝑙
𝜇 = ⊕𝑐 {𝜇 (F 𝑙𝑐 (I𝑠 )} (3)
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Residual Block

3D Conv

Stylizing Kernel + 
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Stylizing Kernel

643×1

VGG-16

Histogram Loss

relu1-2 relu2-2 relu3-3 relu4-3

Volume Rendering 
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Vμ

Vσ

Skip Connection

Style 
Image

643×32 323×64 163×128 163×128 163×128 163×128 323×64 643×32 643×3

SKP

VGG-16
Feature

Maps

FC Layer

Stylizing
Kernel

Fig. 3. Network architecture of the proposed SKPN. SKP aims to extract multi-scale stylizing kernels from an input style image while VolAE is responsible for
generating a proper albedo volume for an input density volume with the help of these stylizing kernels. In the dashed red box, we show the formulation of the
stylizing kernel based on the mean and variance of VGG-16 feature maps.

and
V𝑙
𝜎 = ⊕𝑐 {𝜎 (F 𝑙𝑐 (I𝑠 )} (4)

respectively. Here, I𝑠 is the input style image, F 𝑙𝑐 is the 𝑐-th fea-
ture map channel at layer 𝑙 (∈ {𝑙𝑠 }) of VGG-16 network, and ⊕ de-
notes the concatenation operation. Then, we map each concatenated
mean-variance vectorV𝑙

𝜇 ⊕ V𝑙
𝜎 to a stylizing kernel K𝑙 through a

series of fully-connected (FC) layers. The input and output feature
dimensions of these FC layers are ( |V𝑙

𝜇 ⊕ V𝑙
𝜎 |, 𝑆FC), (𝑆FC, 𝑆FC) and

(𝑆FC,𝐶in · 𝐶out · 𝑆3kernel + 3𝐶out), respectively. Here, 𝐶in and 𝐶out
denote the channel numbers of input and output feature maps, re-
spectively. 𝑆kernel = 1 and 𝑆FC = 256 denote the kernel size and
the latent vector’s dimensionality, respectively. These FC layers are
activated by LeakyReLU [Maas et al. 2013]. Such a design of SKP is
the key to our framework, as it allows to achieve stylized volumes
with arbitrary style images.

We choose four levels of stylizing kernels in our current design,
considering training difficulty and GPU memory. Basically, em-
ploying one more kernel will incur millions of additional tunable
parameters for our network, increasing the risk of overfitting.

4.2.2 Volume autoencoder (VolAE). The encoder and decoder in
VolAE consist of two symmetrical architectures, both of which are
made of three convolutional blocks. In the encoder, the kernel size
of each convolutional layer is 3 × 3 × 3, while the stride is 1 for
the first one and 2 for the last two, achieving a 4× downsampling
rate. Symmetrically, a 2× tri-linear upsampling layer is in front of
the corresponding convolutional layers of the decoder to restore
the original resolution. The residual block follows the structure in
[He et al. 2016] except replacing 2D convolutions with 3D convolu-
tions. Skip connections are also used between mirrored blocks in
the encoder and decoder stacks to preserve local and low-level infor-
mation from input data as much as possible. The input of VolAE is a
density volume which has only one channel while the output is an
albedo volume containing three RGB channels. The other channels
of feature maps are symmetrical in the encoder and decoder, which

are specified in Fig. 3. We apply LeakyReLU [Maas et al. 2013] and
ReLU as activations respectively in the encoder and the decoder.
To generate albedo volumes with different styles, we insert 4

stylizing kernels generated by SKP into VolAE. One is between the
encoder and the decoder, and the others are in front of the last 3
convolutional layers in the decoder. Each group of stylizing kernels
represents a specified style from an input style image.

4.2.3 Density-aware instance normalization. All convolutional lay-
ers in VolAE are normalized by density-aware instance normalization
(DAIN) except the last layer which is fed to a tanh function to guar-
antee the finite range of output. We use this new normalization
layer instead of the standard instance normalization (IN) [Ulyanov
et al. 2016b] because the distribution of density usually varies con-
siderably in the process of smoke simulation. Occasionally, a 3D
volume will contain a limited number of non-zero voxels that will
seriously influence the computation of the mean and variance used
in the standard IN. These sparse but condensed density volumes will
make training difficult and incur unpleasant color drift, as shown
in the first row of Fig. 4. To alleviate this issue, we propose DAIN
to let the network pay more attention to those voxels with higher
density values while ignoring those zero-valued voxels.

Our DAIN works as follows. We first obtain a smoothing density
maskwithm = 1−exp(−𝜆V2

𝜎 ), and downsample it withmax pooling
to fit different resolutions. Currently, we set 𝜆 to 100. Then, the mean
and variance are computed as

𝜇𝑐 =
1∑

𝑖, 𝑗,𝑘 m𝑖, 𝑗,𝑘

𝐷∑︁
𝑖

𝐻∑︁
𝑗

𝑊∑︁
𝑘

F𝑐,𝑖, 𝑗,𝑘 ·m𝑖, 𝑗,𝑘 (5)

𝜎2𝑐 =
1∑

𝑖, 𝑗,𝑘 m𝑖, 𝑗,𝑘

𝐷∑︁
𝑖

𝐻∑︁
𝑗

𝑊∑︁
𝑘

(F𝑐,𝑖, 𝑗,𝑘 − 𝜇𝑐 )2 ·m𝑖, 𝑗,𝑘 (6)

where F is the feature map fed into DAIN, 𝑐 refers to the 𝑐-th
channel of F , and 𝐷,𝐻,𝑊 are the resolutions of F . With the re-
weighted mean and variance, our DAIN normalizes the feature map
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IN IN

DAIN DAIN

Fig. 4. The effect of DAIN. Compared with the standard IN, our DAIN avoids
the problem of color drift, especially when the density volume is very sparse.
Here we show two density volumes with different sparsity.

and transforms it with learnable affine parameters 𝛾𝑐 and 𝛽𝑐 to
F𝑐 − 𝜇𝑐√︃
𝜎2𝑐 + 𝜖

𝛾𝑐 + 𝛽𝑐 (7)

where 𝜖 is a small value to avoid division by zero (10−5 in our
implementation). With this new normalization layer, we are able to
preserve the color appearance of the input style for density volumes
with diverse sparsity, as shown in the second row of Fig. 4. In
comparison, the standard IN yields plausible color appearance when
the density volume is relatively dense (the third column), but it fails
for very sparse volume (the second column). Since DAIN is general-
purpose, we believe it will cater other applications involving 3D
volumes.

4.3 Volume Rendering Layer
To measure the similarity between the output volume and the input
style image, we develop a lightweight volume rendering layer to
project the 3D volume into the 2D image space. This allows the
measurement to be realized with any image-space method. The
basic idea of our volume rendering layer is to synthesize 2D images
using a simplified but differentiable volume rendering method. This
method takes the original density volume and the stylized albedo
volume as the input and quickly generates 2D images with proper
scene configurations.

4.3.1 Simplified volume rendering method. Our simplified volume
rendering method is based on the following assumptions:

• The medium has an isotropic phase function and is lit by a
constant environmental light.

• Only one ray is traced per pixel whose radiance is computed
according to single scattering.

Under these assumptions and given the extinction coefficient 𝜎t
(stored in a density volume V𝜎 ) and the albedo 𝛼 (stored in an albedo
volume V𝛼 ) that both vary with position x, the volume rendering
layer is designed to evaluate

𝐿(x,𝝎) =
∫ 𝑡

0
𝑇𝑟 (x𝑡 → x)𝜎t (x𝑡 )𝛼 (x𝑡 )𝐿𝑠 (x𝑡 )d𝑡 (8)

in the forward pass. Here, 𝐿(x,𝝎) is the radiance arriving at x along
the direction 𝝎 and 𝐿𝑠 (x𝑡 ) represents the in-scattered radiance
of light. 𝑇𝑟 (x𝑡 → x) = exp{−

∫ 𝑡
0 𝜎t (x𝑡 ′)d𝑡

′} is the transmittance

Ls(x1) Ls(x2) Ls(xN-1) Ls(xN)
……

Ls(xi)

Le

Le
Le

Le Le

Fig. 5. Illustration of ray marching in our volume rendering layer. Ray
marching generates equal-distance samples along each ray lit by a constant
environmental light (left). The in-scattered radiance of each sample is deter-
mined by a handful of directional samples drawn from an isotropic phase
function (right).

between x𝑡 and x. With ray marching method as depicted in Fig. 5,
Eq. (8) is rewritten into a Riemann sum as

𝐿(x,𝝎) =
𝑁∑︁
𝑖=1

exp
−

𝑖∑︁
𝑗=1

𝜎t (x𝑗 )Δ𝑡
 𝜎t (x𝑖 )𝛼 (x𝑖 )𝐿𝑠 (x𝑖 )Δ𝑡 (9)

in which 𝑁 is the number of equal-distance samples along the ray
and Δ𝑡 = 𝑡/𝑁 . To compute the in-scattered radiance 𝐿𝑠 , we sample
𝐾 directions using Hammersley sampling on the unit sphere to
generate incident rays. Then, we approximate 𝐿𝑠 at x𝑖 as

𝐿𝑠 (x𝑖 ) =
𝐿𝑒

𝐾

𝐾∑︁
𝑘=1

𝑇𝑟 (x𝑏,𝑘 → x𝑖 ) (10)

where 𝐿𝑒 is the radiance of the constant environmental light and
x𝑏,𝑘 represents the position on the boundary of the volume along
the 𝑘-th incident ray. To accelerate the computation, 𝐿𝑠 can be pre-
computed and stored in a grid. To make the renderings smooth, we
perform tri-linear interpolation to sample 𝜎t, 𝛼 and 𝐿𝑠 for each ray.
In our current implementation, we sample 𝐾 = 128 directions and
set ray marching steps 𝑁 to 64 for both 𝐿 and 𝐿𝑠 .

4.3.2 Derivative of volume rendering layer. To allow backward prop-
agation of the gradient, we need to evaluate the partial derivative of
the albedo volume V𝛼 . Since the Riemann sum in Eq. (9) is linearly
proportional with respect to V𝛼 (x𝑖 ), the partial derivative can be
easily calculated as

𝜕𝐿(x,𝝎)
𝜕𝛼 (x𝑖 )

= exp
−

𝑖∑︁
𝑗=1

𝜎t (x𝑗 )Δ𝑡
 𝜎t (x𝑖 )𝐿𝑠 (x𝑖 )Δ𝑡 . (11)

To compute this partial derivative, we also adopt ray marching, in a
similar way as that in the forward pass.

Since we use tri-linear interpolation to sample 𝛼 , the surrounding
eight grid cells of x𝑖 should be updated with their corresponding tri-
linear weights multiplied by the partial derivative 𝜕𝐿(x,𝝎)/𝜕𝛼 (x𝑖 ).

4.3.3 Discussion on the constant environmental light. To ensure gen-
erality, we use a constant environmental light to render the medium.
We do not choose point lights because they will generate uneven
brightness and shadows that will be mistakenly regarded as useful
features by the network. This negatively influences the albedo vol-
umes predicted by the network. Fig. 6 shows the visual comparison

ACM Trans. Graph., Vol. 40, No. 4, Article 162. Publication date: August 2021.



Volumetric Appearance Stylization with Stylizing Kernel Prediction Network • 162:7

Style Const. Env. Point Point

Fig. 6. The influence of lighting on the rendered image during training.

DTRT, 1spp, 7.5ms DTRT, 256spp, 1900ms Ours, 1spp, 0.3ms

Fig. 7. Comparison between our volume rendering layer and DTRT [Zhang
et al. 2019] in forward rendering. DTRT is too slow to be used in training
deep neural networks since a high sampling rate is required.

of a stylized smoke plume lit by a constant environmental light
(Const. Env.) and different point lights (Point), respectively. We can
see that the synthesised image matches the corresponding style
image closer under a constant environmental light. If we switch
to point lights, color variations and shadows appear which differ
greatly from the input style.

4.3.4 Comparison against the general method by Zhang et al. [2019].
Zhang et al. [2019] recently has proposed a general-purpose and
physics-based differentiable volume rendering framework (DTRT)
that can achieve the same goal as ours theoretically. Compared
with our customized solution, DTRT is rather complicated and time-
consuming both in the forward rendering and the backward gra-
dient estimation. With the same scene configuration, our volume
rendering layer is orders of magnitude faster than DTRT both at the
forward stage and the backward stage, thanks to some precompu-
tations and reasonable simplifications. Furthermore, their method
requires a very high sample rate to achieve a noise level that is
appropriate for network training, while our generated images are
almost noise-free even at 1 sample per pixel (spp), as shown in Fig.
7. More importantly, the general method is impractically hard to
converge because our application is a very high-dimensional op-
timization problem. Whereas, the linearity of the gradient in our
volume rendering layer allows a much faster convergence rate.

4.4 Loss Function
To stylize an image, previous works usually employ the content
loss and Gram loss. However, Risser et al. [2017] demonstrate the
instability of Gram loss both experimentally and theoretically, and
propose a more stable histogram loss for style transfer. In volumetric

style transfer, we observe that the Gram loss converges slowly and
easily causes artifacts. Considering this, we choose the histogram
loss instead. To encourage spatial smoothness in the generated
albedo volume, a 3D total variation (TV) loss is included [Johnson
et al. 2016] in the loss function. Moreover, we also introduce a
temporal loss to keep the stylized volumes coherent over time when
a continuous sequence of volumes is being processed. Therefore,
our overall loss function consists of three terms: a histogram loss, a
TV loss and a temporal loss, defined as

L(V𝛼 , I𝑠 ) =
𝜆histLhist (V𝛼 , I𝑠 ) + 𝜆tvLtv (V𝛼 ) + 𝜆tempLtemp (V𝛼 ,V′

𝛼 )
(12)

where 𝜆hist, 𝜆tv and 𝜆temp are used to balance the weight of each
term. Currently, they are empirically set to 1, 10 and 300, respective-
ly.

4.4.1 Histogram loss. The process of directly computing the his-
togram is not differentiable and is hard to integrate into a neural
network. Therefore, we opt to evaluate the difference between the
original feature map and the histogram-matched feature map [Riss-
er et al. 2017]. In this way, the histogram loss for a 2D image is
computed by

Lhist−2D (I, I𝑠 ) =
∑︁
𝑙 ∈{𝑙𝑠 }

∑︁
𝑐

∥M𝑙 ⊙ (F 𝑙𝑐 (I) − 𝐻 (M𝑙 ⊙ F 𝑙𝑐 (I), F 𝑙𝑐 (I𝑠 )))∥22

(13)
where I is a stylized image, F 𝑙𝑐 is the 𝑐th feature map channel at
layer 𝑙 of VGG-16, and 𝐻 is a histogram matching function that
returns the feature map suitably scaled. {𝑙𝑠 } is the set of VGG-16
layers used to compute the histogram loss. To improve the fidelity
of generated histograms, a mask M𝑙 is employed to remove unnec-
essary background in each feature map of the stylized image I, with
⊙ representing element-wise multiplication. Note that the mask M𝑙

is properly downsampled via max pooling to match the size of each
layer.
With our volume rendering layer, we are able to compute the

histogram loss for a 3D albedo volume in the 2D image space. Specif-
ically, we first project 3D albedo volumes to several 2D images after
setting the viewpoint 𝑣 , accompanied with the corresponding masks
used in Eq. (13) 1. Then, the histogram loss for each albedo volume
is defined as the summation of the 2D histogram loss evaluated by
the projected images and the style image, i.e.,

Lhist (V𝛼 , I𝑠 ) =
∑︁

𝑣∈{𝑣𝑝 }
Lhist−2D (𝑅(V𝜎 ,V𝛼 , 𝑣), I𝑠 ) (14)

where 𝑣 is a viewpoint selected from the viewpoint set {𝑣𝑝 } and 𝑅
denotes our volume rendering layer that generates a synthesized 2D
image of the medium with V𝜎 and V𝛼 at the viewpoint 𝑣 . Currently,
we choose four views randomly sampled from a predefined camera
path during each update. Since the synthesized images contain high
dynamic range (HDR) information, they should be gamma corrected
before feeding into VGG-16. To make training stable, we adopt the
gamma correction method proposed by Kettunen et al. [2019] as a
post-processing step of 𝑅.

1Each mask is generated by thresholding the corresponding rendered image with a
constant 0.001.
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Density Volume Style Image

Fig. 8. Selected examples from our two datasets. The density volumes are
visualized by our volume rendering layer.

Furthermore, we find that only measuring the histogram loss
in the feature space will slightly lower the values of the stylized
albedo. To address this problem, we add an additional histogram loss
measured in the RGB space. This makes the brightness of rendered
image closer to the input style image without loss of details.

4.4.2 Total variation loss. The TV loss is widely used in recent
image style transfer methods [Johnson et al. 2016; Risser et al. 2017;
Song et al. 2019], which serves as a regularization item, encouraging
spatial smoothness in the generated image. We extend 2D TV loss
into 3D as

Ltv (V𝛼 ) = ∥∇𝑥V𝛼 ∥22 + ∥∇𝑦V𝛼 ∥22 + ∥∇𝑧V𝛼 ∥22 (15)

where ∇𝑥 , ∇𝑦 and ∇𝑧 are finite difference operators for the 𝑥 , 𝑦 and
𝑧 direction, respectively.

4.4.3 Temporal loss. The temporal loss is designed to penalize the
inconsistencies between stylized volumes of two consecutive frames.
It is evaluated by

Ltemp (V𝛼 ,V′
𝛼 ) = ∥V𝛼 −W(V′

𝛼 ,U)∥22 (16)

where V𝛼 and V′
𝛼 represent two consecutive albedo volumes in an

animation sequence. The warping function W uses the velocity
field U to warp the previous albedo volume V′

𝛼 to the current frame,
eliminating the motion between the two frames. Their differences
are measured by 𝐿2 norm. Semi-Lagrangian advection is used to per-
form forward warping. Although a pair of temporally consecutive
frames are required to compute the temporal loss during training,
only one frame is needed as input in the prediction phase. Therefore,
the temporal loss will not lower the performance of prediction.

4.5 Dataset
Our dataset consists of two parts: a density volume dataset and
a style image dataset. The former contains 3000 density volume
pairs (including the corresponding velocity fields) with a resolution
of 64 × 64 × 64 while the latter contains 3000 style images with a
resolution of 128 × 128. Some examples from these two datasets are
illustrated in Fig. 8.

We generate our density volume dataset withmantaflow [Thuerey
and Pfaff 2018]. To ensure that the dataset covers a sufficient range of

density patterns, we simulate 100 groups of smokes with a resolution
of 64 × 64 × 64. Each group contains 90 frames. We further simulate
20 groups of smokes with a higher resolution: 128 × 128 × 128, to
avoid the network overfitting to low-resolution volumes and make
it more robust. The initial location, direction and speed for jetting
smoke are disturbed randomly. For each group of low-resolution
smokes, we take every two consecutive density volumes between
the 61st and the 90th frames as a training example, together with
the former’s velocity field. For those high-resolution smokes, we
perform a 2-step sampling. First, we also pair every two consecutive
density volumes starting from the 61st frames. Then, we randomly
crop 5 patches from each pair of density volumes. The style image
dataset is selected from the DTD dataset [Cimpoi et al. 2014].

4.6 Training Details
Currently, our pipeline is implemented in PyTorch [Paszke et al.
2017] and trained jointly with the Adam optimizer [Kingma and Ba
2015] using a learning rate 0.0002 and a batch size 8. The hyper-
parameters 𝛽1 and 𝛽2 of Adam are set to 0.9 and 0.999, respectively.
We decay the learning rate by the power of 0.8 for every 50 epochs.
The training process generally converges after 400 epochs, which
takes about 76 hours on a NVIDIA Tesla V100 GPU.

The intermediate images produced by our volume rendering layer
have a resolution of 160×160. Before fed into VGG-16, all images are
normalized with mean {0.485, 0.456, 0.406} and standard deviation
{0.229, 0.224, 0.225}. We evaluate the histogram loss at layers relu1-
2, relu2-2, relu3-3 and relu4-3 of a pre-trained VGG-16 network. The
input style features (the means and variances of feature maps) of
SKP are computed at the same layers.

5 RESULTS AND DISCUSSION
In this section, we conduct extensive experiments to validate our
framework. Although our SKPN is trained with 64×64×64 volumes,
it can be applied to other resolutions as well. For the application of
translucent material hallucination, a resolution of 128× 128× 128 is
used to voxelize the static models. For other smokes, we use a default
resolution of 128 × 256 × 128. Note that these density volumes and
the style images presented in this section are not used in training.
All images are synthesized by the Mitsuba renderer [Jakob 2010].
Please refer to the supplemental video for more results.

5.1 Comparison with Previous Methods
We first compare our SKPN to previous methods that support ap-
pearance stylization. In Fig. 9, we respectively compare our method
to

• PhotoWCT [Li et al. 2018b]: a recent image style transfer
method that is able to process arbitrary new style,

• LazyFluid [Jamriška et al. 2015]: a 2D patch-based approach
to appearance transfer for fluid animations, and

• Tomography [Klehm et al. 2014]: a tomographic reconstruc-
tion method for volumetric appearance stylization.

PhotoWCT [Li et al. 2018b], as an image style transfer method, is
only able to transfer color features to 2D images. Here, we supply
PhotoWCT with the images rendered with density volumes and a
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Input PhotoWCT LazyFluid Tomography SKPN (Ours)

Fig. 9. Visual comparison with state-of-the-art methods on appearance stylization. The methods in comparison are PhotoWCT [Li et al. 2018b], LazyFluid
[Jamriška et al. 2015], Tomography [Klehm et al. 2014], and the proposed SKPN.
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Table 1. The percentage (%) of each method that gets the “best” vote in the
user study.

Method PhotoWCT LazyFluid Tomography SKPN
Percentage 7.8 21.0 26.9 44.3

constant albedo 0.9. To guarantee the results where the semantical-
ly similar regions are stylized consistently, PhotoWCT includes a
smoothing step that prevents it to capture sufficient details from
our rendered smooth images. Although it has a certain degree of
stereoscopic effects, the appearance is overly blurred. In the supple-
mental video, we also compared our SKPN with the work of Gatys
et al. [2016] that can transfer great details. LazyFluid [Jamriška
et al. 2015] is designed to transfer appearance for fluid animations
based on flow-guided texture synthesis. This method is also re-
strict to 2D flows although it enables detailed feature control and
improves temporal coherence. The tomography-based volumetric
appearance stylization method [Klehm et al. 2014] relies on a linear
optimization and multi-view images for high-quality volumetric
reconstruction. Here, we feed this method with an identical im-
age at different viewpoints. This leads to low-quality volumetric
reconstruction due to the contradiction at multiple views. In com-
parison, our method based on SKPN achieves physically-plausible
reconstruction even without correct multi-view images. Further-
more, since this tomography-based method is originally designed
for static volumes, it will generate unnatural temporal variations
for time-evolving fluids, as shown in the supplemental video.
For quantitative evaluation, we conduct a user study from 40

volunteers. The methods in comparison are shown in Fig. 9. We
randomly choose 6 style images and 6 density volumes, which would
obtain 36 results for each method. Each time, we display stylized
results by these four compared methods side-by-side on a webpage
in a random order, together with the corresponding style image and
the visualization of the density volume. Participants are instructed to
choose the “best” result for each style, based on the realism and style
similarity. They are required to finish the task within 30 minutes,
allowing zooming. The percentages of these methods in comparison
are listed in Table 1. As seen, SKPN is mostly voted as the “best”
one, demonstrating that our method significantly outperforms the
others.
Fig. 10 compares our SKPN with LNST [Kim et al. 2020], the

state-of-the-art neural style transfer algorithm that is tailored for
3D volumes. As an improved version of TNST [Kim et al. 2019],
LNST is mainly designed to stylize structures in 3D fluids (see Fig.
10(c)). Due to its Lagrangian setting, it also supports color trans-
fer from 2D images to fluid particles. However, it directly stores
color information at each particle and thus neglects any translu-
cent effect. Fig. 10(d) demonstrates transferring color information
from a style image to 2D particles using LNST. Note that only 2D
color transfer is shown in [Kim et al. 2020] and supported by their
current implementation 2. Concerning runtime performance, our
SKPN is a feed-forward neural network trained end-to-end, enabling

2https://github.com/byungsook/neural-flow-style

(a) Input (b) SKPN (Ours)

(c) LNST (3D, Density) (d) LNST (2D, Color)

Fig. 10. Visual comparison between SKPN and LNST [Kim et al. 2020].

much higher performance compared to LNST which still takes a
cumbersome non-linear optimization as an essential step.

5.2 Evaluation of the Loss Function
To demonstrate the effectiveness of our loss function, we conduct
several ablation studies. One of the key ingredients in our loss
design is the choice of the histogram loss instead of the Gram loss
to guide the style transfer process. This makes the network training
stable and tends to generate physically-plausible results, as validated
in Fig. 11 and also explained by Risser et al. [2017]. If we replace
the histogram loss with the Gram loss or combine them together,
network training becomes instable and converges slowly, as show
in the top row of Fig. 11. Here, each loss curves are normalized
by dividing its first value. Visual comparisons in the bottom row
also reveal that the Gram loss is not helpful to our volumetric style
transfer problem. As seen, artifacts such as broken patterns easily
occur if Gram loss is involved. In fact, using the histogram loss
alone to encode style information is sufficient to preserve most
details of the input style image. We also compare our histogram
loss against traditional 𝐿2 loss on mean and variance (i.e., mean-
std loss). Although these two cases have the similar convergence
rate, our model achieves more reasonable results in terms of visual
appearance, because the histogram loss is more expressive than the
mean-std loss. As shown in the bottom row of Fig. 11, the stylized
appearance generated by the histogram loss has a closely matched
color distribution with the input style image.

Another key term in our loss function is the temporal loss which
is critical to enforce temporal coherence for time-evolving volumes.
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Fig. 11. Validation of the loss function. Top row: Evolution of test loss over
the number of epochs for different loss functions. Bottom row: Impact of
different loss functions on the transferred material appearance.

As shown in Fig. 12, the model trained without the temporal loss
is prone to producing flickering results. The temporal flickering
is eliminated by incorporating the temporal loss in training. In
the closeups of Fig. 12, four consecutive frames in an animation
sequence are shown and stylized with the same style image. In
the supplemental video, we further show that SKPN trained with
the temporal loss tends to produce consistent and stable stylized
animations. A more efficient discriminative temporal loss has been
recently proposed in tempoGAN [Xie et al. 2018]. However, ground-
truth albedo volumes are necessary for training a discriminator,
which are absent in our unsupervised settings. Nevertheless, the
proposed temporal loss has already been able to guarantee temporal
coherence.

5.3 Discussion on Kernels
In Fig. 13 we demonstrate the effectiveness of adopting multi-scale
stylizing kernels in SKP. As aforementioned, using only one kernel
(the leftmost one in Fig. 3) can not preserve the patterns well since it
has less flexibility than multi-scale kernels. This is evidenced in the
first column of Fig. 13 where we see that using one kernel fails to
capture high-level structures from the input style images. As expect-
ed, double the kernels will make the encoded style more expressive
and hence improve the quality of stylization. When four kernels
are used, the appearance of the stylized volume is quite similar to
the input style. However, adding more kernels will significantly in-
crease the model size, making network training harder. For instance,
adding one more kernel with 𝐶in = 𝐶out = 128 will incur over 4.6
million tunable parameters for our current network. Considering
this, we opt to use four kernels which produce satisfactory results
in most cases.
Currently, we choose 1 × 1 × 1 kernels in each scale. This can

further reduce the size of the trained model while still preserving
the expressiveness of the stylizing kernels, as compared in Fig. 14.
As seen, a model with 1 × 1 × 1 kernels achieves comparable and

-T
em
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+T

em
p.

Fig. 12. Comparison between with (+Temp.) and without (-Temp.) temporal
loss in training SKPN. Without temporal loss, flickering results are easily
produced as highlighted in the last two rows. Please use Adobe Acrobat and
click the first row to see the animation.

even better results than that with 3× 3× 3 kernels. Considering that
the former possesses far less parameters than the latter (13 million
vs. 134 million), it will reduce the risk of overfitting.

Our stylizing kernel can be viewed as an extension of AdaIN
[Huang and Belongie 2017]. AdaIN assumes uncorrelation between
feature channels and hence each channel is updated independently.
Due to the additional convolutional layer in our stylizing kernel,
we can inject style information across different feature channels,
which modulates the feature more efficiently. This design is more
suitable for stylizing 3D contents. As compared in Fig. 15, volumetric
appearance stylization with specially-designed stylizing kernels
outperforms AdaIN in preserving color patterns.

5.4 Impact of Views
The number of views used in network training also has a great
impact on the final appearance of stylized volumes. Currently, we
choose to train our SKPN with four different views when evaluating
the histogram loss in Eq. (14). This helps to reproduce the desired
appearance from any novel viewpoint, as shown in the first row
of Fig. 16. If only one view is used during training, the network
will generate stylized volumes with improper appearance. As seen,
important features are absent at the viewpoints other than the
original one.

5.5 Controlling the scale of structures
Our method has the ability to control the scale of stylized structures.
One way to achieve this is by adjusting the resolution of density
volumes, as shown in Fig. 17. To generate denser structural patterns
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One Kernel Two Kernels Four Kernels

Fig. 13. Impact of the number of kernels on the visual effects. Note color
drift and odd patterns produced by insufficient kernels (one or two).

1 × 1 × 1 3 × 3 × 3 1 × 1 × 1 3 × 3 × 3

Fig. 14. Impact of the kernel size on the visual effects. Little difference is
observed between kernel size of 1 × 1 × 1 and 3 × 3 × 3.

AdaIN Ours AdaIN Ours

Fig. 15. Comparison between our stylizing kernel and AdaIN [Huang and
Belongie 2017] in volumetric appearance stylization.

with fine details, we simply increase the resolution of the input
density volume by bilinear upsampling. Then, the upsampled density
volume is fed into SKPN, producing a stylized albedo volume with
denser structures. Conversely, a downsampled density volume yields
coarser structures than the original one.

5.6 Applications
Our SKPN proposes a new methodology that facilitates several
graphical applications.

5.6.1 Hallucinating Translucent Materials. We first show its usage
in translucent material hallucination. Hallucinating heterogeneous
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Fig. 16. Comparison between using four views (the first row) and one view
(the second row) in evaluating the histogram loss during training. Training
with four different views let the network faithfully reproduce the appearance
from any novel viewpoint.

Fig. 17. Controlling the scale of structures by adjusting (upsampling or
downsampling) the resolution of density volumes.

Fig. 18. Simulating the appearance of jade by hallucinating the translucent
material from an input image taken from real world.

translucent materials (e.g., marble or jade) is a useful graphical
application but is rather difficult [Schmidt et al. 2016; Song et al.
2009]. Conventionally, the materials need to be adjusted manually
by rendering them repeatedly with different parameter settings. In
Fig. 18, we demonstrate that the trained SKPN provides a goal-based
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Fig. 19. Simulating dynamic fire flames with various styles (shown in the inset). Please use Adobe Acrobat to see the animation.

interface for efficient hallucination of translucent materials based
on only one input image. Here, we try to automatically recreate
a plausible translucent material from each image (shown in the
inset) that would correspond to the image. To this end, we first
voxelize the geometric model and feed it to our SKPN, together with
a guided image serving as the style image. The generated albedo
volume and the density volume (the voxelized model), possibly with
a clear coating layer, encode a translucent material. The rendering
results shown in Fig. 18 reveal that the hallucinated material closely
matches the input image in each case. Owing to the high efficiency
of SKPN, interactive hallucination is allowed. More hallucination
results are shown in Fig. 1.

5.6.2 Simulating Fire Flames. Fires are widely used in visual effects
and video games. Among many amorphous natural phenomena,
they are considered to be the most difficult to describe because
of their complex behaviors both in shape and appearance. Here,
we show that our method facilitates the simulation of colorful fire
flames with varying spectral properties probably caused by different
chemical species. All we need are a dynamic flow representing the
evolution of fire shapes and a reference image captured from real
scenes or designed by artists. The dynamic flow can be produced
by any existing fluid simulation tools like mantaflow [Thuerey and
Pfaff 2018] and Blender [2020]. Without relying on any manually
tuned parameter, even a novice user can easily create truth render-
ing of any type of fires with desired appearance, as demonstrated
in Fig. 19. Here, the fire sequence is simulated by Blender with an
output resolution of 128 × 128 × 128. Note the matched fire appear-
ance with the input style and the temporal coherence guaranteed
by our method. Another scene is shown in Fig. 1. Please see the
supplemental video for the full animations.

5.7 Runtime Performance
We evaluate the runtime performance on a PC with a 3.6 GHz
Intel Core i7 processor and an NVIDIA GTX 2080Ti GPU. Since
we put the computational burden at training stage, the stylization
process at inference stage is very fast. In particular, only one density
volume is required at inference stage, without its neighboring frames
or velocity field. Our network takes about 0.04s, 0.25s and 0.51s
on average to stylize a density volume with the resolution 64 ×
64 × 64, 128 × 128 × 128 and 128 × 256 × 128, respectively. As

Input TNST SKPN TNST+SKPN

Fig. 20. Styling an input volume (using the fourth style image in Fig. 19)
with TNST [Kim et al. 2019], SKPN and their combination, respectively. Note
that color and structural features are not consistent when both SKPN and
TNST are applied.

a comparison, the tomographic reconstruction method of Klehm
et al. [2014] takes about 1.6s while LNST [Kim et al. 2020] takes
several seconds (depending on the number of particles) on the same
platform and using the same scene configuration.

6 CONCLUSION AND FUTURE WORK
We have proposed stylizing kernel prediction network (SKPN), the
first feed-forward neural network that enables efficient artistic vol-
umetric appearance stylization. We formulate this as a volumetric
style transfer problem in which a 3D density volume is stylized by
an input style image. The key to our SKPN is the introduction of
stylizing kernels and two carefully designed subnetworks, namely,
stylizing kernel predictor (SKP) and volume autoencoder (VolAE).
Once trained jointly, SKP produces a group of multi-scale stylizing
kernels for a new style image, while VolAE accepts these kernels
in its decoder and outputs a stylized albedo volume. Our results
demonstrate that the stylized albedo volume achieves the similar
appearance with the corresponding style image. The special design
of the stylizing kernels and the loss function allow SKPN to handle
arbitrary style transfer and generate temporally coherent animation
sequences.
Our framework has several limitations that may inspire future

research in this direction. First, since we use mean and variance
statistics of feature maps to encode styles, the tiny details such as
furs, fibers and grains in style images can not be well captured.
It would be possible to include additional summary statistics (e.g.,

ACM Trans. Graph., Vol. 40, No. 4, Article 162. Publication date: August 2021.
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higher order moments) to enhance the details. Second, our SKPN
is specifically designed to transfer color styles, keeping the input
density volumes unchanged. To stylize both density and albedo of
an input volume, one straightforward solution is to combine our
proposed SKPN with TNST [Kim et al. 2019] (or LNST [Kim et al.
2020]), as illustrated in Fig. 20. However, it can not guarantee con-
sistency between color and structural features if these two methods
are applied independently. In the future, we would like to explore
new methodologies to edit the density volumes with both color and
structural features in a correlated way, enabling more powerful and
harmonious style design.
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