

A Practical and Hierarchical Yarn-based Shading Model for Cloth

Junqiu Zhu¹, Zahra Montazeri², Jean-Marie Aubry³, Ling-Qi Yan¹, Andrea Weidlich^{3,4}

¹University of California, Santa Barbara

² University of Manchester

³ Weta Digital

⁴ Nvidia

Why Cloth Rendering?

Entertainment

Virtual Reality

Cloth Rendering is Difficult!

Challenge: Geometry

Woven sample

Knitted sample

Cloth Rendering is Difficult!

Challenge: Shading

Background

Surface-based Methods

Micro-appearance Methods

[Zhao et al. 2016]

[Khungurn et al. 2015]

Ply-based method

So What?

Our Method

Avatar: The Way of Water, Weta Digital, 2023

1

ALL

The second secon

111111111111

11

EGSR DELFT 2023

Overview

Overview

Our Hierarchical Shading Model

Fiber-level Shading Model

R: reflection term TT: transmission term D: diffuse term

Ref

Ref

Yarn-level Shading Model

Results

Single Yarn

Changing fiber twist (5° - 60°)

> Ours: 32 SPP Ref: 256 SPP

Increasing fiber twist

Ours

Increasing fiber twist

Increasing fiber numbers

Knitted Glove

Temporal stability (Moving Light) 32 SPP Point light

Knitted Glove

Temporal Stability (Zooming in/out) 32 SPP Point light + Env light

Performance

	Time (s)		Memory (MB)		#Bounce	
	Ref			Ours	Ref	Ours
Fig. <mark>6</mark> .a	187	7x sp	7x speedup!	1.8	12.4	1.6
W/ twice fibers	265		1.8	17.4	1.6	
Fig. <mark>6</mark> .b	343		3% memory!	4.0	16.5	3.2
W/ twice fibers	547	3% m		4.0	21.3	3.2
Fig. 1	519			4.0	26.4	4.2

Conclusion

- Efficient and accurate yarn-based shading model
- Represent single and multiple scattering of light
- Yarn-based representation with ply-level geometries
- General application to render woven and knitted fabrics
- Independent to the ply count

Limitations

• Perpendicular ray assumption: inaccurate at grazing angles.

Limitations

- Perpendicular ray assumption: inaccurate at grazing angles.
- Uniform fiber distribution assumption: inaccurate scattering events

Limitations

- Perpendicular ray assumption: inaccurate at grazing angles.
- Uniform fiber distribution assumption: inaccurate scattering events
- Not considered fly-away fibers

Future Work

- Implementing BCSDF model for real-time rasterization-based applications.
- Extending the method with multi-resolution for efficient level-ofdetail rendering.

Acknowledgement

- Anonymous reviewers
- Marc Droske
- Gifted Grants: Adobe, Intel, Meta and XVerse
- Weta Digital

Thank you!

A Practical and Hierarchical Yarn-based Shading Model for Cloth

Junqiu Zhu¹, Zahra Montazeri², Jean-Marie Aubry³, Ling-Qi Yan¹, Andrea Weidlich³

¹University of California, Santa Barbara

² University of Manchester

² Weta x Unity