

Ray-aligned Occupancy Map Array (ROMA) for Fast Approximate Ray Tracing

Zheng Zeng¹, Zilin Xu², Lu Wang², Lifan Wu³, Ling-Qi Yan¹

¹University of California, Santa Barbara

²Shandong University

3NVIDIA

Background

Real-time ray tracing

Hardware Ray Tracing (HWRT) is good, but ...

Ray traced results

Hardware Ray Tracing (HWRT)

Ray tracing hardware [NVIDIA Ada Lovelace]

Only high-end platforms support it!

Hardware Ray Tracing (HWRT) is good, but ...

Hardware Ray Tracing (HWRT)

Software Ray Tracing (SWRT)

SWRT: Screen-space Ray Tracing

SWRT: Screen-space Ray Tracing

SWRT: Distance Fields (DFs)

SWRT: Distance Fields (DFs)

Generation

Generation

Generation

Our goal

Our goal

Better utilize the trait of fast generation

Further speed up ray tracing against OMs

Method

EGSR DELFT 2023

Key observation

When ray is tracing along the z-axis, only a single lookup is required!

EGSR 2023

Key observation

When ray is tracing along the z-axis, only a single lookup is required!

If all our rays are tracing along the z-axis (OMs are aligned with rays), we will achieve O(1) tracing performance.

Key observation

An infinite number of ray-aligned OMs is required. Each ray-aligned OM invokes one pass of rasterization.

Key idea

An infinite number of ray-aligned OMs is required. Each ray-aligned OM invokes one pass of rasterization.

Key idea

EGSR DELFT 2023

Key idea

Key idea

Overview

GENERATION STAGE

Overview

EGSR DELFT 2023

Overview

Step 1: Generate BOM

Base Occupancy Map (BOM)

Step 1: Generate BOM

Base Occupancy Map (BOM)

Occupancy Map with holes

Step 1: Generate BOM

Base Occupancy Map (BOM)

Occupancy Map with holes

Step 2: "Rotate" BOM to ROMA

Step 2: "Rotate" BOM to ROMA

Step 2: "Rotate" BOM to ROMA

Ray-Aligned OM Array (ROMA)

Candidate directions

Sampled direction

any hit query

Step 3: "Snap" and Trace

Spatiotemporal scheme

- Higher positional and angular resolutions are critical for ROMA.
- However, the extra time and space costs are always unacceptable.

Spatiotemporal scheme

• A spatiotemporal scheme to further boost performance while alleviating aliasing!

Spatiotemporal scheme

(a) Different positional resolution (with a same angular resolution of 4^2).

(b) *Different angular resolution (with a same positional resolution of* 128²).

Sampled rays' direction	Applications	Support	"Snap"
Entire hemisphere	Ambient occlusion Diffuse reflection	✓	1

• Sometimes, we cannot simply snap the ray

Sampled rays' direction	Applications	Support	"Snap"
Entire hemisphere	Ambient occlusion Diffuse reflection	✓	✓

Entire hemisphere

Sampled rays' direction	Applications	Support	"Snap"
Entire hemisphere	Ambient occlusion Diffuse reflection	1	1
Specific directions	Soft shadows Glossy reflection	1	×

Entire hemisphere

Specific directions

• Sometimes, we cannot simply snap the ray

Sampled rays' direction	Applications	Support	"Snap"
Entire hemisphere	Ambient occlusion Diffuse reflection	1	1
Specific directions	Soft shadows Glossy reflection	1	×
One specific direction	Hard shadows Pure specular reflection	×	N/A

Entire hemisphere

Specific directions

(a) MARBLE scene. We show both direct illumination from RSM and one-bounce diffuse indirect illumination traced using ROMA.

(b) MORPHING SPOT scene. We show both direct illumination with soft shadow and one-bounce diffuse indirect illumination traced using ROMA.

Result

Ambient Occlusion (AO)

- The times are measured on 1080P for ambient occlusion (snapped rays).
- **Pos. resolution**: resolution of OMs; **ang. resolution**: the number of candidate directions.

Pos. Res.	32 ²		64	4 ²	128 ²	
Ang. Res.	4 ²	8 ²	4 ²	8 ²	4 ²	8 ²
		GEN	ERATION			
ROMA	0.14 ms	0.18 ms	0.20 ms	0.31 ms	0.30 ms	0.69 ms
Distance field	0.31 ms		0.55 ms		3.31 ms	
(Speed-up)	(2.2×)	(1.7×)	(2.7×)	(1.7×)	(11.0×)	$(4.8 \times)$
(Storage)	(1×)	$(4\times)$	(1×)	$(4\times)$	(1×)	$(4\times)$
HWRT			0.08 ms			

- The times are measured on 1080P for ambient occlusion (snapped rays).
- **Pos. resolution**: resolution of OMs; **ang. resolution**: the number of candidate directions.

Pos. Res. Ang. Res.	$\begin{vmatrix} 32\\ 4^2 \end{vmatrix}$	2^{2} 8 ²	4^2 64	4 ² 8 ²	$\begin{vmatrix} 12\\ 4^2 \end{vmatrix}$	8 ² 8 ²
		GEN	ERATION			
ROMA	0.14 ms	0.18 ms	0.20 ms	0.31 ms	0.30 ms	0.69 ms
Distance field	0.31	ms	0.55	5 ms	3.31	ms
(Speed-up)	(2.2×)	(1.7×)	(2.7×)	(1.7×)	(11.0×)	$(4.8 \times)$
(Storage)	(1×)	$(4\times)$	(1×)	$(4\times)$	(1×)	$(4\times)$
HWRT			. 0.08	3 ms		

- The times are measured on 1080P for ambient occlusion (snapped rays).
- **Pos. resolution**: resolution of OMs; **ang. resolution**: the number of candidate directions.

Pos. Res. Ang. Res.	$\begin{vmatrix} 3^2 \\ 4^2 \end{vmatrix}$	2^{2} 8 ²	$\begin{vmatrix} 64\\ 4^2 \end{vmatrix}$	4 ² 8 ²	$\begin{vmatrix} 12\\ 4^2 \end{vmatrix}$	8 ² 8 ²	-
		GEN	IERATION				
ROMA	0.14 ms	0.18 ms	0.20 ms	0.31 ms	0.30 ms	0.69 ms	Always < 1
Distance field	0.31 ms		0.55 ms		3.31	ms	
(Speed-up)	(2.2×)	(1.7×)	(2.7×)	(1.7×)	(11.0×)	$(4.8 \times)$	
(Storage)	(1×)	$(4\times)$	(1×)	$(4\times)$	(1×)	$(4\times)$	11x faster
HWRT			.0.08	3 ms			

- The times are measured on 1080P for ambient occlusion (snapped rays).
- **Pos. resolution**: resolution of OMs; **ang. resolution**: the number of candidate directions.

- The times are measured on 1080P for ambient occlusion (snapped rays).
- **Pos. resolution**: resolution of OMs; **ang. resolution**: the number of candidate directions.

- The times are measured on 1080P for ambient occlusion (snapped rays).
- **Pos. resolution**: resolution of OMs; **ang. resolution**: the number of candidate directions.

- The times are measured on 1080P for ambient occlusion (snapped rays).
- **Pos. resolution**: resolution of OMs; **ang. resolution**: the number of candidate directions.

- The times are measured on 1080P for ambient occlusion (snapped rays).
- **Pos. resolution**: resolution of OMs; **ang. resolution**: the number of candidate directions.

One-bounce Diffuse GI & Soft Shadows

- We want to show:
 - Soft shadows from direct illumination (un-snapped rays)
 - Color bleedings from indirect illumination (snapped rays)

One-bounce Diffuse GI & Soft Shadows

- We want to show:
 - Soft shadows from direct illumination (un-snapped rays)
 - Color bleedings from indirect illumination (snapped rays)

One-bounce Diffuse GI & Soft Shadows

- We want to show:
 - Soft shadows from direct illumination (un-snapped rays)
 - Color bleedings from indirect illumination (snapped rays)

Conclusion

Conclusion

• A new SWRT solution, ROMA, that enables fast approximate ray tracing.

- Fast: generation & tracing.
- Approximate: scene voxelization & tracing snapped rays.
- Fully scalable: balancing the performance and quality in a spatiotemporal way.

Limitations

- ROMA generation is slower than the BVH construction/update for HWRT on small-scale scenes.
 - ROMA generation does not have specially optimized refitting method and is not handled by drivers.
- ROMA does not have these good properties as DFs have.
 - Filtered to get coarser levels.
 - Differentiable rendering.
- Shadow acne / light leaking.

Future work

- Extend ROMA to support larger scenes.
 - Cascades.
 - Local ROMAs for near-field tracing and global ROMA for far-field tracing. (Lumen)
 - Local mesh ROMAs coupled with AABB tree traversal. (AMD's Brixelizer)
- Hardware support for ROMA to boost its performance.
- Explore hybrid solutions
 - Combine screen-space ray tracing for near-field tracing and using ROMA only for far-field tracing.

Ray-aligned Occupancy Map Array for Fast Approximate Ray Tracing

Thank you!

ROMA wasn't built in a day, but in <1 millisecond :)