
Ray-aligned Occupancy Map Array
(ROMA) 

for Fast Approximate Ray Tracing
Zheng Zeng1, Zilin Xu2, Lu Wang2, Lifan Wu3, Ling-Qi Yan1

1University of California, Santa Barbara
2Shandong University

3NVIDIA

Background

Real-time ray tracing

Ray traced results

How to make it real-
time?

Hardware Ray Tracing (HWRT)

Hardware Ray Tracing (HWRT) is good, but …

Ray traced results

Ray tracing hardware
[NVIDIA Ada Lovelace]

Make it “real-time”

Only high-end platforms
support it!

Hardware Ray Tracing (HWRT) is good, but …

Approximate

Hardware Ray Tracing (HWRT)

Software Ray Tracing (SWRT)

Generation

SWRT: Screen-space Ray Tracing

Tracing

Heightfield
… …

Heightfield
… …Depth map

Generation

SWRT: Screen-space Ray Tracing

Tracing

Heightfield
… …

Heightfield
… …Depth map

It may miss the geometries out of the
screen and behind the nearest

surfaces.

Tracing is not that fast due to multiple
and inconsistent number of iterations.

SWRT: Distance Fields (DFs)

Generation

Jump Flooding

6 5 4 3 3 3 3 3 3 3 4 5 6 7 8 9 9
5 4 3 2 2 2 2 2 2 2 3 4 5 6 7 8 9
4 3 2 1 1 1 1 1 1 1 2 3 4 5 6 7 8
4 3 2 1 0 0 1 0 0 1 2 3 4 5 6 7 8
4 3 2 1 0 0 0 0 0 1 2 3 4 5 6 7 8
3 2 1 0 0 0 0 1 1 1 2 2 3 4 5 6 7
3 2 1 0 0 0 0 0 0 0 1 1 2 3 4 5 6
3 2 1 0 0 0 0 0 0 0 0 0 1 2 3 4 5
3 2 1 0 0 0 0 0 0 0 0 0 1 1 2 3 4
3 2 1 0 0 0 0 0 0 0 0 0 0 1 2 3 4
3 2 1 0 0 0 0 0 0 0 0 0 0 1 2 3 4
4 3 2 1 0 0 0 0 0 0 0 0 0 1 2 3 4
4 3 2 1 0 0 0 0 0 0 0 0 0 1 2 3 4
5 4 3 2 1 1 1 1 1 1 1 1 1 1 2 3 4
6 5 4 3 2 2 2 2 2 2 2 2 2 2 3 4 5
6 5 4 3 3 3 3 3 3 3 3 3 3 3 3 4 5
7 6 5 4 4 4 4 4 4 4 4 4 4 4 4 5 6

Tracing

6 5 4 3 3 3 3 3 3 3 4 5 6 7 8 9 9
5 4 3 2 2 2 2 2 2 2 3 4 5 6 7 8 9
4 3 2 1 1 1 1 1 1 1 2 3 4 5 6 7 8
4 3 2 1 0 0 1 0 0 1 2 3 4 5 6 7 8
4 3 2 1 0 0 0 0 0 1 2 3 4 5 6 7 8
3 2 1 0 0 0 0 1 1 1 2 2 3 4 5 6 7
3 2 1 0 0 0 0 0 0 0 1 1 2 3 4 5 6
3 2 1 0 0 0 0 0 0 0 0 0 1 2 3 4 5
3 2 1 0 0 0 0 0 0 0 0 0 1 1 2 3 4
3 2 1 0 0 0 0 0 0 0 0 0 0 1 2 3 4
3 2 1 0 0 0 0 0 0 0 0 0 0 1 2 3 4
4 3 2 1 0 0 0 0 0 0 0 0 0 1 2 3 4
4 3 2 1 0 0 0 0 0 0 0 0 0 1 2 3 4
5 4 3 2 1 1 1 1 1 1 1 1 1 1 2 3 4
6 5 4 3 2 2 2 2 2 2 2 2 2 2 3 4 5
6 5 4 3 3 3 3 3 3 3 3 3 3 3 3 4 5
7 6 5 4 4 4 4 4 4 4 4 4 4 4 4 5 6

Rasterization

One y-z plane slice

SWRT: Distance Fields (DFs)

Generation

Jump Flooding

6 5 4 3 3 3 3 3 3 3 4 5 6 7 8 9 9
5 4 3 2 2 2 2 2 2 2 3 4 5 6 7 8 9
4 3 2 1 1 1 1 1 1 1 2 3 4 5 6 7 8
4 3 2 1 0 0 1 0 0 1 2 3 4 5 6 7 8
4 3 2 1 0 0 0 0 0 1 2 3 4 5 6 7 8
3 2 1 0 0 0 0 1 1 1 2 2 3 4 5 6 7
3 2 1 0 0 0 0 0 0 0 1 1 2 3 4 5 6
3 2 1 0 0 0 0 0 0 0 0 0 1 2 3 4 5
3 2 1 0 0 0 0 0 0 0 0 0 1 1 2 3 4
3 2 1 0 0 0 0 0 0 0 0 0 0 1 2 3 4
3 2 1 0 0 0 0 0 0 0 0 0 0 1 2 3 4
4 3 2 1 0 0 0 0 0 0 0 0 0 1 2 3 4
4 3 2 1 0 0 0 0 0 0 0 0 0 1 2 3 4
5 4 3 2 1 1 1 1 1 1 1 1 1 1 2 3 4
6 5 4 3 2 2 2 2 2 2 2 2 2 2 3 4 5
6 5 4 3 3 3 3 3 3 3 3 3 3 3 3 4 5
7 6 5 4 4 4 4 4 4 4 4 4 4 4 4 5 6

Tracing

6 5 4 3 3 3 3 3 3 3 4 5 6 7 8 9 9
5 4 3 2 2 2 2 2 2 2 3 4 5 6 7 8 9
4 3 2 1 1 1 1 1 1 1 2 3 4 5 6 7 8
4 3 2 1 0 0 1 0 0 1 2 3 4 5 6 7 8
4 3 2 1 0 0 0 0 0 1 2 3 4 5 6 7 8
3 2 1 0 0 0 0 1 1 1 2 2 3 4 5 6 7
3 2 1 0 0 0 0 0 0 0 1 1 2 3 4 5 6
3 2 1 0 0 0 0 0 0 0 0 0 1 2 3 4 5
3 2 1 0 0 0 0 0 0 0 0 0 1 1 2 3 4
3 2 1 0 0 0 0 0 0 0 0 0 0 1 2 3 4
3 2 1 0 0 0 0 0 0 0 0 0 0 1 2 3 4
4 3 2 1 0 0 0 0 0 0 0 0 0 1 2 3 4
4 3 2 1 0 0 0 0 0 0 0 0 0 1 2 3 4
5 4 3 2 1 1 1 1 1 1 1 1 1 1 2 3 4
6 5 4 3 2 2 2 2 2 2 2 2 2 2 3 4 5
6 5 4 3 3 3 3 3 3 3 3 3 3 3 3 4 5
7 6 5 4 4 4 4 4 4 4 4 4 4 4 4 5 6

Rasterization

One y-z plane slice

Costly to update on a per-frame basis! Tracing is not that fast due to multiple
and inconsistent number of iterations.

Rasterization

One y-z plane slice

Generation

SWRT: Occupancy Maps (OMs)

Rasterization

One y-z plane slice

Generation

SWRT: Occupancy Maps (OMs)

0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0

Bit-field

3264

uint

[Eisemann et al. 2006]

Rasterization

One y-z plane slice

Generation

SWRT: Occupancy Maps (OMs)

Pack along z-axis
(compactly represented)

0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0

Bit-field

3264

uint

[Eisemann et al. 2006]

Rasterization

One y-z plane slice

Generation

SWRT: Occupancy Maps (OMs)

Pack along z-axis
(compactly represented)

0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0

Bit-field

3264

uint

Tracing

[Eisemann et al. 2006] [Thiedemann et al. 2011]

Rasterization

One y-z plane slice

Generation

SWRT: Occupancy Maps (OMs)

Pack along z-axis
(compactly represented)

0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0

Bit-field

3264

uint

Tracing

[Eisemann et al. 2006] [Thiedemann et al. 2011]

Rasterization

One y-z plane slice

Generation

SWRT: Occupancy Maps (OMs)

Pack along z-axis
(compactly represented)

0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0

Bit-field

3264

uint

Tracing

[Eisemann et al. 2006] [Thiedemann et al. 2011]

Rasterization

One y-z plane slice

Generation

SWRT: Occupancy Maps (OMs)

Pack along z-axis
(compactly represented)

0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0

Bit-field

3264

uint

Tracing

[Eisemann et al. 2006] [Thiedemann et al. 2011]

Rasterization

One y-z plane slice

Generation

SWRT: Occupancy Maps (OMs)

Pack along z-axis
(compactly represented)

0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0

Bit-field

3264

uint

Tracing

[Eisemann et al. 2006] [Thiedemann et al. 2011]

Rasterization

One y-z plane slice

Generation

SWRT: Occupancy Maps (OMs)

Pack along z-axis
(compactly represented)

0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0

Bit-field

3264

uint

Tracing

[Eisemann et al. 2006] [Thiedemann et al. 2011]

Rasterization

One y-z plane slice

Generation

SWRT: Occupancy Maps (OMs)

Pack along z-axis
(compactly represented)

0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0

Bit-field

3264

uint

Tracing

== 0?

[Eisemann et al. 2006] [Thiedemann et al. 2011]

Rasterization

One y-z plane slice

Generation

SWRT: Occupancy Maps (OMs)

Pack along z-axis
(compactly represented)

0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0

Bit-field

3264

uint

Tracing

…

[Eisemann et al. 2006] [Thiedemann et al. 2011]

Rasterization

One y-z plane slice

Generation

SWRT: Occupancy Maps (OMs)

Pack along z-axis
(compactly represented)

0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0

Bit-field

3264

uint

Tracing

…

[Eisemann et al. 2006] [Thiedemann et al. 2011]

Rasterization

One y-z plane slice

Generation

SWRT: Occupancy Maps (OMs)

Pack along z-axis
(compactly represented)

0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0

Bit-field

3264

uint

Tracing

…

!= 0, there is an intersection!

[Eisemann et al. 2006] [Thiedemann et al. 2011]

Rasterization

One y-z plane slice

Generation

Our goal

Pack along z-axis
(compactly represented)

0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0

Bit-field

3264

uint

Tracing

…

!= 0, there is an intersection!

Fast! Not that
fast.

[Eisemann et al. 2006] [Thiedemann et al. 2011]

Rasterization

One y-z plane slice

Generation

Our goal

Pack along z-axis
(compactly represented)

0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0

Bit-field

3264

uint

Tracing

…

!= 0, there is an intersection!

Fast! Not that
fast.

 Better utilize the trait of fast generation Further speed up ray tracing against OMs

[Eisemann et al. 2006] [Thiedemann et al. 2011]

Method

Key observation

When ray is tracing along the z-axis, only a single lookup is required!

Key observation

When ray is tracing along the z-axis, only a single lookup is required!

If all our rays are tracing along the z-axis
(OMs are aligned with rays),

we will achieve O(1) tracing performance.

Key observation

An infinite number of
ray-aligned OMs is

required.

Each ray-aligned OM
invokes one pass of

rasterization.

If all our rays are tracing along the z-axis
(OMs are aligned with rays),

we will achieve O(1) tracing performance.

Key idea

Each ray-aligned OM
invokes one pass of

rasterization.

An infinite number of
ray-aligned OMs is

required.

Key idea

Each ray-aligned OM
invokes one pass of

rasterization.

An infinite number of
ray-aligned OMs is

required.

Candidate
directions

Rasterization

Key idea

Each ray-aligned OM
invokes one pass of

rasterization.

Only a subset of ray-
aligned OMs are

required.

Candidate
directions

Sampled direction

Ray-Aligned
OM Array
(ROMA)

“Snap”!

Rasterization

Ray-Aligned
OM Array
(ROMA)

Key idea

Only one pass of
rasterization is required.

Only a subset of ray-
aligned OMs are

required.

Candidate
directions

Base Occupancy Map (BOM)

Rotate

Rasterization

Overview

Overview

Overview

Step 1: Generate BOM

Base Occupancy Map (BOM)

Rasterization

Step 1: Generate BOM

Base Occupancy Map (BOM)

Rasterization

z

Occupancy Map with holes

Step 1: Generate BOM

Base Occupancy Map (BOM)

Rasterization

z

[Forest et al. 2009]

Rasterization

UnionOccupancy Map with holes

Ray-Aligned OM Array
(ROMA)

Step 2: “Rotate” BOM to ROMA

Ray-Aligned OM Array
(ROMA)

Step 2: “Rotate” BOM to ROMA

World space

Ray-Aligned OM Array
(ROMA)

Step 2: “Rotate” BOM to ROMA

World space

NDC space of
Base Occupancy Map (BOM) Base Occupancy Map (BOM)

Step 3: “Snap” and Trace

Ray-Aligned OM Array
(ROMA)

Sampled direction

Candidate
directions

Step 3: “Snap” and Trace

Ray-Aligned OM Array
(ROMA)

Sampled direction

Which is the closest
candidate direction?

Candidate
directions

Step 3: “Snap” and Trace

Ray-Aligned OM Array
(ROMA)

Sampled direction

Which is the closest
candidate direction?

Candidate
directions

Step 3: “Snap” and Trace

Ray-Aligned OM Array
(ROMA)

Sampled direction

Which is the closest
candidate direction?

Candidate
directions

Concentric mapping

Concentric mapping

Step 3: “Snap” and Trace

Ray-Aligned OM Array
(ROMA)

Step 3: “Snap” and Trace

Ray-Aligned OM Array
(ROMA)

“Snap”!

Step 3: “Snap” and Trace

Ray-Aligned OM Array
(ROMA)

“Snap”!

any hit query

Step 3: “Snap” and Trace

Ray-Aligned OM Array
(ROMA)

“Snap”!

any hit query

Left-shift:

or Right-
shift:

Step 3: “Snap” and Trace

Ray-Aligned OM Array
(ROMA)

“Snap”!

any hit query

Left-shift:

or Right-
shift:

== 0?

Step 3: “Snap” and Trace

Ray-Aligned OM Array
(ROMA)

“Snap”!

any hit query

Left-shift:
== 0?

closest hit query

or Right-
shift:

Step 3: “Snap” and Trace

Ray-Aligned OM Array
(ROMA)

“Snap”!

any hit query

Left-shift:
== 0?

closest hit query

or Right-
shift:

Foremost-
bit:

or Low-bit:

Step 3: “Snap” and Trace

Ray-Aligned OM Array
(ROMA)

“Snap”!

any hit query

Left-shift:
== 0?

closest hit query

or Right-
shift:

Foremost-
bit:

or Low-bit:

Floor(log2())

Step 3: “Snap” and Trace

Ray-Aligned OM Array
(ROMA)

“Snap”!

any hit query

Left-shift:
== 0?

closest hit query

or Right-
shift:

Foremost-
bit:

or Low-bit:

Floor(log2())

Step 3: “Snap” and Trace

Ray-Aligned OM Array
(ROMA)

“Snap”!

any hit query

Left-shift:
== 0?

closest hit query

or Right-
shift:

Foremost-
bit:

or Low-bit:

Floor(log2())

Step 3: “Snap” and Trace

Ray-Aligned OM Array
(ROMA)

“Snap”!

any hit query

Left-shift:
== 0?

closest hit query

or Right-
shift:

Foremost-
bit:

or Low-bit:

Floor(log2())

log2()

Ray-aligned
OM Array
(ROMA)

Spatiotemporal scheme

Candidate
directions

Base Occupancy Map (BOM)

Rotate

Rasterization

• Higher positional and angular resolutions are critical for ROMA.
• However, the extra time and space costs are always unacceptable.

Positional resolution

Angular resolution

Ray-aligned
OM Array
(ROMA)

Spatiotemporal scheme

Candidate
directions

Base Occupancy Map (BOM)

Rotate

Rasterization

• A spatiotemporal scheme to further boost performance while alleviating aliasing!

Jitter the camera
on a per-frame

basis!

Resample candidate directions with
jitters on a per-frame basis!

Spatiotemporal scheme

“Snap” or not
• Sometimes, we cannot simply snap the ray

Sampled direction

“Snap” or not
• Sometimes, we cannot simply snap the ray

Sampled direction

Candidate
direction

“Snap” or not
• Sometimes, we cannot simply snap the ray

“Snap” or not
• Sometimes, we cannot simply snap the ray

Entire hemisphere

“Snap” or not
• Sometimes, we cannot simply snap the ray

Entire hemisphere Specific directions

“Snap” or not
• Sometimes, we cannot simply snap the ray

Entire hemisphere Specific directions One Specific
direction

“Snap” or not
0.24 ms 2.05 ms

(4^2 ang. res.)

0.15 ms 0.23 ms
(8^2 ang. res.)

Result

Ambient Occlusion (AO)

Performance
• The times are measured on 1080P for ambient occlusion (snapped rays).
• Pos. resolution: resolution of OMs; ang. resolution: the number of candidate directions.

Performance
• The times are measured on 1080P for ambient occlusion (snapped rays).
• Pos. resolution: resolution of OMs; ang. resolution: the number of candidate directions.

Always < 1ms!

Performance
• The times are measured on 1080P for ambient occlusion (snapped rays).
• Pos. resolution: resolution of OMs; ang. resolution: the number of candidate directions.

Always < 1ms!

11x faster

Performance
• The times are measured on 1080P for ambient occlusion (snapped rays).
• Pos. resolution: resolution of OMs; ang. resolution: the number of candidate directions.

Always < 1ms!

11x faster1.7x-11.0x faster

Performance
• The times are measured on 1080P for ambient occlusion (snapped rays).
• Pos. resolution: resolution of OMs; ang. resolution: the number of candidate directions.

Always < 1ms!

11x faster1.7x-11.0x faster

Aways 0.16ms!

Performance
• The times are measured on 1080P for ambient occlusion (snapped rays).
• Pos. resolution: resolution of OMs; ang. resolution: the number of candidate directions.

Always < 1ms!

11x faster1.7x-11.0x faster

Aways 0.16ms!

3.4x-8.1x faster

Performance
• The times are measured on 1080P for ambient occlusion (snapped rays).
• Pos. resolution: resolution of OMs; ang. resolution: the number of candidate directions.

Always < 1ms!

11x faster1.7x-11.0x faster

Aways 0.16ms!

3.4x-8.1x faster

2.5x-10x faster

Performance
• The times are measured on 1080P for ambient occlusion (snapped rays).
• Pos. resolution: resolution of OMs; ang. resolution: the number of candidate directions.

Always < 1ms!

11x faster1.7x-11.0x faster

Aways 0.16ms!

3.4x-8.1x faster

2.5x-10x faster

1.9x faster

One-bounce Diffuse GI & Soft Shadows
• We want to show:

• Soft shadows from direct illumination (un-snapped rays)
• Color bleedings from indirect illumination (snapped rays)

Generation: ~2.86 ms
(3.2x)
Tracing: ~0.90 ms (2.0x)

Generation: ~0.89
ms
Tracing: ~0.45 ms

One-bounce Diffuse GI & Soft Shadows
• We want to show:

• Soft shadows from direct illumination (un-snapped rays)
• Color bleedings from indirect illumination (snapped rays)

Generation: ~2.86 ms
(3.2x)
Tracing: ~0.90 ms (2.0x)

Generation: ~0.89
ms
Tracing: ~0.45 ms

One-bounce Diffuse GI & Soft Shadows
• We want to show:

• Soft shadows from direct illumination (un-snapped rays)
• Color bleedings from indirect illumination (snapped rays)

Generation: ~2.86 ms
(3.2x)
Tracing: ~0.90 ms (2.0x)

Generation: ~0.89
ms
Tracing: ~0.45 ms

Conclusion

Conclusion
• A new SWRT solution, ROMA, that enables fast approximate ray tracing.

• Fast: generation & tracing.
• Approximate: scene voxelization & tracing snapped rays.
• Fully scalable: balancing the performance and quality in a spatiotemporal way.

Limitations
• ROMA generation is slower than the BVH construction/update for HWRT on small-scale scenes.

• ROMA generation does not have specially optimized refitting method and is not handled by drivers.

• ROMA does not have these good properties as DFs have.
• Filtered to get coarser levels.
• Differentiable rendering.

• Shadow acne / light leaking.

Future work
• Extend ROMA to support larger scenes.

• Cascades.
• Local ROMAs for near-field tracing and global ROMA for far-field tracing. (Lumen)
• Local mesh ROMAs coupled with AABB tree traversal. (AMD’s Brixelizer)

• Hardware support for ROMA to boost its performance.
• Explore hybrid solutions

• Combine screen-space ray tracing for near-field tracing and using ROMA only for far-field tracing.

Ray-aligned Occupancy Map Array  
for Fast Approximate Ray Tracing

Thank you!

ROMA wasn't built in a day, but in <1 millisecond :)

