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Ray traced results
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time?
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Hardware Ray Tracing (HWRT) is good, but …

Ray traced results

Ray tracing hardware
[NVIDIA Ada Lovelace]

Make it “real-time”

Only high-end platforms
support it!
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Tracing
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… …

Heightfield
… …Depth map

It may miss the geometries out of the 
screen and behind the nearest 

surfaces.

Tracing is not that fast due to multiple 
and inconsistent number of iterations.
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Costly to update on a per-frame basis! Tracing is not that fast due to multiple 
and inconsistent number of iterations.
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Rasterization

One y-z plane slice 

Generation

Our goal

Pack along z-axis
(compactly represented)

0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0

Bit-field

3264

uint

Tracing

…

!= 0, there is an intersection!

Fast! Not that 
fast.

 Better utilize the trait of fast generation Further speed up ray tracing against OMs

[Eisemann  et al. 2006] [Thiedemann  et al. 2011]
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Ray-Aligned
OM Array
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Key idea

Only one pass of 
rasterization is required.

Only a subset of ray-
aligned OMs are 

required.

Candidate 
directions

Base Occupancy Map (BOM)

Rotate

Rasterization
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Step 1: Generate BOM
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Step 1: Generate BOM

Base Occupancy Map (BOM)

Rasterization

z

[Forest et al. 2009]

Rasterization

UnionOccupancy Map with holes



Ray-Aligned OM Array
(ROMA)

Step 2: “Rotate” BOM to ROMA
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Step 2: “Rotate” BOM to ROMA

World space



Ray-Aligned OM Array
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Step 2: “Rotate” BOM to ROMA

World space

NDC space of 
Base Occupancy Map (BOM) Base Occupancy Map (BOM)
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Sampled direction

Which is the closest 
candidate direction?

Candidate 
directions

Concentric mapping 

Concentric mapping 
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Ray-aligned
OM Array
(ROMA)

Spatiotemporal scheme

Candidate 
directions

Base Occupancy Map (BOM)

Rotate

Rasterization

• Higher positional and angular resolutions are critical for ROMA.
• However, the extra time and space costs are always unacceptable.

Positional resolution

Angular resolution



Ray-aligned
OM Array
(ROMA)

Spatiotemporal scheme

Candidate 
directions

Base Occupancy Map (BOM)

Rotate

Rasterization

• A spatiotemporal scheme to further boost performance while alleviating aliasing!

Jitter the camera 
on a per-frame 

basis!

Resample candidate directions with 
jitters on a per-frame basis!
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“Snap” or not
• Sometimes, we cannot simply snap the ray

Entire hemisphere Specific directions One Specific 
direction



“Snap” or not
0.24 ms 2.05 ms 

(4^2 ang. res.)

0.15 ms 0.23 ms
(8^2 ang. res.)



Result
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Performance
• The times are measured on 1080P for ambient occlusion (snapped rays).
• Pos. resolution: resolution of OMs; ang. resolution: the number of candidate directions.

Always < 1ms!

11x faster1.7x-11.0x faster

Aways 0.16ms!

3.4x-8.1x faster

2.5x-10x faster

1.9x faster
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Conclusion
• A new SWRT solution, ROMA, that enables fast approximate ray tracing.

• Fast: generation & tracing.
• Approximate: scene voxelization & tracing snapped rays.
• Fully scalable: balancing the performance and quality in a spatiotemporal way.



Limitations
• ROMA generation is slower than the BVH construction/update for HWRT on small-scale scenes.

• ROMA generation does not have specially optimized refitting method and is not handled by drivers.

• ROMA does not have these good properties as DFs have.
• Filtered to get coarser levels.
• Differentiable rendering.

• Shadow acne / light leaking.



Future work
• Extend ROMA to support larger scenes.

• Cascades.
• Local ROMAs for near-field tracing and global ROMA for far-field tracing. (Lumen)
• Local mesh ROMAs coupled with AABB tree traversal. (AMD’s Brixelizer)

• Hardware support for ROMA to boost its performance.
• Explore hybrid solutions

• Combine screen-space ray tracing for near-field tracing and using ROMA only for far-field tracing.



Ray-aligned Occupancy Map Array  
for Fast Approximate Ray Tracing

Thank you!

ROMA wasn't built in a day, but in <1 millisecond :)




