
A Dynamic By-example BTF Synthesis Scheme
Supplemental Material

1 IMPLEMENTATION
Training. We implement our network training on PyTorch [Paszke

et al. 2019]. The network structure is shown in Fig. 1. We apply

AdamW with the default setting for the optimization process. The

learning rate for the feature planes is 1𝑒−3 and 3𝑒−4 for the MLP.

In Table 1, we summarize the size of each feature plane, which

follows Biplane [Fan et al. 2023]’s setting. Although the 20 × 20

resolution for directional planes may seem small, it is sufficient for

UBO2014 [Weinmann et al. 2014] dataset with 151 × 151 angular

resolution. The initialization strategy for the feature plane does not

have a great impact on the result and we use the method from He

et al. [2015]. We circularly pad the phi axis of the angular feature

planes (𝑓 (H)
and 𝑓 (D)

) to avoid discontinuity in the angular domain.

We use Leaky ReLU for all layers in the MLP. In each iteration, we

use a batch of 2, 560, 000 (16 × 400 × 400) samples, i.e., 16 different

BTF images, and each BTF image is under the same viewing and

lighting condition. We train the model for 50 epochs, and after each

epoch, the learning rate will decrease by a factor of 0.9. Although the

loss will continue decreasing after the 50th epoch, the improvement

gain is minimal. Thus, early stopping at the 50th epoch is sufficient.

The whole training takes about 2 hours on a single RTX 4090 GPU.

Rendering Integration. Our rendering is performed on the top of

the NVIDIA Falcor [Kallweit et al. 2022] renderer using its Path-

Tracer pass with our modified BTF material. The inference of MLPs

is implemented in Slang [He et al. 2018] shading language. We reor-

ganized the matrix multiplication of MLP inference into a series of

float4x4 × float4 inside the shader. The MLP’s biases are also stored

as float4. Each neural texture is stored in a 2D float4 texture array.

The detailed performance is summarized in Table 2. We need to

mention that our MLP inference is done inside the shader without

the use of batching or hardware acceleration for neural network

inference. Integrating batch inference or utilizing GPU hardware

inference acceleration structures, such as Tensor Cores, still has the

potential to improve runtime performance.

Importance Sampling. Importance sampling is crucial to efficient

rendering. However, we are not focusing on developing a new im-

portance sampling strategy, as we consider it orthogonal to our main

objective. Instead, we employ a straightforward cosine-weighted

hemisphere sampling to our method. Previous work as predicting

a histogram distribution [Xu et al. 2023; Zhu et al. 2021] or using

normalizing flows [Xu et al. 2023] can be adapted to our method.

Parallax Effects. Incorporating offset [Kuznetsov et al. 2021] into

neural materials provides a method for achieving a pseudo-3D effect

on 2D surfaces. To obtain a parallax effect, previous work either

implicitly estimates a 4D offset from BTFs [Fan et al. 2023; Kuznetsov

et al. 2021] or explicitly creates a 7D synthetic SBTF (Silhouette

BTF) dataset for training [Kuznetsov et al. 2022]. Considering the

measured BTF datasets do not include the offset data, obtaining

the additional parallax effect involves an unstable, unsupervised

Fig. 1. Our Triple Plane’s network structure. It is a lightweight MLP with
4 fully connected (FC) layers. It takes an input of positional feature and
directional features then outputs the RGB reflectance. We apply Leaky
ReLU activation function to each layer.

learning process [Kuznetsov et al. 2021]. Consequently, we chose to

exclude parallax effects from our method, a decision that does not

impact the validity of our conclusions.

Avoiding Cuts in Synthesis. By-example texture synthesis doesn’t

require the input texture to be seamlessly tileable. However, for some

specific implementation, which may require seamlessly tileable 2D

texture. Otherwise, it will create some discontinuous cuts because

the synthesis process may choose some patches that cross the ex-

ample’s edges. In our case, we need the input BTF to be seamlessly

tileable to avoid these cuts. We employ a trivial method that sim-

ply blends a small area around the edges to make BTF’s positional

plane seamlessly tileable without claiming the credit. as illustrated

in Fig. 2. Moreover, making 6D BTF tileable in this way is only ap-

plicable within our proposed BTF synthesis scheme since blending

the original 6D BTF is not trivial due to the high dimensionality.

2 LIMITATION
Structure-persevering Synthesis. One of the limitations we have

is that we directly apply the existing by-example texture synthesis

methods for the BTF synthesis. Therefore, we inherit the same

limitations from the chosen texture synthesis approach. As shown

in Fig. 3, our method can not handle a highly structured BTF since

the used texture synthesis methods can not. Potential improvement

may be obtained by applying a better texture synthesis strategy that

can preserve the structures.

REFERENCES
Jiahui Fan, Beibei Wang, Miloš Hašan, Jian Yang, and Ling-Qi Yan. 2023. Neural Biplane

Representation for BTF Rendering and Acquisition. In Proceedings of SIGGRAPH
2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving deep into recti-

fiers: Surpassing human-level performance on imagenet classification. In Proceedings
of the IEEE international conference on computer vision. 1026–1034.

Yong He, Kayvon Fatahalian, and Tim Foley. 2018. Slang: language mechanisms for

extensible real-time shading systems. ACM Transactions on Graphics (TOG) 37, 4
(2018), 1–13.

1



SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan

Table 1. This table summarizes the dimensions of feature planes. The posi-
tional feature plane is set to match the dimension of BTF data [Weinmann
et al. 2014]. The directional plane’s resolution follows Biplane [Fan et al.
2023]’s setting. Our decomposition method only takes 10MB storage for
each 6D BTF, which originally needed hundreds of GBs without compres-
sion.

Height Width Channels Storage

𝑓 (U) 400 400 16 10 MB

𝑓 (H)
20 20 8 12.5 KB

𝑓 (D)
20 20 8 12.5 KB

Network parameters 12.8 KB

Table 2. This table summarizes the performance of our method via a naive
implementation of matrix multiplication inside the shader. The Eval. Time
includes both neural texture fetching and MLP inference (once per pixel).

Resolution

1920 × 1080

(1 SPP)

2560 × 1440

(1 SPP)

3840 × 2160

(1 SPP)

Eval. Time 2.0 ms 4.8 ms 8.4 ms

Fig. 2. We first make BTF seamlessly tileable using a simple but effec-
tive method. This is an example of making texture horizontally seamlessly
tileable, but in order to make BTF fully seamlessly tileable, it needs to be
performed twice — first horizontally and then vertically.

Fabric09

Ours w/ repetitive tiling Ours w/ Hex-Tiling

Fig. 3. The example BTF may exhibit highly structured patterns. Applying
dynamic texture synthesis methods sometimes ruins the structured patterns.
This is an inherent limitation of dynamic texture synthesis. A better texture
synthesis strategy may refine it.

Simon Kallweit, Petrik Clarberg, Craig Kolb, Tom’aš Davidovič, Kai-Hwa Yao, Theresa

Foley, Yong He, Lifan Wu, Lucy Chen, Tomas Akenine-Möller, Chris Wyman, Cyril

Crassin, and Nir Benty. 2022. The Falcor Rendering Framework. https://github.

com/NVIDIAGameWorks/Falcor https://github.com/NVIDIAGameWorks/Falcor.

Alexandr Kuznetsov, Krishna Mullia, Zexiang Xu, Miloš Hašan, and Ravi Ramamoorthi.

2021. NeuMIP: Multi-Resolution Neural Materials. ACM Trans. Graph. 40, 4, Article
175 (jul 2021), 13 pages. https://doi.org/10.1145/3450626.3459795

Alexandr Kuznetsov, Xuezheng Wang, Krishna Mullia, Fujun Luan, Zexiang Xu, Milos

Hasan, and Ravi Ramamoorthi. 2022. RenderingNeuralMaterials on Curved Surfaces.

InACMSIGGRAPH 2022 Conference Proceedings (Vancouver, BC, Canada) (SIGGRAPH
’22). Association for Computing Machinery, New York, NY, USA, Article 9, 9 pages.

https://doi.org/10.1145/3528233.3530721

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-

maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan

Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-

tala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library.

In Advances in Neural Information Processing Systems 32. Curran Associates, Inc.,

8024–8035. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-

performance-deep-learning-library.pdf

Michael Weinmann, Juergen Gall, and Reinhard Klein. 2014. Material Classification

Based on Training Data Synthesized Using a BTF Database. In Computer Vision –
ECCV 2014, David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars (Eds.).

Springer International Publishing, Cham, 156–171.

Bing Xu, Liwen Wu, Milos Hasan, Fujun Luan, Iliyan Georgiev, Zexiang Xu, and Ravi

Ramamoorthi. 2023. NeuSample: Importance Sampling for Neural Materials. In

ACM SIGGRAPH 2023 Conference Proceedings (Los Angeles, CA, USA) (SIGGRAPH
’23). Association for Computing Machinery, New York, NY, USA, Article 41, 10 pages.

https://doi.org/10.1145/3588432.3591524

Junqiu Zhu, Yaoyi Bai, Zilin Xu, Steve Bako, Edgar Velázquez-Armendáriz, Lu Wang,

Pradeep Sen, Miloš Hašan, and Ling-Qi Yan. 2021. Neural Complex Luminaires:

Representation and Rendering. ACM Trans. Graph. 40, 4, Article 57 (jul 2021),

12 pages. https://doi.org/10.1145/3450626.3459798

2

https://github.com/NVIDIAGameWorks/Falcor
https://github.com/NVIDIAGameWorks/Falcor
https://github.com/NVIDIAGameWorks/Falcor
https://doi.org/10.1145/3450626.3459795
https://doi.org/10.1145/3528233.3530721
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1145/3588432.3591524
https://doi.org/10.1145/3450626.3459798

	1 Implementation
	2 Limitation
	References

