A Dynamic By-example BTF Synthesis Scheme

Supplemental Material

1 IMPLEMENTATION

Training. We implement our network training on PyTorch [Paszke
et al. 2019]. The network structure is shown in Fig. 1. We apply
AdamW with the default setting for the optimization process. The
learning rate for the feature planes is 1e™> and 3e~* for the MLP.
In Table 1, we summarize the size of each feature plane, which
follows Biplane [Fan et al. 2023]’s setting. Although the 20 X 20
resolution for directional planes may seem small, it is sufficient for
UBO2014 [Weinmann et al. 2014] dataset with 151 X 151 angular
resolution. The initialization strategy for the feature plane does not
have a great impact on the result and we use the method from He
et al. [2015]. We circularly pad the phi axis of the angular feature
planes (f (H) and f (D)) to avoid discontinuity in the angular domain.
We use Leaky ReLU for all layers in the MLP. In each iteration, we
use a batch of 2,560, 000 (16 X 400 X 400) samples, i.e., 16 different
BTF images, and each BTF image is under the same viewing and
lighting condition. We train the model for 50 epochs, and after each
epoch, the learning rate will decrease by a factor of 0.9. Although the
loss will continue decreasing after the 50th epoch, the improvement
gain is minimal. Thus, early stopping at the 50th epoch is sufficient.
The whole training takes about 2 hours on a single RTX 4090 GPU.

Rendering Integration. Our rendering is performed on the top of
the NVIDIA Falcor [Kallweit et al. 2022] renderer using its Path-
Tracer pass with our modified BTF material. The inference of MLPs
is implemented in Slang [He et al. 2018] shading language. We reor-
ganized the matrix multiplication of MLP inference into a series of
float4x4 X float4 inside the shader. The MLP’s biases are also stored
as float4. Each neural texture is stored in a 2D float4 texture array.
The detailed performance is summarized in Table 2. We need to
mention that our MLP inference is done inside the shader without
the use of batching or hardware acceleration for neural network
inference. Integrating batch inference or utilizing GPU hardware
inference acceleration structures, such as Tensor Cores, still has the
potential to improve runtime performance.

Importance Sampling. Importance sampling is crucial to efficient
rendering. However, we are not focusing on developing a new im-
portance sampling strategy, as we consider it orthogonal to our main
objective. Instead, we employ a straightforward cosine-weighted
hemisphere sampling to our method. Previous work as predicting
a histogram distribution [Xu et al. 2023; Zhu et al. 2021] or using
normalizing flows [Xu et al. 2023] can be adapted to our method.

Parallax Effects. Incorporating offset [Kuznetsov et al. 2021] into
neural materials provides a method for achieving a pseudo-3D effect
on 2D surfaces. To obtain a parallax effect, previous work either
implicitly estimates a 4D offset from BTFs [Fan et al. 2023; Kuznetsov
et al. 2021] or explicitly creates a 7D synthetic SBTF (Silhouette
BTF) dataset for training [Kuznetsov et al. 2022]. Considering the
measured BTF datasets do not include the offset data, obtaining
the additional parallax effect involves an unstable, unsupervised
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Fig. 1. Our Triple Plane’s network structure. It is a lightweight MLP with
4 fully connected (FC) layers. It takes an input of positional feature and
directional features then outputs the RGB reflectance. We apply Leaky
ReLU activation function to each layer.

learning process [Kuznetsov et al. 2021]. Consequently, we chose to
exclude parallax effects from our method, a decision that does not
impact the validity of our conclusions.

Avoiding Cuts in Synthesis. By-example texture synthesis doesn’t
require the input texture to be seamlessly tileable. However, for some
specific implementation, which may require seamlessly tileable 2D
texture. Otherwise, it will create some discontinuous cuts because
the synthesis process may choose some patches that cross the ex-
ample’s edges. In our case, we need the input BTF to be seamlessly
tileable to avoid these cuts. We employ a trivial method that sim-
ply blends a small area around the edges to make BTF’s positional
plane seamlessly tileable without claiming the credit. as illustrated
in Fig. 2. Moreover, making 6D BTF tileable in this way is only ap-
plicable within our proposed BTF synthesis scheme since blending
the original 6D BTF is not trivial due to the high dimensionality.

2 LIMITATION

Structure-persevering Synthesis. One of the limitations we have
is that we directly apply the existing by-example texture synthesis
methods for the BTF synthesis. Therefore, we inherit the same
limitations from the chosen texture synthesis approach. As shown
in Fig. 3, our method can not handle a highly structured BTF since
the used texture synthesis methods can not. Potential improvement
may be obtained by applying a better texture synthesis strategy that
can preserve the structures.

REFERENCES

Jiahui Fan, Beibei Wang, Milos Hasan, Jian Yang, and Ling-Qi Yan. 2023. Neural Biplane
Representation for BTF Rendering and Acquisition. In Proceedings of SSGGRAPH
2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving deep into recti-
fiers: Surpassing human-level performance on imagenet classification. In Proceedings
of the IEEE international conference on computer vision. 1026-1034.

Yong He, Kayvon Fatahalian, and Tim Foley. 2018. Slang: language mechanisms for
extensible real-time shading systems. ACM Transactions on Graphics (TOG) 37, 4
(2018), 1-13.



SA Conference Papers "24, December 3-6, 2024, Tokyo, Japan

Table 1. This table summarizes the dimensions of feature planes. The posi-
tional feature plane is set to match the dimension of BTF data [Weinmann
et al. 2014]. The directional plane’s resolution follows Biplane [Fan et al.
2023]’s setting. Our decomposition method only takes 10 MB storage for
each 6D BTF, which originally needed hundreds of GBs without compres-
sion.

Height Width Channels | Storage

O 400 400 16 10 MB
FEH 9 20 8 12.5KB
@ 2 20 8 12.5KB
Network parameters 12.8 KB

Table 2. This table summarizes the performance of our method via a naive
implementation of matrix multiplication inside the shader. The Eval. Time
includes both neural texture fetching and MLP inference (once per pixel).

Resolution 1920 X 1080 2560 x 1440 3840 X 2160
(1 SPP) (1 SPP) (1 SPP)
Eval. Time 2.0 ms 4.8 ms 8.4 ms
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Fig. 2. We first make BTF seamlessly tileable using a simple but effec-
tive method. This is an example of making texture horizontally seamlessly
tileable, but in order to make BTF fully seamlessly tileable, it needs to be
performed twice — first horizontally and then vertically.

FABRIC09

Qurs w/ Hex-Tiling

Ours w/ repetitive tiling

Fig. 3. The example BTF may exhibit highly structured patterns. Applying
dynamic texture synthesis methods sometimes ruins the structured patterns.
This is an inherent limitation of dynamic texture synthesis. A better texture
synthesis strategy may refine it.
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