Supplementary: A Realistic Multi-scale Surface-based Cloth Appearance Model

Junqiu Zhu
University of California, Santa
Barbara
USA
junqiuzhu@ucsb.edu

Carlos Aliaga
Meta Reality Labs Research
USA
caliaga@meta.com

Christophe Hery
Meta Reality Labs Research
USA
chery@meta.com

Lukas Bode
Meta Reality Labs Research
Switzerland
lbode@meta.com

Adrian Jarabo
Meta Reality Labs Research
Spain
ajarabo@meta.com

Ling-Qi Yan
University of California, Santa
Barbara
USA
lingqi@cs.ucsb.edu

Matt Jen-Yuan Chiang
Meta Reality Labs Research
USA
mattchiang@meta.com

1 TERMS OF OUR BSDF MODEL

Our complete model is defined as:

$$
\begin{align*}
f(x, \mathbf{i}, \mathbf{o}) & =f^{\text {sheen }}(x, \mathbf{i}, \mathbf{o}) \tag{1}\\
& +T^{\text {sheen }} I(x)\left(f^{r, s}(x, \mathbf{i}, \mathbf{o})+f^{r, d}(x, \mathbf{i}, \mathbf{o})\right) \\
& +T^{\text {sheen }} I\left(x^{\prime}\right)\left(f^{t, s}(x, \mathbf{i}, \mathbf{o})+f^{t, d}(x, \mathbf{i}, \mathbf{o})\right) \\
& +T^{\text {sheen }}(1-I(x)) f^{\delta}(\mathbf{i}, \mathbf{o}) .
\end{align*}
$$

Surface Reflection. The specular reflection term $f^{r, s}$ is defined following the SpongeCake model, as

$$
\begin{equation*}
f^{r, s}(x, \mathbf{i}, \mathbf{o})=\frac{k^{r, s}(x) D(\mathbf{h}, x) G^{r}(\mathbf{i}, \mathbf{o}, x)}{4\left(\mathbf{i}, \mathbf{n}_{\mathbf{s}}\right)\left(\mathbf{o}, \mathbf{n}_{\mathbf{s}}\right)} . \tag{2}
\end{equation*}
$$

Where D is the SGGX distribution [Heitz et al. 2015] centered in the fiber tangent $\mathrm{t}(x)$ distribution, $k^{r, s}$ is the albedo, and G^{r} is the attenuation defined as

$$
\begin{equation*}
G^{r}(x, \mathbf{i}, \mathbf{o})=\frac{1-e^{-T(\Lambda(i, x)+\Lambda(\mathbf{o}, x))}}{\Lambda(\mathbf{i}, x)+\Lambda(\mathbf{o}, x)} \tag{3}
\end{equation*}
$$

with Λ the Smith shadowing/masking function.
The diffuse reflection term $f^{r, d}$, on the other hand, approximates multiple scattering inside yarns, and is defined as

$$
\begin{equation*}
f^{r, d}(x, \mathbf{i}, \mathbf{o})=\frac{k^{r, d}(x)}{\pi} \tag{4}
\end{equation*}
$$

with $k^{r, d}(x)$ the diffuse albedo, \mathbf{n}_{s} is the surface normal.
Surface Transmission. The specular tranmission term $f^{t, s}$ is defined following the SpongeCake model, as

$$
\begin{equation*}
f^{t, s}(x, \mathbf{i}, \mathbf{o})=\frac{k^{t, s}(x) D(\mathbf{h}, x) G^{t}(\mathbf{i}, \mathbf{o}, x)}{4\left(\mathbf{i}, \mathbf{n}_{\mathbf{s}}\right)\left(\mathbf{o}, \mathbf{n}_{\mathbf{s}}\right)} \tag{5}
\end{equation*}
$$

where G^{t} is the transmission attenuation defined as

$$
\begin{equation*}
G^{t}(\mathbf{i}, \mathbf{o}, x)=\frac{1-e^{-T(\Lambda(\mathbf{i}, x)+\Lambda(\mathbf{o}, x))}}{\Lambda(\mathbf{i}, x)+\Lambda(\mathbf{o}, x)} e^{T \Lambda(\mathbf{o}, x)} . \tag{6}
\end{equation*}
$$

The diffuse transmission $f^{t, d}$ term is derived analogously to its reflection counterpart as

$$
\begin{equation*}
f^{t, d}(\mathbf{i}, \mathbf{o}, x)=\frac{k^{t, d}(x)}{\pi} \tag{7}
\end{equation*}
$$

The delta transmission term f^{δ} is defined as:

$$
\begin{equation*}
f^{\delta}(x, \mathbf{i}, \mathbf{o})=\frac{\delta(\mathbf{i}+\mathbf{o})}{\left\langle\mathbf{i} \cdot \mathbf{n}_{\mathbf{s}}\right\rangle} \tag{8}
\end{equation*}
$$

2 MULTI-SCALE SHADING DETAILS

Here we provide detailed formula for the base and residual term for our specular reflection and diffuse reflection lobes. The rest of the lobes can be derived in a similar fashion. Note that for brevity we omit the directional dependence on each term.

2.1 Specular Reflection

The multi-scaled integration formula for specular reflection:

$$
\begin{align*}
F^{r, s} & =\int_{\mathcal{P}} T^{\text {sheen }} I(p) f^{r, s}(p) V(p)\left\langle\mathbf{n}_{\mathbf{s}} \cdot \mathbf{i}\right\rangle \mathrm{d} p \tag{9}\\
& =T^{\text {sheen }} \frac{G_{r}}{4\left\langle\mathbf{n}_{\mathbf{s}} \cdot \mathbf{o}\right\rangle} \bar{I} \cdot \bar{k} \int_{\mathcal{P}} D(p) V(p) \mathrm{d} p, \tag{10}
\end{align*}
$$

with $\bar{I}=\int_{\mathcal{P}} I(p) d p$ and $\bar{k}=\int_{\mathcal{P}} k^{r, s}(p) d p$. As stated in the paper, here we assume that albedo $k^{r, s}$ is smoothly varying and has little correlation with the other terms and can be integrated separately via mip-mapping. Inspired by the observation made by Zhu et al. [2022], we applied the same assumption to the gap indicator function I. This means that our focus is on understanding the statistical likelihood of light passing through the gap, rather than the specific location where it passes through. \bar{I} is calculated with similar SAT-based approach introduced in Sec. 4.3 of the paper for constant time lookup. The remainder of the term $\int_{\mathcal{P}} D(p) V(p) \mathrm{d} p$ is then solved with our multi-scale shading scheme. While we already introduced
the equations in the paper, for completeness, fitting into the multiscale scheme via Clustered Control Variates in Eq. 8 of the paper:

$$
\begin{align*}
\int_{\mathcal{P}} D(p) V(p) \mathrm{d} p & =\sum_{c \in 1, \ldots, N_{c}} \bar{v}_{c} F_{c}+\int_{\mathcal{P}_{c}} f \cdot\left(v-\bar{v}_{c}\right) \mathrm{d} p \tag{11}\\
& =\sum_{c \in 1, \ldots, N_{c}} \bar{v}_{c} \int_{\mathcal{P}} D(p) \mathrm{d} p+\int_{\mathcal{P}} D(p) \cdot\left(V(p)-\bar{v}_{c}\right) \mathrm{d} p \tag{12}
\end{align*}
$$

2.2 Diffuse Reflection

The multi-scaled integration formula for diffuse reflection:

$$
\begin{align*}
F^{r, d} & =\int_{\mathcal{P}} T^{\text {sheen }} I(p) f^{r, d}(p) V(p)\left\langle\mathbf{n}_{\mathbf{s}} \cdot \mathbf{i}\right\rangle \mathrm{d} p \tag{13}\\
& =T^{\text {sheen }} \frac{1}{\pi}\left\langle\mathbf{n}_{\mathbf{s}} \cdot \mathbf{i}\right\rangle \bar{k} \cdot \bar{I} \cdot \bar{V} \cdot \mathrm{~d} p . \tag{14}
\end{align*}
$$

Following the assumptions we made for the specular reflection, we assume albedo, gap indicator function and the visibility can all be integrated separately. Here $\bar{V}=\int_{\mathcal{P}} V(p) \mathrm{d} p$ is again calculated with the SAT-based approach. By leveraging the visibility clusters that we have, we construct an SAT table where each texel indicates which clusters it belongs to. This allows us to query for the histogram and compute a weighted sum of our total 8 clusters to obtain \bar{V}.

3 PSEUDOCODE FOR CORE ALGORITHMS

In this section, we provide the pseudocode for our core algorithm to enhance understanding and facilitate reimplementation.

3.1 Summed Area Table Creation and Query

```
Algorithm 1 Create SAT
Input: \(t m\) as tangent map, \(d r\) as directional resolution, \(D\) as the
    cloth bsdf
Output: summed area table sat
    function \(\operatorname{CDirSAT}(t m, d r, D)\)
        height \(\leftarrow\) tm.height
        width \(\leftarrow\) tm.width
        declare sat \([d r][d r][\) height \(][\) width \(]\)
        for \(i \leftarrow 0\) to \(d r-1\) do
            for \(j \leftarrow 0\) to \(d r-1\) do
                for \(p \leftarrow 0\) to height -1 do
                for \(q \leftarrow 0\) to width -1 do
                            \(q d \leftarrow \operatorname{Vectorize}(i, j)\)
                            \(p v \leftarrow D(\operatorname{tm}[p][q])\)
                            left \(\leftarrow \operatorname{sat}[i][j][p][q-1]\) if \(q>0\) else 0
                                above \(\leftarrow \operatorname{sat}[i][j][p-1][q]\) if \(p>0\) else 0
                                aboveLeft \(\leftarrow \operatorname{sat}[i][j][p-1][q-1]\) if \(p>\)
    0 and \(q>0\) else 0
                \(\operatorname{sat}[i][j][p][q] \leftarrow p v+\) left + above -
    aboveLeft
                end for
                end for
            end for
        end for
        return sat
    end function
```

```
Algorithm 2 Query SAT
Input: sat as precomputed summed area tables, \(h\) as half vector,
    \(x 1, y 1, x 2, y 2\) as the four corner of the query pixel footprint
Output: radiance integral over the query area areaSum
    function QAreasum(sat, \(h, x 1, y 1, x 2, y 2)^{\text {a }}\)
        \((d t, d p) \leftarrow\) Spherize \((h)\)
        total \(\leftarrow \operatorname{sat}[d t][d p][y 2][x 2]\)
        left \(\leftarrow \operatorname{sat}[d t][d p][y 2][x 1-1]\) if \(x 1>0\) else 0
        above \(\leftarrow \operatorname{sat}[d t][d p][y 1-1][x 2]\) if \(y 1>0\) else 0
        aboveLeft \(\leftarrow \operatorname{sat}[d t][d p][y 1-1][x 1-1]\) if \(x 1>0\) and
    \(y 1>0\) else 0
        areaSum \(\leftarrow\) total - left - above + aboveLeft
        return areaSum
    end function
```


3.2 Offset Precomputation

```
Algorithm 3 Precompute offset based on position map and viewing
angles
Input: posMap is the 2D map of 3D positions, }\mp@subsup{\omega}{o}{}\mathrm{ is the viewing
    direction, x,y are the current intersected positions on the sur-
    face corresponding to }\mp@subsup{u}{\mathrm{ ori}}{
Output: The offset length to the primary intersected position
    offset
    function OFFSET(posMap, \omegao, x,y)
        maxH}\leftarrow-
        for each pos in posMap do
            if posMap[pos] > maxH then
                maxH}\leftarrowposMap[pos
            end if
        end for
        0,\phi}\leftarrow\operatorname{Spherize(}(\mp@subsup{\omega}{0}{}
        offset}\leftarrow
        for t from 0 to texCount do
            currH}\leftarrowt\cdot\operatorname{cos}(0
            nextH}\leftarrow(t+1)\cdot\operatorname{cos}(0
            curr }X\leftarrowx+t\cdot\operatorname{sin}(0)\cdot\operatorname{cos}(\phi
            currY}\leftarrowy+t\cdot\operatorname{sin}(0)\cdot\operatorname{sin}(\phi
            nextX }\leftarrowx+(t+1)\cdot\operatorname{sin}(0)\cdot\operatorname{cos}(\phi
            nextY}\leftarrowy+(t+1)\cdot\operatorname{sin}(0)\cdot\operatorname{sin}(\phi
            if posMap[\lfloorcurrX\rfloor,\lfloorcurrY\rfloor] < maxH - currH and
    posMap[\lfloornextX],\lfloornextY\rfloor] > maxH - nextH then
                offset }\leftarrow
                break
            end if
        end for
        return offset
    end function
```


3.3 Clustered Control Variates

```
Algorithm 4 Clustered Control Variates
Input: \(\omega_{i}, \omega_{o}\), are the incident and outgoing direction, \(A\) is the
    pixel footprint covering area, \(D\) is the cloth bsdf, \(p\) is the sam-
    pling position
Output: corrected estimate of radiance over the pixel footprint
    Val
    function \(\operatorname{CCV}\left(\omega_{i}, \omega_{o}, A, D, p\right)\)
        \(C_{-} I D \leftarrow \operatorname{FindCluSter}(p)\)
        \(h \leftarrow\left(\omega_{i}+\omega_{o}\right) / 2\)
        \(x 1, y 1, x 2, y 2 \leftarrow \operatorname{QUERy}(A)\)
        BASE \(\leftarrow \operatorname{QuerySAT}(s a t, h, x 1, y 1, x 2, y 2)\)
        Residual \(\leftarrow D(h)\)
        \(\bar{v} \leftarrow C\) lusterVis \(\left(C_{-} I D\right)\)
        \(v \leftarrow \operatorname{VIS}(p)\)
        Val \(\leftarrow\) BASE \(\cdot \bar{v}+\) Residual \(\cdot(v-\bar{v})\)
        return Val
    end function
```


REFERENCES

Eric Heitz, Jonathan Dupuy, Cyril Crassin, and Carsten Dachsbacher. 2015. The SGGX microflake distribution. ACM Trans. Graph. 34, 4 (2015), 1-11.
Junqiu Zhu, Sizhe Zhao, Lu Wang, Yanning Xu, and Ling-Qi Yan. 2022. Practical level-of-detail aggregation of fur appearance. ACM Transactions on Graphics (TOG) 41, 4 (2022), 1-17.

