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This document is supplemental to the paper entitled Fractional
Gaussian Fields for Modeling and Rendering of Spatially-Correlated
Media. In the following sections, we provide derivations of some
important formulas and detailed discussions of some conclusions,
as well as additional results.

1 DERIVATION OF C(H , 1)
The scaling term C(H ,d) defined on Rd is given by

C(H ,d) =
2−2H−d Γ(−H )

πd/2Γ(H + d/2)
. (1)

When d = 1, we have

C(H , 1) = 2−2H−1Γ(−H )

π 1/2Γ(H + 1/2)

=
2−2H−1Γ(−H )Γ(H )

π 1/2Γ(H + 1/2)Γ(H )

= −
2−2H−1 π

H sin(πH )

π 1/221−2Hπ 1/2Γ(2H )

= −
1

4HΓ(2H ) sin(πH )

= −
1

2Γ(2H + 1) sin(πH )
.

(2)

The third equation is based on the Euler’s reflection formula

Γ(1 − H )Γ(H ) =
π

sin(πH )
(3)

and the duplication formula

Γ(H + 1/2)Γ(H ) = 21−2Hπ 1/2Γ(2H ). (4)
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Note that C(H , 1) satisfy

C(H + 1, 1) = C(H , 1)
(2H + 1)(2H + 2) . (5)

2 DERIVATION OF varp [σ̄t ]
Defining x′ = x + t ′ω and x′′ = x + t ′′ω, the variance of σ̄t (x) =
[
∫ t
0 σt (x + t ′ω)dt ′]/t is calculated as

var[σ̄t ] =
1
t2

∫ t

0

∫ t

0
cov(x′, x′′)dt ′dt ′′. (6)

Substituting the autocovariance function of 1D pink noise into
the above formula, we have

varp [σ̄t ] =
1
t2

∫ t

0

∫ t

0
C(H )Sw |t ′ − t ′′ |2H dt ′dt ′′

=
1
t2C(H )Sw

∫ t

0

∫ t

0
|t ′ − t ′′ |2H dt ′dt ′′

=
C(H )Sw

(2H + 1)(H + 1) t
2H

=
−Sw t

2H

2(2H + 1)(H + 1)Γ(2H + 1) sin(πH )
.

(7)

Using the fact that

2(2H + 1)(H + 1)Γ(2H + 1) = Γ(2H + 3) (8)

we can simplify the above expression to

varp [σ̄t ] =
−Sw t

2H

Γ(2H + 3) sin(πH )

= −2C(H + 1)Sw t2H .

(9)

3 DERIVATION OF varf [σ̄t ]
For 1D fBm, we have

varf [σ̄t (x)]

=
1
t2

∫ t

0

∫ t

0
C(H )(|x ′ − x ′′ |2H − |x ′ |2H − |x ′′ |2H )dt ′dt ′′

=
2C(H )

2H + 1Sw
{

t2H

2H + 2 −
(x + t)2H+1 − x2H+1

t

} (10)

in which x ′ = x + t ′ and x ′′ = x + t ′′. Note that this expression
depends on the spatial position x and has a never-ending growth
with respect to x as we claimed in the paper.
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To use fBm in practice, it is required to define fBm on a limited
scale from 0 to an outer-scale L. Now, performing spatial averaging
on the above expression, we get

varf [σ̄t ]

=
1
L

∫ L

0

2C(H )

2H + 1Sw
{

t2H

2H + 2 −
(x + t)2H+1 − x2H+1

t

}
= −

2C(H )

2H + 1Sw
(L + t)2H+2 − L2H+2 − t2H+2 − t2H+1L

(2H + 2)tL .

(11)

Using the expansion (L + t)2H+2 = L2H+2 + (2H + 2)tL2H+1 + ... +
t2H+2, we further arrive at

varf [σ̄t ] = −
2C(H )

2H + 1Sw
(2H + 2)tL2H+1 + ... − t2H+1L

(2H + 2)tL

= −
2C(H )

2H + 1Sw
(2H + 2)L2H+1 + ... − t2HL

(2H + 2)L .

(12)

If we assume L ≫ t , we will obtain

varf [σ̄t ] ≈ −
2C(H )

2H + 1SwL
2H (13)

considering that terms in “...” all contain t . This expression is con-
sistent with the one derived in the paper using the one-point scale-
independence property of fBm.

4 ONE-POINT SCALE-INDEPENDENCE OF FBM
In this section, we prove the one-point scale-independence prop-
erty of fBm [Davis and Marshak 2004]. In the context of random
extinction field σt of a fBm type, the property of one-point scale-
independence requires:

(1) The ensemble average of the line-averaged extinction is the
same as the ensemble average of the extinction itself, i.e.,

⟨σ̄t ⟩ = ⟨σt ⟩. (14)

(2) The variance of the line-averaged field and the variance of
the field itself differ at most by a small amount on the order
of a very small ratio, i.e.,

var[σ̄t ]
var[σt ]

− 1 = O
(( t
L

)2H )
. (15)

It is easy to prove the first requirement. For the second requirement,
we know that the variance of the line-averaged field is given by

varf [σ̄t ]

= −
2C(H )

2H + 1Sw
(L + t)2H+2 − L2H+2 − t2H+2 − t2H+1L

(2H + 2)tL
(16)

while the variance of the field itself is

varf [σt ] =
1
L

∫ L

0
−2C(H )Sw |x |2H dx

= −
2C(H )Sw
2H + 1 L2H .

(17)

Their ratio is
var[σ̄t ]
var[σt ]

=
(L + t)2H+2 − L2H+2 − t2H+2 − t2H+1L

(2H + 2)tL2H+1

=
1

2H + 2

{
L

t

[(
1 + t

L

)2H+2
− 1

]
−

( t
L

)2H+1
−

( t
L

)2H
}
.

(18)

When L ≫ t , tL → 0, we have

lim
t
L→0

L

t

[(
1 + t

L

)2H+2
− 1

]
= 2H + 2. (19)

Then,
var[σ̄t ]
var[σt ]

− 1 = −
1

2H + 2

[( t
L

)2H+1
+
( t
L

)2H ]
= O

(( t
L

)2H )
.

(20)

5 DERIVATION OF varkf [σ̄t ]
Based on the property of one-point scale-independence of k-fBm,
we can obtain varkf [σ̄t ] using the variance of the field σt itself. In
the case of k-fBm, the variance of σt is given by

varkf [σt ] =
1
L

∫ L

0
−2C(H )Sw

k−1∑
j=0

(−1)j
(
2H
j

)
x2H dx

= −
2C(H )

2H + 1Sw
k−1∑
j=0

(−1)j
(
2H
j

)
L2H

=
2C(H )Sw (−1)k

2H + 1

(
2H − 1
k − 1

)
L2H

(21)

using the fact that
k−1∑
j=0

(−1)j
(
2H
j

)
= (−1)k−1

(
2H − 1
k − 1

)
. (22)

This is also the expression of varkf [σ̄t ].

6 ADDITIONAL RESULTS WITH ANISOTROPIC PHASE
FUNCTIONS

In this section, we show the influence of phase functions on the
appearance of spatially-correlated media. In Fig. 1, we choose the
Henyey-Greenstein (HG) phase function parameterized by д (the
asymmetry parameter) and render a homogeneous medium under
different settings. Recall that negative values ofд correspond to back-
scattering while positive values correspond to forward-scattering.
As seen, the phase function has a remarkable effect on the appear-
ance when the H parameter is small. The influence weakens as H
increases.

7 DISCUSSION ON NEGATIVE CORRELATIONS
If we use the pink-noise type transmittance function in our model
and simply let H ∈ (−1,−1/2), we will get faster-than-exponential
attenuations as shown in Fig. 2. This is a typical characteristic of
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(a) H = −0.4 (b) H = −0.1 (c) H = 0.5 (d) H = 0.8 (e) H = 1.5 (f) H = 1.8

Fig. 1. Effects of spatial correlations in random media with anisotropic HG phase functions. The symmetry parameter д is set to −0.5 (top row) and 0.5
(bottom row), respectively.

Fig. 2. Negative correlations can be achieved empirically by set H ∈

(−1, −1/2) in the pink-noise type transmittance function.

the negatively-correlated media, implying that our model can also
support negative correlations to a certain extent. See the visual
comparison in Fig. 3. However, we should emphasis that this sim-
ple extension is not physically-based because when H < −1/2 we
no longer have a straightforward Wiener-Khinchin connection be-
tween the PSD and the autocovariance function [Davis and Mineev-
Weinstein 2011].

8 DISCUSSION ON WHITE NOISE
Our method converges to the classical transport with exponential
falloff when the FGF is white noise. For white noise (H = −1/2), the
variance of σ̄t reduces to

var[σ̄t ] = Sw t
−1 (23)

H = −0.9 Exp. H = −0.2

Fig. 3. Comparison between negative (left) and positive (right) correlations.

and the transmittance is given by

Tr(t) =
(
1 + Sw

σm

)− σ 2
m
Sw

t
. (24)

Rearranging the above equation, we get

Tr(t) = e
− ln

(
1+ Sw

σm

)
σ 2
m
Sw

t (25)

which means the transmittance is exponential in this case and the
effective extinction is given by ln

(
1 + Sw

σm

)
σ 2
m
Sw . Fig. 4 verifies that

our model converges to the classical exponential transmittance with
extinction ln

(
1 + Sw

σm

)
σ 2
m
Sw when H approaches −1/2.
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(a) Ours H = −0.49 (b) Exp.

Fig. 4. Our method with a Hurst parameter close to −1/2 (a) converges to
the classical transport with exponential falloff (b).

If we further assume that Sw is very small (much smaller than
σm ), the above expression of transmittance simplified to

Tr(t) = −eσm t (26)

based on the fact ln
(
1 + Sw

σm

)
≈

Sw
σm . This gives the classical trans-

mittance without micro-scale fluctuations.
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