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A APPENDIX
A.1 More experiments
We present more comparison results between our model and the
naïve RPNN, using the unbiased path tracer as the reference. All
tests were carried out on an Nvidia RTX 2080 GPU with a 10242

resolution (exceptions explicitly noted). The resolution of volumet-
ric data is 10243. “Cloud” refers to a cloud-shaped configuration,
and “Model” to one created from a specified geometry.

Table 1: Bias and performance test results. Note that the
neural network-based approaches are cost-consistent with
change of light direction, whereas the reference (MC esti-
mator) fluctuates in time. In the convergence test, we used
64SPP for both RPNN and MRPNN, and adaptive samples de-
pending on the noise for the reference. Note that rendering
takes much less time (≤ 0.5ms) than network inference.

Model Light Dir. Bias Frame Cost (ms) Convergence Boost
Ours RPNN Ours RPNN RPNN Ref.

Cloud1
Side 2.14e-2 2.49e-2 2687.5 ×
Front 1.97e-2 2.59e-2 5.0 2203.1 ×
Back 2.19e-2 3.22e-2

584.0 116.8 ×
2937.5 ×

Cloud2
Side 1.29e-2 1.46e-2 729.2 ×
Front 1.10e-2 0.87e-2 6.0 677.1 ×
Back 2.31e-2 1.86e-2

750.0 125.0 ×
390.6 ×

Cloud3
Side 1.96e-2 1.98e-2 2812.5 ×
Front 2.33e-2 1.63e-2 5.1 2625.0 ×
Back 3.69e-2 3.74e-2

558.5 109.5 ×
2343.8 ×

Cloud4
Side 1.65e-2 1.43e-2 1078.1 ×
Front 1.28e-2 1.07e-2 5.0 984.4 ×
Back 2.30e-2 4.95e-2

488.0 97.6 ×
1050.0 ×

Model1
Side 1.98e-2 3.44e-2 421.9 ×
Front 1.27e-2 0.94e-2 4.4 375.0 ×
Back 1.42e-2 1.85e-2

377.1 85.7 ×
350.0 ×

Model2
Side 1.54e-2 1.92e-2 386.4 ×
Front 1.01e-2 0.85e-2 5.5 340.9 ×
Back 1.82e-2 1.85e-2

650.1 118.2 ×
306.8 ×
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Table 2: Check experiment of the biases with different shad-
ing parameters.

RMSE ×102 Side Front Back
Model Parameter Ours RPNN Ours RPNN Ours RPNN

Cloud1
𝝇 = {1.0, 1.0, 1.0} 2.14 2.49 1.97 2.59 2.19 3.22
𝝇 = {0.96, 0.98, 1.0} 1.59 n/a 1.36 n/a 2.12 n/a
𝝇 = {0.8, 0.9, 1.0} 1.33 n/a 1.84 n/a 1.66 n/a

Cloud2
𝝇 = {1.0, 1.0, 1.0} 1.29 1.46 1.10 0.87 2.31 1.86
𝝇 = {0.96, 0.98, 1.0} 1.14 n/a 0.98 n/a 2.26 n/a
𝝇 = {0.8, 0.9, 1.0} 0.82 n/a 0.85 n/a 2.10 n/a

Model1
𝝇 = {1.0, 1.0, 1.0} 1.98 3.44 1.27 0.94 1.42 1.85
𝝇 = {0.96, 0.98, 1.0} 1.64 n/a 1.23 n/a 1.43 n/a
𝝇 = {0.8, 0.9, 1.0} 1.16 n/a 1.18 n/a 1.98 n/a

Cloud1
𝐺 = 0.857 2.14 2.49 1.97 2.59 2.19 2.59
𝐺 = 0.5 2.51 n/a 2.02 n/a 1.64 n/a
𝐺 = 0.0 2.40 n/a 1.67 n/a 2.12 n/a

Cloud2
𝐺 = 0.857 1.29 1.46 1.10 0.87 2.31 0.87
𝐺 = 0.5 1.25 n/a 1.91 n/a 2.45 n/a
𝐺 = 0.0 1.43 n/a 2.19 n/a 2.30 n/a

Model1
𝐺 = 0.857 1.98 3.44 1.27 0.94 1.42 0.94
𝐺 = 0.5 2.03 n/a 0.79 n/a 0.95 n/a
𝐺 = 0.0 2.27 n/a 0.88 n/a 1.25 n/a

A.2 Stencil pattern
As shown in Fig. 1, we divide our stencil pattern into two halves,
each focusing on high frequency (diffusion-) or low frequency
(shadow-aware) information. Now we introduce the details of our
frequency-sensitive stencil pattern.
The low-frequency part.The low-frequency part consists of spheri-
cal and intra-spherical distributed points. The spherical components
refer to points spaced on a spherical surface, and the intra-spherical
components denote points distributed uniformly inside a sphere,
both radii denoted by 𝑟𝑖 . The configuration of the low-frequency
part is listed in Tab. 3, which totals 160 points. Specifically, 𝑄1 con-
sists of 8 points where the first point lies in the center and the rest
on the sphere.

Table 3: The configuration of the low-frequency layers.

Layer (𝑖) Num. Points (𝑁𝑖 ) Mip-level (𝑚𝑖 ) Distribution

1 8 0 central + spherical
2 1

spherical3
16

2
4 3
5 4
6

32
5

intra-spherical7 6
8 7

The stencil points in each layer are obtained through an iterative
relaxation algorithm. Since we wish the points to be as uniform
as possible, the algorithm is based on maximizing the sum of the
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Figure 1: Decomposing RPNN’s stencil into high- and low-
frequency part. We use spherical distributions instead of
lattice grids in the low-frequency part.

Mutual Minimum Distance [Heinrich et al. 2008]:

𝑅 (𝑄𝑖 ) =
1
𝑁𝑖

∑︁
𝒑∈𝑄𝑖

min {∥𝒑 − 𝒒∥, 𝒒 ∈ 𝑄𝑖 \ {𝒑}} . (1)

Since the radii 𝑟𝑖 at the current stage is unknown, we first consider
auxiliary stencil layers �̂�𝑖 where all the spheres are of a unit radius.
Each of them is initialized by either a mapped Fibonacci lattice
[Purser 2008] or random uniform points depending on whether it
is a spherical or intra-spherical component.

Then, the radii of each layers is determined by:

𝑟𝑖 =
2𝑖−1

28 × 𝑅
(
�̂�𝑖

) _𝑖 , (2)

where 28 is the resolution of first mipmap, _𝑖 is an empirical param-
eter for controlling overlapping ratio of the stencil layers, and we
suggest _𝑖 = 1.0 − 0.08 × min (𝑖, 5). Finally, 𝑄𝑖 is obtained through
scaling each component of �̂�𝑖 by 𝑟𝑖 .
The high-frequency part. The high-frequency part of the stencil
points are trivially spaced along the directional light vector. Recall
that the mip-level is higher as a point moves away from the cen-
ter (i.e. the corresponding volume is larger), the non-overlapping
points form a cone, which is similar to the pattern in cone tracing
[Crassin et al. 2011]. It consists of 4 layers (indexed 9 to 12), each of
which contains 8 points, and therefore totally 32 points in the high-
frequency part. The mip-level of a layer𝑄𝑖 in this part is𝑚𝑖 = 𝑖 − 9
analogously.

A.3 Descriptor Sampling
We assume the density outside the volume boundary is 0. How-
ever, extra attention should be paid to the scaled-transmittance
fields, where hardware clamping could result in incorrect samples,
as illustrated in Fig . 3(a). We redirect the sample points outside
the volume to the intersection with the volume’s boundary in the
direction of light for the accurate values (Fig. 3(b)).

A.4 Cumulative Phase Function
We integrate the phase function within an angle in each direction
to get the cumulative phase function:

𝑝′ (𝜔, \, 𝑐) =
∫
Ω
𝑝 (𝜔,𝜙)𝑑𝜙 , Ω = {𝜙 | (\ · 𝜙) > cos (𝑐/2)} . (3)

Here, 𝑝 is the original phase function, and angle 𝑐 represents the
projection of the volume from the current stencil point onto the
solid angle at point u.

A.5 Architectures of MRPNN
Before going over the two stages of our network, we first present
the SE (Squeeze-and-Excitation) module and a feature block.
SE module. The SE module consists of a squeeze phase and an
excitation phase.

In the squeeze phase of SE module, we apply average and max
pooling to the input feature 𝑭𝑐

𝑖
∈ Σ𝑖 , 𝑐 ∈ {`, 𝑆, 𝑃}, and then use the

extracted information and the input parameters {𝐺,𝛾} to construct
an 8D vector 𝒆𝑖 :

𝑡𝑐𝑖 =
1
𝑁𝑖

𝑁𝑖∑︁
𝑗=1

𝑭𝑐𝑖, 𝑗 ,

𝑡𝑐𝑖 = max 𝑭𝑐𝑖, 𝑗 ,

𝒆𝑖 = {𝑡`
𝑖
, 𝑡𝑆𝑖 , 𝑡

𝑃
𝑖 , 𝑡

`

𝑖
, 𝑡𝑆𝑖 , 𝑡

𝑃
𝑖 ,𝐺,𝛾},

(4)

where 𝑗 ∈ Z[1,𝑁𝑖 ] , 𝑁𝑖 corresponds to the number of points in the
𝑖-th layer of stencil, and 𝑭𝑐

𝑖, 𝑗
is the 𝑗𝑡ℎ feature in 𝑭𝑐

𝑖
.

In the excitation phase of SE module, we compute the weights of
the input features 𝑭𝑐

𝑖
as :

𝒘𝑖 = 𝑆𝐸𝑒𝑥 (𝒆𝑖 ) = {𝑤`
𝑖
,𝑤𝑆𝑖 ,𝑤

𝑃
𝑖 } = 𝜍 (𝑽 𝑖,2𝛿 (𝑽 𝑖,1𝒆𝑖 )), (5)

where 𝑽 𝑖,1, 𝑽 𝑖,2 are trainable weights, 𝛿 (𝑥) = max (𝑥, 0) denotes
the ReLU activation function, 𝜍 (𝑥) = 1

1+𝑒−𝑥 denotes the Sigmoid
activation function, and 𝑆𝐸𝑒𝑥 denotes the excitation phase of the
SE module.

Then our full SE module structure scales 𝑭𝑐
𝑖
as :

𝑤𝑐𝑖 ∈ 𝑆𝐸𝑒𝑥 (𝒆𝑖 ),

�̂�
𝑐
𝑖 = 𝑆𝐸 (𝑭𝑐𝑖 ) = 𝑤

𝑐
𝑖 · 𝑭

𝑐
𝑖 ,

(6)

where 𝑆𝐸 denotes the full Squeeze-and-Excitation module.
Feature block. In the feature block, the input will be processed by
SE module first. After that, we apply a fully connected layer and
activation function to the scaled features to compute the output of
feature block 𝐵𝑙𝑜𝑐𝑘𝐹 :

𝒐𝑐𝑖 = 𝐵𝑙𝑜𝑐𝑘𝐹 (𝑭
𝑐
𝑖 , 𝒐

𝑐
𝑖−1) = 𝛿

(
𝐹𝐶

𝑁𝑖
𝑁𝑖

(
𝒐𝑐𝑖−1 + 𝑆𝐸 (𝑭

𝑐
𝑖 )
) )

+ 𝑭𝑐𝑖 , (7)

where 𝒐𝑐
𝑖−1 is the output of the former feature block 1 2 , 𝐹𝐶𝑖𝑛𝑜𝑢𝑡 (𝑋 ) =

𝑾𝑋 +𝒃 denotes the fully connected layer,𝑾 , 𝒃 are trainable weights
and biases in 𝐹𝐶 , and {𝑖𝑛, 𝑜𝑢𝑡} are the numbers of input and output
channels in 𝐹𝐶 .
Feature stage. As shown in Fig. 2, in feature stage, low-frequency
sub-network uses𝑀 = 8 feature blocks to fuse the low-frequency
part of stencil, and high-frequency sub-network uses 𝐾 −𝑀 = 4
feature blocks to fuse the high-frequency part.

Then, we apply a single fully connected layer as the last layer
of low- and high-frequency sub-network to output the final latent

1When 𝑖 = 0 or 𝑖 = 𝑀 + 1, we let 𝒐𝑐
𝑖−1 = 0.

2When 𝑁𝑖−1 ≠ 𝑁𝑖 , we use concatenation instead of addition, and Eq. 7 turns into
𝒐𝑐
𝑖
= 𝛿

(
𝐹𝐶 (𝒐𝑐

𝑖−1 + 𝑆𝐸 (𝑭𝑐𝑖 ) )
)
∥𝑭𝑐𝑖 .
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Figure 2: An overview of the full network structure. FC denotes a fully-connected layer.
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Figure 3: The sampled transmittance values are incorrect
with hardware clamping, which is solved by projecting them
onto the volume’s boundary.

vectors:

𝒉𝑐1 = 𝛿

(
𝐹𝐶

𝑁𝑀
𝑁𝑀

(𝒐𝑐𝑀 )
)
, (8)

𝒉𝑐2 = 𝛿

(
𝐹𝐶

𝑁𝐾
𝑁𝐾

(𝒐𝑐𝐾 )
)
, (9)

where 𝒐𝑐
𝑀
, 𝒐𝑐
𝐾
are the output of the final feature block of low- and

high-frequency sub-network, 𝒉𝑐1 is a 32D low-frequency vector, and
𝒉𝑐2 is an 8D high-frequency vector.
Albedo stage. In the albedo stage, we input 𝒉𝑐1,𝒉

𝑐
2, {𝐺, 𝜍𝑥 , 𝛾} into

three sub-networks to fuse the albedo features for each spectral
channel 𝑥 ∈ {𝑟, 𝑔, 𝑏} .

First, we introduce albedo 𝝇𝑥,𝑥∈{𝑟,𝑔,𝑏} to input parameters {𝐺,𝛾}
as 𝒉𝜍𝑥 = {𝐺, 𝜍𝑥 , 𝛾}, then get an 8D albedo-dependent latent vector
as:

�̂�
𝜍𝑥

= 𝛿

(
𝐹𝐶3

8 (𝒉
𝜍𝑥 )

)
. (10)

Then, a SE Module is performed for fusing 𝒉𝑐1,𝒉
𝑐
2 with the albedo

of each spectral channel. In the squeeze phase, we first construct
a 75D vector for each spectral channel 𝑥 by concatenating the
intermediate value produced by pooling:

�̂�𝜍𝑥 = {𝑡`
𝑖
, 𝑡𝑆𝑖 , 𝑡

𝑃
𝑖 , 𝑡

`

𝑖
, 𝑡𝑆𝑖 , 𝑡

𝑃
𝑖 , }

𝐾
𝑖=1 ∪ {𝜍𝑥 ,𝐺,𝛾}, (11)

where 𝜍𝑥 is the albedo of the spectral channel 𝑥 .
The latent vectors 𝒉𝑐1,𝒉

𝑐
2 from feature stage are then scaled by:

�̂�𝑐𝑥
𝑓

∈ {�̂�`𝑥1 , �̂�𝑆𝑥1 , �̂�𝑃𝑥1 , �̂�
`𝑥

2 , �̂�𝑆𝑥2 , �̂�𝑃𝑥2 } = 𝑆𝐸𝑒𝑥 (�̂�𝜍𝑥 ),

�̂�
𝑐𝑥
𝑓 = �̂�𝑐𝑥

𝑓
· 𝒉𝑐
𝑓
,

(12)

where 𝑐 ∈ {`, 𝑆, 𝑃} are the feature channels, 𝑓 ∈ {1, 2} are the low-
and high- features, and 𝑆𝐸𝑒𝑥 denotes the excitation phase of SE
module.

We then concatenate the previous vector �̂�𝜍𝑥 with the scaled fea-
ture �̂�𝑐𝑥𝑓 through �̃�

𝑥
= {�̂�𝑐𝑥𝑓 }𝑐∈{`,𝑆,𝑃 },𝑓 ∈{1,2} ∪ {�̂�𝜍𝑥 } for network

inference, and �̃�𝑥 is a 128D vector.
Next, we use �̃�𝑥 to process the final output. To accelerate the

process, we first use four fully connected layers with ReLU ac-
tivation function to perform a dimensional reduction, the input
channel of 𝑖𝑡ℎ fully connected layer 3 is 128/2𝑖−2, the output chan-
nel is 128/2𝑖−1 ,and a 16-D vector �̃�𝑥 is the resulting of dimensional
reduction.

Finally, �̃�𝑥 is sent into𝐻 = 12 fully connected layerswith residual
connection:

�̂�𝑥2𝑘+1 = 𝛿

(
𝐹𝐶16

16 (�̂�
𝑥
2𝑘 )

)
,

�̂�𝑥2𝑘+2 = 𝛿

(
𝐹𝐶16

16 (�̂�
𝑥
2𝑘+1)

)
+ �̂�𝑥2𝑘+1, (13)

3Except for 𝑖 = 1, where input channel is 128 and output channel is 128.
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where �̂�𝑥0 = �̃�𝑥 is the input, 𝑘 ∈ {0, 1, ..., 𝐻/2 − 1}, and those fully
connected layers 4 output a scalar 𝑆∗𝑥 .

The inference executes for each 𝝇𝑥,𝑥∈{𝑟,𝑔,𝑏} to compose the in-
scattering radiance {𝑆∗𝑟 , 𝑆∗𝑔 , 𝑆∗𝑏 }.

A.6 Architectures of MRPNN-Narrow and
MRPNN-Wide

The narrow variation. We remove the SE Module (i.e., erasing all
connections between features throughout the feature stage), such
that its subnetwork structure in the feature stage is:

𝒐𝑐𝑖 = 𝛿
(
𝐹𝐶

𝑁𝑖
𝑁𝑖

(
𝒐𝑐𝑖−1 + 𝑭𝑐𝑖

) )
+ 𝑭𝑐𝑖 , (14)

and �̃�
𝑥 is established by concatenating the results in the albedo

stage:

�̃�
𝑥
= {𝒉`1 ,𝒉

𝑆
1 ,𝒉

𝑃
1 ,𝒉

`

2 ,𝒉
𝑆
2 ,𝒉

𝑃
2 , �̂�

𝜍𝑥 }. (15)

The wide variation. To fuse the features, the wide variation applies
fully-connected layers on the concatenation of the features:

𝑭 𝑖 = {𝑭 `
𝑖,1, ..., 𝑭

`

𝑖,𝑁𝑖
, 𝑭𝑆𝑖,1, ..., 𝑭

𝑆
𝑖,𝑁𝑖

, 𝑭𝑃𝑖,1, ..., 𝑭
𝑃
𝑖,𝑁𝑖

}, (16)

where the sub-network structure is:
𝒐𝑖 = 𝛿

(
𝐹𝐶

3𝑁𝑖
3𝑁𝑖 (𝒐𝑖−1 + 𝑭 𝑖 )

)
+ 𝑭 𝑖 . (17)

The last layer that outputs the latent vectors in the low-frequency
sub-network is:

𝒉1 = 𝛿

(
𝐹𝐶96

96 (𝒐𝑀 )
)
, (18)

and that in the high-frequency sub-network is:

𝒉2 = 𝛿

(
𝐹𝐶24

24 (𝒐𝐾 )
)
, (19)

respectively.
Finally, in the albedo stage, the concatenated vector �̃�𝑥 is:

�̃�
𝑥
= {𝒉1,𝒉2, �̂�

𝜍𝑥 }. (20)
Note that the scale of the entire network is considerably larger
than our design. This accounts for the slower convergence and
performance.
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