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1 DATASET AND SCENE CONFIGURATION
Our dataset is generated from a modified Unreal Engine 4.25. We
choose different types of scenes to test our system. BUNKER and
FOREST are third-person games, which are mainly used for test
the ability in extrapolating with correct shading and shadow move-
ment as well as disoccluded area. Furthermore, BUNKER contains
more metallic materials to demonstrate glossy reflection effects,
while FOREST has complex geometries of leaves and trees. SE-
QUENCER and INFILTRATOR are first-person games and we use
them to demonstrate the full ability of our ExtraSS framework. The
resolutions of different scenes are varing in order to show the qual-
ity and performance under different settings. Table 1 shows the
number of frames in each scene for training and the settings of
input and target resolutions. We select two 120-frames clips from
each scene for testing. The test sequences are not chosen from
training sequences and don’t overlap with training sequences.

Our dataset contains high resolution alias-free rendered images
using SSAA as the ground truth and TAA as additional reference,
and low resolution aliased rendered images with corresponding
G-buffers as the input. Specifically, we render our data several times
with the same sequencer in Unreal Engine 4.25 through following
steps:

• The cinematic sequence in Unreal Engine can generate the
exact same images except for the jittering offset. Thus, we
use 64 Halton jitter sequence [Berblinger and Schlier 1991]
to render the images in high resolution 64 times and average
them in order to generate aliasing-free images.

• We use multiple rendering passes to generate the low reso-
lution rendered images along with G-Buffers together. The
low resolution images are rendered with 128 Halton jitter
patterns.

The captured rendered images are not tone-mapped so we use
𝜇-Law [Kalantari et al. 2017] to transfer linear HDR frames and
inverse tone-map the output predictions back to the linear HDR
space with 𝜇 equal to 8. All losses are calculated before the inverse
tone-mapping. For G-buffer guided warping and FRNet, all rendered
images are first demodulated and then modulated back before send-
ing to the ExtraSS network. We follow the same demodulation
method as ExtraNet [Guo et al. 2021]:

𝑑 = 𝑖/(𝛼 + 𝑠 × 0.08 × (1 −𝑚))

and the modulation is

𝑖 = 𝑑 ∗ (𝛼 + 𝑠 × 0.08 × (1 −𝑚))

where 𝑖 is the rendered image, 𝛼 is the basecolor,𝑚 is the metallic,
𝑠 is the specular and 𝑑 is the demodulated image. The tonemapping
should be applied after the demodulation and inverse tonemapping
should be applied before the modulation.

Table 1: Data configuration of each scene in our dataset. BK
refers to BUNKER, FR refers to FOREST, IF refers to INFIL-
TRATOR, and SQ refers to SEQUENCER.

BK FR IF SQ
Training Frames 4000 6000 6000 3500

Input 540p 540p 720p 1080p
Output 1080p 1080p 1440p 2160p

Table 2: We compare with different spatial super sampling
quality in SSIM of TAAU, NSR, TAA with our methods. Ours-
SS refers to spatial super sampling only results. Ours-ESS
refers to extrapolated and super sampled high resolution
results. Note that TAA is an additional reference instead of
a spatial SS method, and our pipeline only takes half input
frames comparing to baselines.

Scenes TAAU NSR Ours-SS Ours-ESS TAA
BUNKER 0.872 0.912 0.895 0.888 0.923
FOREST 0.637 0.652 0.642 0.640 0.731

SEQUENCER 0.988 0.988 0.986 0.986 0.994
INFILTRATOR 0.963 0.969 0.967 0.966 0.976

Table 3: SSIM values on different test scenes. Ours-W refers
the results with only G-buffer guided warping. Ours-E refers
to Ours-W + shading refinement module. All method runs in
the same input and output resolution without anti-aliasing.

BK FR SQ IF Mean
ExtraNet 0.956 0.777 0.979 0.968 0.920
IFRNet 0.843 0.555 0.977 0.943 0.830
Ours-W 0.963 0.803 0.989 0.982 0.934
Ours-E 0.968 0.817 0.990 0.982 0.939

Table 4: SSIM values on different test scenes. We compare
with ExtraNet and IFRNet in the same output resolution. We
apply temporal anti-aliasing to ExtraNet and IFRNet so all
outputs are anti-aliased. Note that our input resolution is 2X
smaller than other baselines.

BK FR SQ IF Mean
ExtraNet 0.910 0.778 0.992 0.979 0.915
IFRNet 0.802 0.703 0.969 0.990 0.866

Ours-ESS 0.888 0.641 0.986 0.966 0.870
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Table 5: Comparison with NSR + ExtraNet. Note that since
we are testing on consecutive sequences, it also has spatial
super sampling only frames and joint spatial super sampling
with extrapolation for NSR + ExtraNet baseline.

NSR + ExtraNet Ours
Scenes SS ESS SS ESS

PS
N
R

BUNKER 28.08 27.27 28.25 27.81
FOREST 18.77 18.68 19.89 19.86

SEQUENCER 37.24 36.59 37.75 37.57
INFILTRATOR 29.97 29.55 30.04 29.91

SS
IM

BUNKER 0.905 0.893 0.895 0.888
FOREST 0.644 0.632 0.642 0.640

SEQUENCER 0.985 0.983 0.986 0.986
INFILTRATOR 0.964 0.961 0.967 0.966

ExtraNet+NSR Ours GT

Figure 1: Comparison with ExtraNet + NSR. ExtraNet+NSR
has worse shadow and ghosting artifacts.

2 ADDITIONAL METRICS
We report the results of our pipeline comparing to the baselines
in an additional metric structural similarity index measure (SSIM).
Table 2 shows the comparison with different spatial super sam-
pling baselines. Note that although NSR achieves the best result,
it requires more computation resource and is less temporal stable
(please refer to the supplementary video).

Table 3 shows the SSIM results of the frame generation baselines
compared with our modules. Table 4 shows the SSIM results of
frame generation baselines compared with our full pipeline, which
means we only require half resolution as inputs than the baselines.
Although our SSIM is slightly worse than baselines, we show less
artifacts in visual comparison. Please refer to the supplementary
video.

3 COMPARISON AGAINST SEQUENTIALLY
APPLYING EXTRANET AND NSR

We compare with naively combining a spatial super sampling
method (NSR [Xiao et al. 2020]) and a temporal super sampling

Table 6: Runtime (milliseconds) breakdown of our frame-
work and rendering time. The resolution refers to the output
resolution of our whole framework. The inference time of
our framework is independent to the scene complexity. Since
the G-buffer generation time and rendering time vary from
scene to scene, we report the corresponding time in BUNKER
as an example.

1080p 1440p 2160p
Low-res Shading 10.3 17.2 33.2

G-Buffers Generation 0.28 0.31 0.55
G-buffer guided Warping 0.4 0.7 1.7

Shading Refinement 1.2 1.7 2.9
ExtraSS Network 2.5 4.1 9.1
Ours-ExtraSS total 4.38 6.81 14.25

Ours-SS total 12.8 21.3 42.3
High-res Shading 33.2 60.5 136.5

Table 7: Runtime (milliseconds) of NSR inference time.

1080p 1440p 2160p
Low-res Shading 10.3 17.2 33.2

NSR 17.1 30.1 67.6
NSR total 27.4 37.3 100.8

Ours-SS total 12.8 21.3 42.3
Ours-ExtraSS total 4.38 6.81 14.25

method (ExtraNet [Guo et al. 2021]). Note that there is no trivial
way to sequentially apply NSR first and then apply ExtraNet since
NSR doesn’t upscale the G-buffers and the upscaled rendered im-
ages are anti-aliased while ExtraNet requires aliased inputs. Thus,
we sequentially apply ExtraNet first and then apply NSR as our
baseline.

Table 5 shows the quantitative results of our method and the
baseline, and Figure 1 shows the visual comparison. Since the frames
generated from ExtraNet are not reliable and there is no special
design for temporal coherence. Our method has less artifacts in
disoccluded areas (metal string on the top) and shadows and more
temporal stable (thin wires on the ground). Besides, NSR+ExtraNet
is slower than ours (Ours (13.7ms) and NSR+ExtraNet (79.6ms) for
1080p’s inputs). Please refer to the supplementary video for more
details.

4 NETWORK STRUCTURE
We report the details of our ExtraSS network and FRNet in the
Figure 2 and Figure 3.

5 PERFORMANCE
The runtime breakdown of our framework under different output
resolutions is reported in Table 6. Note that Ours-SS is slower than
Ours-ExtraSS because the time is the total time of generating one
frame, where SS needs low resolution rendered frames while ESS
doesn’t.
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Figure 2: ExtraSS Net structure. S2D andD2Smeans Space-to-Depth [Redmon and Farhadi 2017] and Depth-to-Space respectively.
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Figure 3: FRNet.

We also report the performance of NSR [Xiao et al. 2020] in table
7 under different output resolution for 2X spaital super sampling,
which is significantly slower than our method.

6 ABLATION STUDIES
In this part we evaluate our designs on providing initialization for
joint temporal and spatial super sampling.

G-buffer guided warping. Comparing to the previous methods,
we propose a new warping method to fill the disoccluded areas and
out-of-screen areas with sharper warped results. In the previous
sections, the effectiveness of G-buffer guided warping method has
already been demonstrated in the main paper with the compari-
son of frame generation methods and prior warping methods. We
further evaluate the importance of our G-buffer guided warping in
our full pipeline. Table 8 shows the quantitative results of replacing
G-buffer guided warping with regular warping.

Flow based shading refinement. Flow based shading refinement
is one key design to fix the incorrect shadings after G-buffer guided
warping. IFRNet [Kong et al. 2022] already shows that directly
predicting optical flows for all motions will generate blurry results
in geometries and also missing some details. Thus, we only evaluate
other alternatives of refine shading after G-buffer guided warping.

Table 8: Ablation study of our G-buffer guided warping. Ours
refers to our full pipeline and Ours (Regular Warping) refers
to replacing G-buffer guided warping with regular warping.

Scenes Ours (Regular Warping) Ours

PS
N
R

BUNKER 25.84 27.81
FOREST 19.27 19.86

SEQUENCER 35.21 37.57
INFILTRATOR 28.15 29.91

SS
IM

BUNKER 0.847 0.888
FOREST 0.591 0.640

SEQUENCER 0.975 0.986
INFILTRATOR 0.949 0.966

Figure 4 shows the final results of using flow based neural network
to refine the shading and directly using Unet to refine the shading.
Our flow based shading refinement generates sharper shadows,
which leads to better temporal consistency.

Temporal Loss. Temporal Loss L𝑡 is used for increasing temporal
coherence of our pipeline between SS frames and ESS frames. It
is also useful to improve the quality of SS and ESS frames since
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Figure 4: A comparison of our flow model and Unet. Our
method generates sharper shadows.

Table 9: Ablation study of temporal loss in terms of PSNR
and SSIM.

w/o Temporal Loss w Temporal Loss
Scenes Ours-SS Ours-ESS Ours-SS Ours-ESS

PS
N
R

BUNKER 27.81 27.30 28.25 27.81
FOREST 19.82 19.76 19.89 19.86

SEQUENCER 37.44 37.28 37.75 37.57
INFILTRATOR 29.99 29.89 30.04 29.91

SS
IM

BUNKER 0.885 0.878 0.895 0.888
FOREST 0.635 0.631 0.642 0.640

SEQUENCER 0.964 0.964 0.986 0.986
INFILTRATOR 0.984 0.984 0.967 0.966

Table 10: The memory usage (Gigabytes) of neural networks
for our method and baseline methods under different output
resolution.

1080p 1440p 2160p
ExtraNet 5.26 9.28 20.83
IFRNet 4.60 7.83 18.24
NSR 9.88 17.56 39.44
Ours 1.07 1.90 4.20

it explicitly constrains the high level features similarity between
them. Table 9 shows the results of removing temporal loss.

7 MEMORY
We report memory usage of networks for our pipeline and baselines
in Table 10 under different resolutions.

8 MORE DISCUSSIONS
Distributing samples over spatial or temporal side. With the same

rendering computation cost, the rendering samples could be dis-
tributed into either more spatial side (higher resolution but lower
frame rates) or more temporal side (lower resolution but higher
frame rates). Since ours is the first one to combine spatial/temporal
super sampling, to the best of our knowledge, there is no experi-
ment/theory of what is the optimal way to distribute samples over
spatial and temporal side. However, under a given target resolution

and frame rate, we show better or comparable quality than dis-
tributing all over temporal side (with spatial super sampling only
methods and 2X more samples) or distributing all over spatial side
(with temporal super sampling only methods and 4X more samples).
Therefore, a better strategy of distributing rendering sample may
lead to a better quality and further boost our method in the future.

Generalization ability. We currently select 4 representative scenes
with glossymaterials (Bunker), complex geometries (Forest), a large-
scale game-like scene (Infiltrator) and a close-up view of a moving
character (Sequencer), which cover wide ranges of data character-
istics. However, to demonstrate generalization ability, it requires
to collect a large scale dataset with more data characteristics and
rendering styles like DLSS and XeSS. In the future, it will be inter-
esting to train our models over more scenes to make it be a general
model.
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