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Abstract

Physically-based Modeling and Rendering of Complex Visual Appearance

by

Lingqi Yan

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Ravi Ramamoorthi, Co-chair

Professor Yi-Ren Ng, Co-chair

In this dissertation, we focus on physically-based rendering that synthesizes realistic
images from 3D models and scenes. State of the art rendering still struggles with two fun-
damental challenges — realism and speed. The rendered results look artificial and overly
perfect, and the rendering process is slow for both o✏ine and interactive applications. More-
over, better realism and faster speed are inherently contradictory, because the computational
complexity increases substantially when trying to render higher fidelity detailed results. We
put emphasis on both ends of the realism-speed spectrum in rendering by introducing the
concept of detailed rendering and appearance modeling to accurately represent and repro-
duce the rich visual world from micron level to overall appearance, and combining sparse
ray sampling with fast high dimensional filtering to achieve real-time performance.

To make rendering more realistic, our first claim is that, we need details. However,
rendering a complex surface with lots of details is far from easy. Traditionally, the surface
microstructure is approximated using a smooth normal distribution, but this ignores details
such as glinty e↵ects, easily observable in the real world. While modeling the actual surface
microstructure is possible, the resulting rendering problem is prohibitively expensive using
Monte Carlo point sampling: the energy is concentrated in tiny highlights that take up a
minuscule fraction of the pixel. We instead compute the accurate solution that Monte Carlo
would eventually converge to, using a completely di↵erent deterministic approach (Chap-
ter 3). Our method considers the highly complicated distribution of normals on a surface
patch seen through a single pixel. We show di↵erent methods to evaluate this e�ciently
with closed-form solutions, assuming a surface patch is made up of either 2D planar tri-
angles [147] or 4D Gaussian elements [145], respectively. We also show how to extend our
method to accurately handle wave optics [148]. Our results show complicated, temporally
varying glints from materials such as bumpy plastics, brushed and scratched metals, metallic
paint and ocean waves.

In the above, although rendering details imposes many challenges, we assumed we know
how the surface reflects light. However, there are a lot of natural materials in the real world
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where we are not sure exactly how they interact with the light. To render these materials
realistically, we need accurate appearance/reflectance models derived from microstructures
to define their optical behavior. We demonstrate this by introducing a reflectance model for
animal fur in Chapter 4. Rendering photo-realistic animal fur is a long-standing problem in
computer graphics. Considerable e↵ort has been made on modeling the geometric complexity
of human hair, but the appearance/reflectance of fur fibers is not well understood. Based
on anatomical literature and measurements, we develop a double cylinder model for the
reflectance of a single fur fiber, where an outer cylinder represents the biological observation
of a cortex covered by multiple cuticle layers, and an inner cylinder represents the scattering
interior structure known as the medulla, often absent from human hair fibers. We validate
our physical model with measurements on real fur fibers, and introduce the first database
in computer graphics of reflectance profiles for nine fur samples. For e�cient rendering, we
develop a method to precompute 2D medulla scattering profiles and analytically approximate
our reflectance model with factored lobes [144]. We then develop a number of optimizations
that improve e�ciency and generality without compromising accuracy [141]. And we present
the first global illumination model, based on dipole di↵usion for subsurface scattering, to
approximate light bouncing between individual fur fibers by modeling complex light and fur
interactions as subsurface scattering, and using a simple neural network to convert from fur
fibers’ properties to scattering parameters [142].

However, even without these details to improve rendered realism, current rendering still
su↵ers from low performance with state of the art Monte Carlo ray tracing. Physically
correct, noise-free images can require hundreds or thousands of ray samples per pixel, and
take a long time to compute. Recent approaches have exploited sparse sampling and filtering;
the filtering is either fast (axis-aligned), but requires more input samples, or needs fewer input
samples but is very slow (sheared). We present a new approach for fast sheared filtering on
the GPU in Chapter 5 [143]. Our algorithm factors the 4D sheared filter into four 1D
filters. We derive complexity bounds for our method, showing that the per-pixel complexity
is reduced from O(n2l2) to O(nl), where n is the linear filter width (filter size is O(n2)) and
l is the (usually very small) number of samples for each dimension of the light or lens per
pixel (spp is l2). We thus reduce sheared filtering overhead dramatically. We demonstrate
rendering of depth of field, soft shadows and di↵use global illumination at interactive speeds.
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Chapter 1

Introduction

1.1 Overview

Rendering is a fundamental problem in Computer Graphics. It is the process that synthesizes
realistic images from 3D models and scenes. Along with other areas in Computer Graphics,
including animation, simulation, display and cameras, Rendering is being pervasively used
in modern technologies, providing a variety of visual content to the world.

Recently, photorealistic Rendering in Computer Graphics is undergoing a renaissance. In
the movie industry, it has already become a general standard to use physically based path
tracing to achieve cinematic realism o✏ine. For interactive applications such as video games,
breathtaking graphics have also become one of the most crucial factors to their success. And
rendering is applied everywhere in people’s everyday lives. Most of the commercials show
rendered products instead of real objects, such as cars, jewelleries and electronics. Virtual
stores allow people to explore realistic cosmetics, bags, furniture, and clothes under di↵erent
lighting conditions. With the development of rendering technologies, we are stepping into
an age where there’s nothing real behind the screen.

With the growing popularity of Rendering, its extensive application also brings challenges.
For example, in the movie industry, people can still easily judge whether a character is
rendered or real. The cost of production rendering is still prohibitively high. And GPUs
still cannot be used for production rendering. In Virtual Reality (VR) and Augmented
Reality (AR) for mobile devices, high quality and high performance stereo rendering is still
di�cult. And in video games, real-time ray tracing is still not applicable, even with the
rapid development of graphics hardware. Di�cult as these problems are, they also lead to
interesting research topics and opportunities.

We categorize the fundamental challenges of state of the art rendering into two types —
realism and speed. Currently, rendered images often look artificial and overly perfect, and
rendering is slow for both o✏ine and interactive applications. Ultimately, we intend to figure
out what makes the world look realistic, and present people a virtual world in real time that
is indistinguishable from the one we are living in.



CHAPTER 1. INTRODUCTION 2

Figure 1.1: Detailed rendering from complex surfaces. Note how the glints (scratches and tiny
highlights) dramatically improve realism. [55, 145]

In this dissertation, we aim at mathematically modeling and rendering visual appearance
at real world complexity, while exploring theory and practical algorithms to make it real-time.
This work involves 7 ACM SIGGRAPH, SIGGRAPH Asia, Transactions on Graphics papers
on various topics, including detailed rendering [145, 147, 148], appearance modeling [141,
142, 144] and sampling and reconstruction theory [143].

1.2 Detailed Rendering from Complex Surfaces

“For every complex problem, there is an answer that is clear, simple, and wrong.1” This
statement is suitable for most of the current surface models. Traditional rendering techniques
represent materials using smooth BRDFs (Bidirectional Reflectance Distribution Functions,
as will be introduced in Chapter 2) describing how light is reflected after interacting with
these materials. Since they use smooth BRDFs, these techniques generate perfectly smooth
appearances. However, the real world is imperfect. Bumps, flakes and dents can be seen
everywhere. These details introduce variance and are key to the realism of the appearance
(Fig. 1.1).

The smooth BRDF concept has been standard for nearly 4 decades, prior to our work
which introduces a more statistical discrete version of the BRDF, and enables rendering of
detailed glints from complex surfaces, such as metallic flakes and scratches. These details are
either procedurally generated as random processes, or defined using extremely high resolution
normal maps specifying the surface normals or facing directions at di↵erent places. So, the
surfaces are essentially represented using tiny microfacets explicitly, as will be introduced in
Chapter 2.

However, existing microfacet models [123] use statistics to represent the distribution of
surface normals (NDFs). So the NDF is considered as a smooth probability distribution.
The smooth NDF results in smooth appearance, eliminating all the details. We compute the

1H. L. Mencken
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Figure 1.2: Physically-based appearance modeling of animal fur [144, 141, 142].

actual NDF covered by each pixel, namely P-NDF, and introduce a level of detail that was
never dealt with in Computer Graphics previously.

To calculate the P-NDFs, we propose two di↵erent methods. In Chapter 3, we will first
introduce our solution in 2014 [147], which discretizes the normal map into axis-aligned
triangles, and analytically integrates each triangle to compute its contribution to any given
direction in a P-NDF. Then, we will introduce our 2016 solution [145] which approximates
the normal map using Gaussian elements, resulting in over 100⇥ speedup with the same
quality.

Furthermore, we introduce wave optics to detailed rendering [148], to correctly generate
di↵raction e↵ects such as colors from CDs and dull polished metal, which cannot be cor-
rectly produced using traditional geometric optics. We provide a physically-based rendering
solution to arbitrary surfaces under wave optics. At a high level, the height field describing
the surface’s heights at di↵erent positions changes how far the light travels, so it acts as a
spatially-varying phase shift of light waves. And the corresponding wave optics behavior can
be calculated by taking a Fourier transform of the phase shift. However, the phase shift has
an even higher resolution than the heightfield. So, taking its Fourier transform directly is
very ine�cient. To deal with the ine�ciency, we use Gabor kernels, sine or cosine weighted
Gaussian functions, to fit the phase shift. By taking the Fourier transform of these Gabor
kernels, we obtain an e�cient and accurate analytical solution.

1.3 Physically-based Appearance Modeling

Physically-based rendering is only one aspect of creating photorealistic images. The real
world is versatile and filled with millions of types of materials, while renderers only support
very limited types of appearance models. Even for mature commercial renderers, the number
of supported types of materials is shockingly low, usually around 20, e.g. di↵use, specular,
glass and so on. In most of the rendering tasks, it is required that artists mix, blend and
texture map these materials, which not only is ad-hoc and unrealistic, but also consumes
time and increases cost.
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Another aspect of our research [144, 141] is aimed at appearance modeling, to discover
and describe how unknown materials interact with the light. Specifically, we study the
appearance of animal fur (Fig. 1.2). Previous work modeled individual animal fur fibers
using cylinders, either opaque or glass-like. This model works well for human hair, but
for most animals, it fails. The reason is that, there are complex micro structures inside
animal fur fibers that significantly a↵ect their optical properties. Thus, we looked into these
complex structures, and proposed a coaxial double cylinder model — the outer cylinder
decides the color and the inner cylinder accurately captures how light scatters inside. Our
follow-up work further simplifes the double cylinder model and comes up with a novel far
field integration scheme to completely avoid tracing multiple rays against single fur fibers,
making the double cylinder model suitable for rasterizers such as OpenGL and DirectX for
the first time, so games and VR/AR can benefit from it as well.

To validate our model, we compare with actual measurements. We use a spherical gantry
to measure 10 types of animal fur including human hair. The spherical gantry can help us
hold a single fur fiber vertically, and change the light and camera directions arbitrarily
using its two arms. We fix the light source from behind, and record the fibers’ brightness
measured at every outgoing direction. Then we use our model to fit the measured data. We
demonstrate numerically that our method fits much better than traditional hair models.

In addition to the appearance model for individual fur fibers, one of the key e↵ects
in animal fur rendering is global illumination, involving light bouncing between di↵erent
fibers. This is very time-consuming to simulate with methods like path tracing. E�cient
global illumination techniques are in widespread use, but are limited to human hair only,
and cannot handle color bleeding, transparency and hair-object inter-reflection. We present
the first global illumination model [142], based on dipole di↵usion for subsurface scattering
(Chapter 2), to approximate light bouncing between individual fur fibers. We model complex
light and fur interactions as subsurface scattering, and use a simple neural network to convert
from fur fibers’ properties to scattering parameters. Our network is trained on only a single
scene with di↵erent parameters, but applies to general scenes and produces visually accurate
appearance, supporting color bleeding and further inter-reflections.

1.4 Real-time Ray Traced Realism

With our detailed rendering and detailed appearance research, we can expect better realism
than what was achieved earlier in Computer Graphics. However, even without this level of
realism, state of the art Monte Carlo ray tracing, a specific rendering method known for its
physical correctness, still su↵ers from low performance. Noise-free images rendered using
Monte Carlo ray tracing often require hundreds or thousands of samples (light paths) per
pixel and take a long time to converge. This is also the reason why current video games and
other real-time applications use rasterization instead of ray tracing. However, ray tracing
outperforms rasterization in terms of quality in a lot of common e↵ects, such as soft shadows,
depth of field, and global illumination.
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Figure 1.3: Real-time ray tracing and reconstruction of soft shadows, depth of field e↵ects and global
illumination [143].

All these e↵ects share the same characteristics, that each pixel is related to many other
samples. For example, from each pixel we shoot rays toward di↵erent places on the light to
calculate partial occlusion and thus soft shadows — this is essentially a 4D light field. Our
method [143] is based on new analytic tools of frequency analysis. By analyzing the Fourier
spectra of the light field and tightly bounding it using a 4D sheared parallelogram, we know
how the light field could be sparsely sampled and filtered in the primal domain. Thus, the
sampling rate could be significantly reduced. Then we just need to perform a 4D sheared
filter to “clean up” the noisy light field.

The di↵erence between our method and image-based denoising methods is fundamental.
The image filtering techniques work on the 2D output image, thus missing information as
compared to our 4D light field filter.

However, a 4D sheared filter itself is time-consuming to perform. This is because we need
to find all sample points within a 4D space. So, naive implementation of sheared filtering has
a time complexity of O(n4). To make it faster, our idea is that, we need a way to separate the
4D filter into 4 independent 1D filters approximately. At a high level, we first observe that
the 4D sheared filter is a product of two 2D sheared filters along orthogonal pixel-sample
planes, and develop a two step factored algorithm. We then derive a further factorization
of each 2D sheared filter into a pre-convolution and a collection. So, the time complexity of
our fast sheared filtering decreases from O(n4) to O(n).

Our fast sheared filtering work is the first that achieves near real-time performance. With
the help of a GPU implemented ray tracer and our fast reconstruction algorithm, the entire
process of sampling and filtering can even perform in real time with negligible quality loss
(Fig. 1.3).

1.5 Contribution to Computer Graphics

Our research has brought substantial impact to Computer Graphics, in both academia and
the industry.
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From a conceptual or theoretical perspective, our work on detailed rendering negates the
claim that Computer Graphics problems will be automatically solved by simply waiting for
improved computing hardware. In [147], we proved that tracing rays to/from microstructure
is essentially equivalent to point sampling Dirac delta functions blindly, which takes infinite
time in theory. Moreover, the growth of hardware’s computational power is far from satisfac-
tory. For example, currently it usually takes over 10, 000 CPU hours to generate one frame
in a 4K film. Without technical and algorithmic developments, it will take decades before
GPUs are able to generate a 2017-film-level image in real-time (30 frames per second).

In practice, the images that we render are among some of the new visual e↵ects that
cannot be produced by other means in Computer Graphics. The excitement of this visual
imagery has led to the papers being chosen for the start of the trailer videos at multiple SIG-
GRAPH conferences, and almost every paper of ours was given considerable press coverage.
Moreover, our detailed rendering work [55, 145] has had an entire session at SIGGRAPH
devoted to follow-up work since its emergence, and has also been adopted by world leading
commercial renderers for production, such as Manuka by Weta Digital, V-Ray by Chaos
Group and Autodesk Fusion 360. Our fur appearance model has already been appreciated
by the movie industry in less than one year, and has been pervasively used to render animal
characters in the recent movie War for the Planet of the Apes and is also introduced in the
third version of the textbook Physically Based Rendering: From Theory to Implementation.
Our real-time ray tracing is the first that achieves near real-time performance, and it in-
spired a lot of follow-up work, including NVIDIA’s latest real-time ray tracing technique
and hardware that was announced in GDC 2018.

In what follows, we will first introduce the basic background theory in Chapter 2. Then
we present our algorithms in detail from Chapters 3 to 5 for detailed rendering, appearance
modeling and real-time ray traced realism, respectively. Finally, we conclude our research
on both realism and performance, and discuss a broader range of future work and open
problems in rendering and generally in Computer Graphics, in Chapter 6.
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Chapter 2

Background

In this chapter, we briefly recap some background knowledge freqently used throughout
this dissertation. We first describe fundamental notations in rendering, including statistical
materials, classic light transport and wave optics theory. Then we talk about human hair
reflectance models for individual hair fibers, together with an approximate model for global
illumination between hair fibers. Finally, we introduce the general Fourier analysis and
sheared filtering related to our reconstruction scheme.

2.1 Radiometry

In rendering, we use radiometry to study and quantify light energy. We first list common
radiometry terminologies in Table 2.1, then describe related notations and methods in the
following sections.

Measurement Symbol Definition Unit
Flux / Power � energy emitted per united time W
Radiance L flux per unit surface area per unit solid angle W ·m�2 · Sr�1

Irradiance E flux received by unit surface area W ·m�2

BRDF fr ratio between di↵erential outgoing radiance Sr�1

and di↵erential incident irradiance

Table 2.1: List of common radiometry terminologies.

2.2 Statistical Appearance Models / Materials

Bidirectional Reflectance Distribution Function (BRDF)

The BRDF is an important concept, and it determines how light interacts with surface
materials. At a specific surface location, the BRDF is defined as a 4D function of the
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Figure 2.1: (Left) Illustration of the Phong BRDF. (Right) Unrealistic, artificial results generated
using the Phong BRDF.

incident and outgoing radiance:

fr(!i,!o) =
dLo(!o)

dE(!i)
=

dLo(!o)

Li cos ✓id!i

(2.1)

where fr is the BRDF, n is the (macro) surface normal, !i and !o are the incident and
outgoing directions, and Li and Lo are the corresponding incident and outgoing radiance,
respectively, and cos ✓i = n · !i.

Di↵erent BRDFs determine di↵erent types of materials. For example, the Lambertian
BRDF fr(!i,!o) = kd spreads the incident energy equally towards di↵erent outgoing di-
rections, resulting in di↵use appearance. Here kd is the albedo or reflectance specifying the
absorpion of light thus introducing color. Another example is the Phong BRDF (Figure 2.1)
fr(!i,!o) = kd + ks(r ·!o)p. It adds a specular component to introduce glossy or shiny ap-
pearance. Here r is the reflected incident direction about the normal, and p is an exponential
term specifying the extent of shininess.

Note that, the Phong BRDF is an empirical BRDF. This model is based only on observa-
tion and is not very accurate and not physically-based. So, it produces unrealistic, artificial
results (Figure 2.1).

Microfacet BRDF

State of the art rendering uses an advanced BRDF model, the microfacet BRDF [123].
The microfacet theory assumes that all surfaces are formed by tiny microfacets that are

perfectly specular that reflect rays like perfectly smooth mirrors (Figure 2.2 (a)). Each
micro facet has a normal, specifying its facing-direction. If the microfacet’s normals are
concentrated around a certain direction, the overall appearance will be glossy. If their
normals spread to every direction, the overall surface looks di↵use.

That is to say, the distribution of microfacet normals is crucial to the appearance. We
name this distribution as normal distribution function, or NDF. With the NDF, we were able
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Figure 2.2: (Left) Microfacet surface. (Middle) microfacet NDF. (Right) Pleasing results generated
using the microfacet BRDF.

to answer how many microfacets reflect light from the incident direction i to the outgoing
direction o, or we can say, how many microfacets’ normals point exactly halfway between
the camera and light directions, or along the half vector direction h (Figure 2.2 (b)).

The microfacet BRDF uses the NDF as one of its components:

fr(!i,!o) =
F (!i,!h)G(!i,!o,h)D(h)

4(n · !i)(n · !o)
, (2.2)

which is the D term in this equation. The F term is the Fresnel term that defines the
reflectance. And the G term is the shadowing-masking term, to take occluded microfacets
into account. These are important but orthogonal to our work. We focus on the NDF or the
D term throughout this dissertation.

As shown in Figure 2.2 (c), the microfacet BRDF produces pleasing results. So, they are
successfully used in practice.

Subsurface scattering

Instead of being directly reflected at the shading point, light may go into the subsurface,
scatter, and exit at a di↵erent point, as shown in Fig. 2.3 (a).

The subsurface light transport is often represented using Bidirectional Surface Scattering
Reflectance Distribution Functions (BSSRDFs), leading to a generalized reflection equation

Lo(xo,!o) =

ˆ
A

ˆ
!

Li(xi,!i)Sss(xi,!i; xo,!o)(n · !i) d!idA(xi), (2.3)

where Sss is the BSSRDF, extending a BRDF with di↵erent incident and outgoing positions.
A is the area associated with the incident position xi.

To represent BSSRDFs, material properties that are responsible for the scattering be-
havior must be defined: �a is the absorption coe�cient, �s is the scattering coe�cient,
�t = �a + �s is the extinction coe�cient, and ↵ = �s/�t is the albedo. For anisotropic scat-
tering, an anisotropy factor g 2 [�1, 1] is defined, resulting in reduced scattering coe�cient
�0
s
= (1� g)�s, reduced extinction coe�cient �0

t
= �a + �0

s
and reduced albedo ↵0 = �0

s
/�0

t
.
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Figure 2.3: (a) Illustration of BSSRDF, where the light exits at di↵erent points than the incident
point. (b) Dipole method approximating BSSRDF by summing up contribution from a real source
and a virtual source to an exiting point at distance r.

While the BSSRDF is often di�cult to calculate, Jensen et al. [58] proposed a dipole
method to solve the multiple scattering part of it. As illustrated in Fig. 2.3 (b), the dipole
method assumes local flatness, putting a real point source beneath the incident xi and a
virtual point source above it. Then the di↵use reflectance at the outgoing position xo of
distance r is the contribution of these dipole sources:

Rd(r) =
↵0zr(1 + �trdr)e��trdr

4⇡d3
r

� ↵0zv(1 + �trdv)e��trdv

4⇡d3
v

, (2.4)

where zr = 1/�0
t
and zv = �zr(1 + 4A/3) are the positive and negative z-coordinates of

the real and virtual point sources, respectively. Here A = (1 + Fdr)/(1 � Fdr), and Fdr is a
refractive index related variable. dr =

p
r2 + z2

r
and dv =

p
r2 + z2

v
are distances from xo

to the sources. �tr =
p

3�a�0
t is the e↵ective extinction coe�cient.

The BSSRDF due to multiple scattering, a.k.a. the di↵usion term is then

Sd(xi,!i; xo,!o) =
1

⇡
Ft(⌘,!i)Rd(kxi � xok)Ft(⌘,!o), (2.5)

where Ft terms are for Fresnel transmission.
Apart from the multiple scattered di↵usion, to complete the BSSRDF, a single scatter-

ing term S(1)(xi,!i; xo,!o) is added to account for cases where only one scattering event
happens. Note that the single-multiple scattering separation is approximate.

To accelerate rendering using the dipole model, Jensen et al. [57] later proposed a two-
pass algorithm. In the first pass, they uniformly distribute sample points across the surface
of the translucent object. Each sample point’s irradiance is evaluated through a path tracing
process. The second pass is a traditional path tracing process, where nearby sample points
are queried for their contribution to each shading point. To accelerate this process for
locating points, a hierarchical octree structure is built on top of these sample points, where
each node represents a single sample point, with its irradiance value and position the average
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Figure 2.4: Left: A discretized surface heightfield at 1 micron resolution, showing an area of about
64 ⇥ 64 microns. For visualization purposes, we complete the heightfield into a continuous function
H(s) by bicubic interpolation. Right: The real component of the reflection function R(s) of this
surface patch, specifying the spatially varying phase shift. The imaginary component looks similar.

Di↵raction
BRDF Model

Equation Components
⇠1 ⇠2 ⇠3

1. OHS |!o ·n|F
�2|!i ·n| 1 2

2. GHS |!o ·n|F
�2|!i ·n| 1  ·n

3. R-OHS | ·n|2 F
4�2|!i ·n||!o ·n| 1 2

4. R-GHS | ·n|2 F
4�2|!i ·n||!o ·n| 1  ·n

5. Kirchho↵ | ·n|2 F
4�2|!i ·n||!o ·n| 1�  ·H0(s)

 ·n  ·n
Figure 2.5: BRDF integrals for five scalar di↵raction models (see equations (2.6) and (2.7)). The
first two are based on the Original-Harvey-Shack (OHS) and the Generalized-Harvey-Shack (GHS)
models. The next two are reciprocal versions of these models we created by substituting Kirchho↵
propagation instead of Fourier: Reciprocal OHS (R-OHS) and Reciprocal GHS (R-GHS). The fifth
is a fully Kirchho↵-based BRDF model.

of its child nodes. The octree structure is traversed top-down to perform quick rejection of
samples that are far enough from the shading point.

2.3 Wave BRDF theory

In wave optics, light is described by fields that satisfy appropriate boundary conditions and
governing di↵erential equations (e.g., wave or Helmholtz equations). We will consider each
wavelength (denoted �) separately and use complex-valued fields to encode both magnitude
and phase. The local light energy is related to the squared magnitude of the field at that
point. Scalar di↵raction models, such as Harvey-Shack [64] or Kirchho↵ [88], can be used to
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estimate the reflected field from a rough surface. Unlike in geometric optics, the contributions
from di↵erent parts of the surface can sum non-linearly due to interference e↵ects, to create
the characteristic di↵raction e↵ects of wave optics.

Let us assume we have a surface heightfield H(s) such that for a given 2D point s =
[sx, sy], the corresponding 3D point on the rough surface is [sx, sy, H(s)]. In our approach,
the heightfield is typically discretized at the resolution of 1 µm per texel. Figure 2.4 (left)
illustrates a small example heightfield. Our goal is to estimate the surface’s Bidirectional
Reflectance Distribution Function (BRDF) fr(!i,!o), which is defined as the ratio between
the reflected radiance in direction !o and the incident irradiance from direction !i. Light
reflecting from di↵erent parts of the surface will travel di↵erent distances depending on the
local surface height. This causes phase shifts in reflected waves which then interfere with
each other to determine the BRDF.

These phase shifts can be approximated using a planar surface that reflects light with a
spatially-varying phase shift, specified by its reflection function:

R(s) = ⇠2 e
�i

2⇡
� ⇠3H(s). (2.6)

Figure 2.4 (right) shows a visualization of the real component of this function. The values
of ⇠2 and ⇠3 depend on which di↵raction model is chosen (see Figure 2.5 for examples). We
represent the directions !i and !o as 3D unit vectors. Let  = !i + !o and  be its 2D
projection (by discarding its z-component). The BRDF of this planar proxy can be computed
using a surface integral of the form:

fr(!i,!o) =
⇠1
AS̄

����
ˆ
S̄
R(s) e�i

2⇡
� ( ·s) ds

����
2

(2.7)

where S̄ is the domain of the heightfield (i.e. the projection of the rough surface onto the
XY plane), AS̄ is its area, and ⇠1 depends on the chosen di↵raction model (see Figure 2.5) .

The parameters for five di↵erent di↵raction models are listed in Figure 2.5. These models
are closely related and often produce similar results, especially for low-slope surfaces and
paraxial directions. The first four are derived from the Harvey-Shack family of di↵raction
models [42]. The first uses the phase shift approximation from Original-Harvey-Shack (OHS)
and the second uses the more accurate phase shifts from Generalized-Harvey-Shack (GHS).
These produce non-reciprocal BRDFs (i.e. fr(!i,!o) 6= fr(!o,!i)). Reciprocal BRDF es-
timates are often preferred because real world BRDFs are reciprocal, and it also simplifies
some light transport algorithms. So we created reciprocal versions (R-OHS and R-GHS)
by keeping the same planar proxy and phase shift approximations, but using the Kirchho↵
propagation integral instead of their usual Fourier-based propagation. The fifth model is
equivalent to the Kirchho↵-derived BRDF in [25] which is also reciprocal.

In Chapter 3, we present an approach that can be used to compute any of these di↵raction
models.
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Coherence area

The spatial size over which the incident light’s phase remains correlated (i.e. coherent) is
known as its coherence area. Equation 2.7 was derived using incident light with an infinite
coherence area, but realistic sources have finite ones (typically inversely related to their solid
angle [74]). For example, sunlight [76] has a measured coherence area diameter of roughly
one hundred wavelengths, or ⇠50 microns.

Coherent contributions must be summed using their complex field values, while incoherent
ones are best accumulated by summing their energy or averaging their BRDFs. This is
commonly simulated (e.g., [71, 25, 138]) by spatially limiting the surface integrals using a
coherence kernel w(s), and then averaging multiple such BRDF evaluations over the region
of interest (e.g., the pixel footprint). The principal e↵ect of limiting the coherence area is a
small angular blurring of the BRDF. The BRDF estimate for one coherence area becomes:

fr(!i,!o) =
⇠1
Ac

����
ˆ
S̄c

R?(s) e�i
2⇡
� ( ·s) ds

����
2

(2.8)

R?(s) = w(s�xc)R(s) (2.9)

where S̄c is the portion of S̄ within the support of the coherence kernel centered at xc,
the corresponding normalization factor is Ac =

´
|w(s)|2 ds, and R? is the product of R(s)

and the coherence kernel. This has the advantages of limiting our integrals to small surface
regions and e↵ectively prefiltering the BRDF to remove high frequency angular features that
we expect are too small to be resolved. Generally we do not need to exactly match the real
coherence area. Overestimating it causes high angular frequencies that can be resolved by
using more light samples, while underestimating it causes some angular over-blurring of the
BRDF.

During rendering, rather than trying to estimate each source’s coherence area, we use a
fixed size, which should be at least as large as for any expected light source. For w we use
a Gaussian with standard deviation of 10 microns (similar to [138]).

Fourier Interpretation

Let us denote the Fourier transform of a 2D function f(s) as:

F [f ] (v) ⌘ ef(v) ⌘
ˆ
R2

f(s) e�i2⇡(s ·v) ds (2.10)

where v is a 2D frequency vector. Equation 2.8 can be rewritten as:

fr(!i,!o) =
⇠1
Ac

���� fR?

✓
 

�

◆����
2

(2.11)

Thus the BRDF can be computed using the Fourier transform of R?(s) evaluated at  /�.
One approach could be to compute and store the full Fourier transform, either analytically
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or numerically via the Fast Fourier Transform (FFT) algorithm. However we use tabulated
heightfields which have no simple analytic Fourier transform, and precomputing FFTs for
each surface position would require far too much storage. Computing full FFTs at render
time would also be very ine�cient as we typically only need one, or at most a few, values
for each BRDF evaluation. Also R?(s) typically contains very high frequencies, much higher
than those in the original heightfield, so using an FFT would require an extremely fine
discretization step of 0.1 microns or less.

2.4 Light Transport

Once we have defined the appearance/materials, the rendering process will find light paths
that connect the camera and the light source(s) in the two ends, and bounce between di↵erent
geometries with various BRDFs. This process is known as light transport. Next, we introduce
some basic ideas in this topic.

The reflection equation

The reflection equation [60] is a key concept in rendering. It defines the radiance reflected
from a surface as a product integral of the incident radiance and the BRDF:

Lo(!o) =

ˆ
!

Li(!i)fr(!i,!o)(n · !i) d!i, (2.12)

With the reflection equation, accurate physically-based light transport from the light
source(s) to the camera becomes possible. Various rendering techniques attempt to solve
the reflection equation, and they can be generalized into two categories: radiosity and ray
tracing. In this dissertation, we mainly focus on ray tracing, especially path tracing, which
is the most popular ray tracing method.

Note that, the reflection equation is only valid under geometric optics approximation.
We will introduce the extended reflection equation for wave optics in Chapter 3.

Path tracing

Path tracing utilizes Monte Carlo sampling to accurately solve the reflection equation [128].
It is a recursive algorithm. For each pixel, it shoots random paths through the pixel, and
calculates the intersection with the scene. At each intersection, it randomly samples on the
light for local illumination and randomly chooses the next direction that the path bounces
to for global illumination. And this procedure is repeated for all further bounces.

Path tracing is a physically and mathematically correct method that generates high
fidelity results under geometric optics. It also natually handles lens e↵ects and volumetric
e↵ects such as from cloud, fog and smoke.
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However, in order to get high quality images, path tracing requires a very large number
of samples for the rendered results to converge to noise-free images. This is a fundamental
problem that limits path tracing to work only for o✏ine applications, where long running
time is tolerable. Our research is aimed at combining the high quality of path tracing with
high performance. In Chapter 5, we show that with properly defined filtering as a post
process, it is possible for us to expect ray traced realism in near real-time, and real-time
performance at 30 frames per second is getting there.

2.5 Human Hair Reflectance Models

We have briefly introduced the concept of BRDF and light transport. It is worth pointing
it out that these models are for surfaces. In Chapter 4, we will introduce another kind
of appearance/reflectance model that is defined for thin cylinders with negligible radius
(or essentially line segments). This results in slightly di↵erent concepts. More specifically,
human hair reflectance models treat hair fibers as cylinders, and use the Bidirectional Curve
Scattering Distribution Function (BCSDF) to represent reflectance properties of a fiber,
resulting in a modified reflection equation:

Lr(!r) =

ˆ
Li(!i)S(!i,!r) cos ✓i d!i, (2.13)

where Li and Lr are the incoming radiance from direction !i, and outgoing radiance in
direction !r respectively, and S is the BCSDF.

As shown in Fig. 2.6, we follow the longitudinal-azimuthal (✓,�) parameterization in [75],

Lr(✓r,�r) =

ˆ ⇡

�⇡

ˆ ⇡
2

�⇡
2

Li(✓i,�i)S(✓i, ✓r,�i,�r) cos
2 ✓i d✓id�i, (2.14)

where the single cosine term becomes squared because the solid angle d!i = cos ✓i d✓id�i in
this parameterization.

Note that, since the hair reflectance models often involve complex light scattering within
individual hair fibers, those reflectance models are usually called scattering models as well.

Kajiya-Kay model

The Kajiya-Kay model considers hair fibers as opaque solid cylinders. The reflectance is
separated into a di↵use component and a specular component. Following [152], the BCSDF
is

S(✓i, ✓r,�i,�r) = kd + ks
cosn(✓r + ✓i)

cos ✓i
(2.15)

where kd and ks are di↵use and specular coe�cients respectively. Note that the Kajiya-Kay
model is azimuthally independent.
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Figure 2.6: (Left) Longitudinal-azimuthal parameterization for hair/fur fibers. ✓ is angle to plane
orthogonal to cylinder axis; � is angle within plane. (Middle & Right) Illustration of Marschner
model with factored representation longitudinally and azimuthally.

Marschner model

The BCSDF proposed by Marschner et al. [75] regards hair fibers as glass-like dielectric
cylinders. As shown in Fig. 2.6, it takes di↵erent specular paths p 2 R, TT, TRT into
consideration, where R stands for reflection and T for transmission. The contribution of p is
factored into a product of M and N profiles, representing longitudinal and azimuthal events:

S(✓i, ✓r,�i,�r) =
X

p

Sp(✓i, ✓r,�i,�r)/ cos
2 ✓d (2.16)

=
X

p

Mp(✓h) ·Np(�; ⌘
0)/ cos2 ✓d.

where ✓h = (✓r+✓i)/2 and ✓d = (✓r�✓i)/2 are the longitudinal half angle and di↵erence angle

respectively, � = �r � �i is the relative outgoing azimuth and ⌘0 =
p

⌘2 � sin2 ✓d/ cos ✓d is
the cortex’s virtual refractive index, accounting for inclined longitudinal incident directions.
The types of specular paths were later extended by d’Eon et al. [18] to handle multiple
internal reflection events such as TRRT , etc. Also, since the original Marschner model [75]
su↵ers energy conservation issues addressed by d’Eon et al. [18], we regard [18] as a correct
implementation of the Marschner model in all our renderings and comparisons, while we
keep the name Marschner model throughout the dissertation.

Near/far field scattering models

In Computer Graphics, especially in the context of hair/fur rendering, it is often convenient
to divide the scattering models into near and far field models. The key di↵erence is whether
an object can be considered small enough so that positional di↵erences on this object can be
ignored. For hair and fur, near-field scattering specifies an actual o↵set h azimuthally as the
incoming position (Fig. 2.6). For far field approximation, parallel light is assumed, covering
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Figure 2.7: (a) Illustration of dual scattering for approximate global illumination. (b) Attenuation
and spread computation for global scattering. (c) Attenuation and spread computation for local
scattering.

a fiber’s width. Thus, far field approximation yields the azimuthal scattering function Np

by integrating over all possible o↵sets h 2 [�1, 1],

Np(�) =
1

2

ˆ 1

�1

Np(h,�; ⌘
0) dh (2.17)

The integral for far field approximation could be solved either analytically [75] but only for
simple types of paths, or numerically [18] but with more computation.

Dual scattering approximation

In addition to appearance/reflectance models for individual hair/fur fibers, light transport
for hair and fur requires simulating global illumination, i.e. multiple light bounces among
di↵erent hair/fur fibers. Dual scattering is a method that approximates global illumination
e↵ects within the hair volume at a shading point x as a combination of two components:
global scattering and local scattering, illustrated in Fig. 2.7 (a). The global scattering
approximates how much light arrives at x after penetrating through n fibers along the light
path. If the light comes from behind x, it is directly seen by the camera, forming a global
scattered lobe. If not, the arrived light will be added to direct illumination, going into the
hair volume, scattering inside, then going back, forming a local scattered lobe.

Dual scattering begins with simplifying the complicated longitudinal lobes for each hair
fiber as one forward lobe and one backward lobe. It first pre-computes the averaged for-
ward/backward scattering intensity āf |b as

āf |b(✓i) =
1

⇡

¨
!f |b

ˆ ⇡
2

�⇡
2

S(✓i,�i,!r) cos(✓r) d�id!r, (2.18)

where !r = (✓r,�r) is the outgoing direction to the forward or backward hemisphere !f |b.
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Apart from the averaged forward/backward intensities, the forward/backward lobes also
require their averaged longitudinal variances �̄2

f |b. Since the TT lobe is mostly forward
and the TRT lobe is mostly backward, the variances directly take their squared roughness
�̄2
f
= �2

TT
and �̄2

b
= �2

TRT
. The R lobe is simply ignored.

To evaluate global and local scattered lobes, the key is to compute how the light atten-
uates and spreads longitudinally along a main path. Figures 2.7 (b) and (c) illustrate the
computation. Dual scattering assumes that the azimuthal scattering is complicated, and it
always becomes isotropic.

For the global scattered lobe, dual scattering calculates the attenuation of the light Tf

reaching x after forward scattering through n fibers by taking the sequential product of
their averaged forward attenuations. And the spread variance �̄2

f
reaching x is computed by

accumulating the pre-computed variances of all n fibers. Figure 2.7 (b) illustrates this idea.
The local scattered lobe is approximated similarly, as shown in Fig. 2.7 (c). The camera

path goes into the hair volume, going forward through i hair fibers, scattering back once,
then going forward through the previous i fibers until reaching the shading point x again. By
summing up all possible paths with varying i � 1, the local attenuation with one backward
scattering event A1 can be computed. In order that the camera path finally returns to x,
backward scattering can also happen any odd number of times i.e. 3, 5, . . . . Dual scattering
also computes A3, and ignores higher-ordered scattering, so that the total attenuation for
the backward scattered lobe is Ab = A1 + A3. The spread variance �̄2

b
is the averaged

accumulated variance along each possible path, weighted by its attenuation.
With global and local scattered lobes computed, the final approximate global illumination

is the sum of both lobes, added to the hair BCSDF model. Specifically, the local scattering
forms a lobe:

Sb(✓i, ✓r,�) =
Ib(�)

⇡ cos2 ✓i
· dbAb ·G(✓r + ✓i; �̄b

2), (2.19)

where db is the backward scattering density constant, usually set between 0.6 and 0.8, while
G(µ; �2) is a Gaussian with mean µ and variance �2. Ib(�) is a binary backward hemisphere
indicator which is 1 when � 2 [�⇡/2, ⇡/2] and 0 elsewhere.

The global scattering forms another lobe:

Sf (✓i, ✓r,�) =
If (�)

cos2 ✓i
· dfAf ·

X

p

�
G(✓r + ✓i; �̄

2
p
+ �̄f

2)N f

p

�
, (2.20)

where df is the forward scattering density constant, usually set between 0.6 and 0.8. If (�)
is a binary forward hemisphere indicator which is 0 when � 2 [�⇡/2, ⇡/2] and 1 elsewhere.

N f

p
= 1

⇡

´ ⇡
2
⇡
2
Np(�� �0; ⌘0) d�0 is the averaged azimuthal lobe p within the front hemisphere.

The dual scattering has made many assumptions, the most important of which is the main
path assumption. In Chapter. 4, we demonstrate that this assumption is only reasonable for
unscattered lobes (notations will be formally defined then). For scattered lobes, it will fail.
So, in our model, we only use dual scattering as a component to handle paths consisting of
unscattered lobes (TT and TRT , as in hair rendering).
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2.6 Fourier Analysis and Sheared Filtering

As introduced in Chapter 1, speeding up ray tracing towards real-time require precise utiliza-
tion of local smoothness of light transport, usually conducted by filtering as a post process
to remove ray traced noise. This is independent to the reflectance of materials. In this
subsection, we introduce the basic concepts, Fourier analysis and Sheared Filtering theory
in flatland to motivate our sheared filtering for real-time ray traced realism. We will develop
this concept in 3D and introduce the full 4D filter in Chapter 5.

We first introduce the general filtering configuration for soft shadows first. Let x denote
receiver (surface visible at a pixel) coordinate and y 2 [�L,L] denote the light coordinate.
Very similar parameterization and notation can be used for the lens coordinate for defocus,
or incident direction parameterization for global illumination, and important details are
mentioned below.

Soft shadows

Following Mehta et al. [78], we assume the light has a Gaussian intensity with standard
deviation �y, and a side length 2L = 4�y. For each pixel, we want to simultaneously filter
and integrate light visibility and intensity, to compute the overall pixel irradiance. Let f(x, y)
be the visibility function and I(y) be the Gaussian light intensity. Then the pixel irradiance
is

h(x) =

ˆ
L

�L

f(x, y)I(y)dy. (2.21)

It is shown in [31] that a single occluder plane at distance d2 from the light, produces a
single line of slope given by s = d1/d2 � 1 in the Fourier spectrum of f , when the receiver
pixel is at a distance d1 from the light source. With multiple occluders, most of the Fourier
energy lies between lines of slopes smin and smax, as shown in Fig. 2.8(a). These bounds
can be estimated during the ray-tracing phase. The double-wedge spectrum of f is filtered
by the light intensity spectrum on the !y axis, and this bandwidth is !max

y
= 4/L. The

computation of soft shadows theoretically requires that the receiver’s material be di↵use,
but in practice moderately glossy receivers also work, as shown by [78] and most algorithms
based on shadow maps [43, 38, 2].

Depth of field

For rendering depth of field, x 2 [�W,W ] is measured in pixel space, where W is the width
of the image, and u 2 [�A,A] is on the lens, where 2A is the lens aperture.1 The light field
incident on the camera sensor in (x, u) space has a Fourier transform similar to the area-
light visibility f . As shown in [79, 126], a plane at a single depth z produces a line of slope

1This normalization is chosen to be analogous to the soft shadow example, and is slightly di↵erent from
Mehta et al. [79] who normalize the lens coordinate in [�1, 1], and therefore have an extra aperture factor
in their formula for circle of confusion.
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s = W (F/z� 1)/S in the fourier spectrum of the light field, which corresponds to the circle
of confusion at that depth. Here F is the focal distance, and S is the size (meters) of the
focal plane. Hence, most of the spectrum is bounded between the minimum and maximum
circles of confusion, smin and smax. The bandlimit due to the integration with the Gaussian
lens aperture is !max

u
= 4/A.

Di↵use indirect illumination

To get the double-wedge spectrum for the indirect light field, it must be parameterized in
coordinates x along the receiver and v on a plane parallel to the receiver at unit distance.
Then a single parallel reflecting surface at distance z from the receiver produces a line of
slope s = z in the light field spectrum in the (!x,!v) space. With multiple sloped reflectors,
as shown in [80], we get a double wedge between slopes smin, smax. Finally, the double wedge
is band-limited by the transfer function of the di↵use BRDF, given by:

�(v1, v2) =
1

(1 + v21 + v22)
2
. (2.22)

As derived in [80] the bandlimit !max
v

⇡ 2.8.

Sheared filtering

With the basic notations defined, we now introduce the sheared filter that our method build
upon. Again, we illustrate it with its application on soft shadows. A similar formalism applies
to depth of field and di↵use global illumination, except for a di↵erent choice of variables. As
indicated in Fig. 2.8(a), the resulting Fourier-domain sheared filter has a shear slope given
by the harmonic average of the min and max slopes, and the filter scale is proportional to
the di↵erence in the slopes [31]. We are only concerned with the primal domain filter, as
shown in Fig. 2.8(b). The final filtered pixel irradiance h(x) can be obtained as follows,
using a 2D sheared filter w in flatland:

h(x) =

¨
f(x0, y0)w(x0, y0; x, y) dx0 dy0

=

¨
f(x0, y0)wx(x

0 � x; �x)wy(y
0 � y(x, x0); �y) dx

0 dy0.
(2.23)

Both wx(·), wy(·) are Gaussian functions, with standard deviations �x and �y respectively.
�x depends on the sheared filter scale, and �y depends on the light bandlimit with:

�y =
2

!max
y

�x =
2

!max
y

sminsmax

smax � smin
. (2.24)

The filter is a sheared spatially-varying convolution, with the center of the filter along
the x0 axis determined by the desired location x. The center of the filter along the y0 axis is
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Figure 2.8: Illustration of the 2D sheared filter in flatland in (a) Fourier domain and (b) primal
domain. The sheared filter in flatland gives the weight of a sample at (x0, y0) for a pixel of interest
x. The filter can be split into two Gaussians: The x-axis Gaussian is fixed with center at x; the
y-axis Gaussian has a varying center given by y = ⌘x(x� x0).

determined by the shear amount ⌘x, as in Fig 2.8(b),

y(x, x0) = ⌘x(x� x0)

⌘x = � sminsmax

2(smin + smax)
(2.25)

while the standard deviation �y remains constant and is related to the maximum bandlimit
of the light, lens, or sloped reflectors in di↵erent applications. Note that we have introduced
the auxiliary variable y for the center of the filter along the y0 axis.

Note that, y is not an independent variable that immediately allows separation of the
sheared filter. Also note that for di↵erent x, we have varying ⌘x values. This prevents us from
separately integrating along the y0-axis, because the filter’s center y is uncertain. However,
in Chapter 5, we will prove that writing in this form finally leads an e�cient factorization.

2.7 Summary

In this chapter, we have briefly introduced some background knowledge. We start from
radiometry, then describe statistical BRDF, wave BRDF and basic light transport in prepa-
ration for our detailed rendering work in Chapter 3. Then we introduce di↵erent reflectance
models for human hair fibers, together with an approximate model for global illumination
between hair fibers. We will introduce the limitations of these methods for animal fur ren-
dering and come up with our models in Chapter 4. Finally, we introduce the general Fourier
analysis and sheared filtering related to our reconstruction scheme in Chapter 5. In the next
sections, we will elaborate each of our research topics.
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Chapter 3

Detailed Rendering from Complex
Surfaces

3.1 Introduction

Conventional BRDFs model complex microgeometry using a smooth normal distribution
function (NDF) of infinitely small microfacets. However, real surface features are certainly
not infinitely small. Bumps and flakes from anywhere between a few microns (brushed metal)
to about 0.1 mm (flakes in metallic paints) to centimeters (ocean waves) can produce inter-
esting glinty behavior that is visible with the naked eye. These glints are very pronounced

our
method

binning
reference

time

pi
xe

l in
te

ns
ity

pixel normal
distribution function

Figure 3.1: A rendering of specular objects with extremely low roughness (standard deviation of
0.001 radians) under point illumination. A high resolution normal map (20482) with scratches and
small-scale noise makes rendering impractical with standard Monte Carlo direct illumination, since
the highlights are tiny and easily missed by naive pixel sampling. Left inset: Our solution is based
on the concept of a pixel normal distribution function (P-NDF), which can be highly complex. Our
algorithm evaluates it exactly, instead of using simple approximations. Right inset: Our method
delivers an accurate solution, even in a temporal sequence with a moving light.
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with a light source that subtends a small solid angle, such as the sun and small light fixtures.
This is true for surfaces specifically designed to glint, such as metallic paints with embedded
flakes or decorative brushed metals, but also for everyday objects such as plastics or ceram-
ics. In fact, smooth surfaces that meet the microfacet assumption are the exception rather
than the norm. Most shiny surfaces that one encounters in reality have this type of glinty
behavior, readily observed under sharp lighting.

Our goal is to simulate glinty appearance in still images and animations (Figure 3.1).
Representing geometry at a resolution su�cient to reveal the features that cause glints is
not di�cult: we use high-resolution normal maps. A much harder challenge is rendering a
complex specular surface under sharp lighting. Standard uniform pixel sampling techniques
for direct illumination have extremely large variance, and using them for this purpose is
impractical. The reason is that most of the energy is concentrated in tiny highlights that
take up a minuscule fraction of a pixel, and uniform pixel sampling is ine↵ective at hitting
the highlights (Figure 3.3). An alternative explanation is that the space of valid camera-
surface-light paths is complicated and cannot be easily sampled from the camera or from the
light. In some sense, we need to search the surface for normals aligned with the half vector,
and this cannot be done by brute-force sampling.

Computer Mouse NDF Measurements

(a) (b) (c) (d) (e)

Figure 3.2: (a-b) Two photographs of an injection molded plastic computer mouse illuminated
by a small light source (⇠ 3.5 ⇥ 10�5sr solid angle) reveal its glinty appearance. These e↵ects
are impractical to simulate using uniform pixel sampling. (c-e) Real-world normal distribution
functions of a dark bumpy ceramic tile were measured by illuminating the surface with a small
focused incoherent source (⇠ 6.2 ⇥10�5sr solid angle covering a surface patch of ⇠ 0.52mm). The
images in (d) and (e) were captured by a camera located opposite a di↵use acrylic barrier from the
source. They reveal a distinct non-Gaussian distribution of scattered light, corresponding to the
P-NDFof the surface patch, only slightly warped and blurred because of the optical limits of our
setup.

Normal map filtering techniques [122, 40, 89, 28] also do not fully solve the problem.
These methods attempt to approximate the NDF at a given scale by broad lobes, but the
true NDF is highly complex; it cannot be approximated well using a single Gaussian lobe,
or even a small number of lobes (Figure 3.4). Although these approaches avoid aliasing
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artifacts, they are not able to reproduce glinty appearance under high-frequency lighting.
We instead desire to compute the true solution that Monte Carlo would eventually converge
to, using a completely di↵erent deterministic approach with minimal approximations.1

We consider the actual, unsimplified NDF of a surface patch P seen through a single
pixel (an example is shown in Figure 1, left inset). This P-NDF can be easily estimated by
binning: repeatedly choose a point on the patch, take its normal, perturbed by the intrinsic
surface roughness, and add it into a bin. The key problem is that for direct illumination, we
need to evaluate the P-NDF for a single half-vector. Clearly, it would be extremely ine�cient
to use the binning approach here, wasting all but a single bin. Indeed, this is equivalent to
what a standard renderer would do, trying to hit a tiny light source by chance. Instead,
we require evaluation of the density of a single normal coming from anywhere on the patch.
Moreover, the P-NDF is di↵erent for every pixel, so computations cannot be reused. In our
method, the P-NDFis just a mathematical tool to derive what the correct pixel brightness
should be; it is never fully constructed, and only evaluated for a single vector.

We introduce an algorithm for P-NDF evaluation in Section 3.4. The key assumptions
that make the evaluation possible are a Gaussian pixel filter and a tiny amount of Gaussian
roughness on the specular surface. These combine into a single 4-dimensional Gaussian
“query” that is analytically integrated across the normal map, avoiding random sampling. A
basic computational block of our solution is an integral of a 2-dimensional Gaussian over a
triangular domain, described in Section 3.5. We hierarchically prune position-normal space
to quickly find texels that might contribute to a given P-NDFevaluation (Section 3.7). Our
results show complex, temporally varying glints from bumpy plastics, brushed and scratched
metals, metallic paint and ocean waves; see Section 3.7 and Figure 3.16.

In Section 3.8, we present an improved solution that exploits 4D Gaussian elements to
speed up the P-NDFcomputation by over 100 times, as compared to our basic triangular
integration approach. This speed-up has significant benefits: it enables our method to be
used as a standard BRDF in a Monte Carlo renderer, which is convenient from an engi-
neering perspective. As a consequence, we can now use the BRDF with multiple importance
sampling, and transparently handle all e↵ects supported in Monte Carlo frameworks, such as
illumination from environment maps and area lights. We provide details of implementing the
Gaussian elements method in Section 3.9, and show speedups in Section 3.10 by comparing
with our earlier method.

We further extend our method to handle wave optics. In Section 3.11, we present an algo-
rithm that can evaluate a spatially varying BRDF for a given position and incoming/outgoing
directions, by computing a wave optics reflection integral over the coherence areas around the
position of interest. This requires more computation than in the geometric optics solutions,
which makes our wave optics method slower, but not prohibitively so; see Table 3.3. Our
solution is based on approximating the micron-resolution surface wave e↵ects using Gabor
kernels (products of Gaussians with complex exponentials). We use a reciprocal modification

1Specifically, constant view and light direction over P, and the approximations made when solving the
integral in Section 3.5.
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Our method (17 min, Naive sampling Zoom-in of a single pixel
2.2 min actual glints) (2 hours, 4,096 samples)

Figure 3.3: Naive pixel sampling fails at rendering complex specular surfaces under point lights.
The reason is that the highlights are too small to be e�ciently hit by uniform pixel sampling, which
is obvious from the zoomed pixel on the right. Multiple importance sampling would not help since
the light is a point, and it is the pixel integral that is ine�ciently sampled, not the light/BRDF
combination.

of the Harvey-Shack theory in our results, but our approach also applies to other wave op-
tics models. We found that the di↵erence between the geometric and wave solution is more
dramatic when spatial detail is taken into account. The visualizations of the corresponding
BRDF lobes di↵er dramatically, with the sharp folds typical of NDFs replaced by very dif-
ferent directional patterns more akin to laser speckle (Figure 3.23). The rendered highlights
change appearance, typically with more realistic-looking sharper peaks and longer tails.
Moreover, the wave optics solution varies as a function of wavelength, predicting noticeable
color e↵ects in the highlights (Figure 3.17). Our results show both single-wavelength and
spectral solutions to reflection from common everyday objects, such as brushed, scratched
and bumpy metals; see the result figures in Section 3.12.

3.2 Related Work

Naive pixel sampling. The standard approach to compute direct illumination on a bumpy
specular surface is to trace a ray through the pixel, evaluate the normal of the hit point, and
shade the point from a light source using the point’s finite roughness BRDF; this fails at
rendering glints (Figure 3.3). Multiple importance sampling [129] does not help, because it is
the pixel integral that is ine�ciently sampled, rather than the BRDF/light combination. The
REYES approach of surface subdivision into micropolygons [12] is equally ine�cient, since
it would require micropolygons as small as the highlights. Though we use fine triangulations
of the normal map for smoothness, our method can handle highlights that are arbitrarily
smaller than the triangles.

Normal map filtering techniques can deliver artifact-free renderings by approximat-
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correct NDF isotropic Gaussian anisotropic Gaussian mixture of 10 aniso.
(our approach) [Toksvig 2005] (LEAN, LEADR) [Han et al 2007]

Figure 3.4: Approximating the true NDF by a single Gaussian (Toksvig, LEAN, LEADR) or a
small number of Gaussians (Han et al.) loses the sharp features that cause glinting.

ing a pixel’s NDF by a single lobe [122, 89, 28] or a small number of lobes [40]. However,
none of these methods can correctly capture glinty appearance. The core of the problem is
that the true NDFs can be highly complex, and their sharp features directly translate into
spatial and temporal glinting. Approximating them by broad lobes is only applicable under
low-frequency illumination that would filter the complex features anyway. Figure 3.4 shows
the e↵ect of replacing the true NDF by a single Gaussian or a mixture of Gaussians, thus
losing the sharp features.

Single-point evaluation of caustics. Caustics are related to our work, since glints
can be interpreted as “directional caustics”. Most methods sample paths (particles, photons)
and accumulate them in a data structure (kd-tree, hash grid, or bins). However, this is not
su�cient for our purposes; we require point evaluation, which is much harder. Walter et
al. [133] compute volumetric caustics due to the refraction of a point light into a scattering
volume through a bumpy interface. This is related to our approach: linear normal interpola-
tion over triangles is used, a discrete set of specular connections is enumerated, the Jacobian
determinant term determines highlight intensity, and a hierarchy is used to speed up the
enumeration. However, no intrinsic roughness is considered (resulting in singularities), and
the phenomenon rendered is quite di↵erent. Mitchell and Hanrahan [82] compute reflected
caustics from an implicit surface by enumerating the discrete set of valid light paths through
interval arithmetic. They used wavefront tracing as a way to compute the contribution of a
valid specular path; this is again equivalent to the Jacobian determinant term for a single
reflection, with the associated singularities.

Other work on specular paths. Jakob and Marschner [52] is an extension of Metropo-
lis light transport, which allows mutation of a specular path at a single di↵use vertex; how-
ever, in our case, no di↵use vertex is available for mutations. In the perfectly specular
case, there is a discrete set (rather than a manifold) of valid paths, as already noted above.
Moon et al. published several approaches to approximate higher-order specular bounces, e.g.
[84], but low-order specular paths are still computed brute-force with a relatively large light
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source.

Stochastic reflectance. Jakob et al. [56] also addresses the problem of glinty surfaces,
using a stochastic approach. Rather than work from a normal map, that method models
the surface as a procedural random collection of specular flakes that occur according to a
particular normal distribution. The key to their method is counting up the particles con-
tributing to a particular illumination calculation without actually generating them, providing
e�ciency for large query areas where many particles contribute. When used as a model for
a bumpy smooth surface, the stochastic approach is phenomenological: the random-flake
approximation replaces the P-NDF. In contrast, our algorithm exactly determines how a
given specular surface, defined by a particular normal map, really looks under given sharp
illumination. Moreover, normal maps can express surface features large enough to be visible
in the image, e.g. the scratched and brushed examples in this dissertation.

Large area averaged wave optics. Rough surface reflection models based on wave
optics have been heavily studied in physics. Common approximations include Beckmann-
Kircho↵ theory [4] and variations of Harvey-Shack theory[41]; a good overview is the thesis
of Krywonos [64]. In graphics, wave-based reflection models have been developed for surfaces
with stationary statistics, either random [45] or periodic [116], usually characterized by their
power spectral density. A variety of methods have been proposed to measure such statistics
for specific types of real surfaces, especially periodic ones [24, 121, 66]. Dong et al. [25]
acquired the surface microgeometry of real metallic surfaces using a profilometer, and applied
Kirchho↵ theory to successfully predict their large scale BRDFs. A combined microfacet-
di↵raction model was recently proposed by Holzschuch and Pacanowski [48], demonstrating
better fits to measured BRDF data for some materials than microfacet models alone. Levin
et al. [71] designed special multi-planar surfaces that can be lithographically fabricated to
match a target BRDF using wave optics, essentially inverting the rendering process.

Wave optics has also been used to predict appearance from thin-film or layered materials
(e.g., [5]), but we will only consider single-layer opaque surfaces here. Several methods
simulate longer-range multi-surface interference e↵ects (e.g., [15]) but that is beyond the
scope of this paper.

Spatially-varying wave optics. The only previous work we are aware of in this area
is the recent paper by Werner et al. [138] (with a real-time extension by Velinov et al. [130]),
rendering surfaces with collections of randomly oriented scratches using a Harvey-Shack-
based wave optics model. This work represents the surface as a collection of one-dimensional
scratches over a smooth BRDF. Under this assumption, they are able to compute the reflec-
tion e�ciently and analytically. In contrast, our method can render arbitrary heightfields
(e.g. Figure 3.26 and 3.27), including but not limited to ones containing scratches. Addi-
tionally, our scratched heightfields can contain more variety and imperfections, resulting in
glinty highlights that only roughly align in lines, compared to the smooth line highlights of
Werner et al (see Figure 3.17, esp. insets).
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symbol domain definition
D unit disk (proj. hemisphere)
? invalid normal
s = (s, t) D unit disk parameters, defining

vectors (s, t,
p
1� s2 � t2)

u = (u, v) R2 texture space parameters
n(u) R2 ! D normal map function
J(u) R2 ! R2⇥2 Jacobian of n(u)
P pixel footprint
Gp(u) R2 ! R pixel Gaussian
Gr(s) R2 ! R intrinsic roughness Gaussian
Gc[P , s](x,y) R4 ! R combined Gaussian query

for footprint P and normal s
D(s) D [ ? ! R normal distribution function

Table 3.1: Notation used in the dissertation.

3.3 Preliminaries

Solving our problem requires thinking about a surface patch P seen through a pixel all at
once, rather than one point at a time. Just as every surface point has a local BRDF, we can
think of areas of the surface having P-BRDFs that describe how the total contribution to the
pixel depends on the illumination. Rendering detailed normal maps requires an e�cient way
to evaluate the area-integrated P-BRDF, rather than letting the pixel filter do it implicitly
by point sampling.

For a specular normal-mapped surface, this area-integrated BRDF is primarily deter-
mined by the distribution of surface normals over the relevant patch of surface: we need to
be able to ask “how often” a given normal vector occurs in the patch. We call this distribu-
tion the P-NDF; it is just like the microfacet distribution in a standard BRDF model, but
it gives the normal distribution for a particular area rather than a global average over the
whole surface. A crucial observation is that the P-NDF is not a simple, broad function. It
contains a surprising amount of structure (Figure 3.13) even when the surface patch is far
larger than the features in the normal map. It also varies dramatically across the surface.
Evaluating the P-NDF e�ciently while preserving this detailed spatio-angular structure is
the key to accurately capturing glinty appearance.

Let us define these terms more precisely. Table 1 lists the symbols used throughout the
dissertation.

Pixel footprint. We assume a Gaussian pixel reconstruction filter. This projects to an
approximately Gaussian footprint P in the uv-parameterization of the normal map, whose
covariance matrix is easily computed by propagating ray di↵erentials to the surface [49]. In
practice, we actually subdivide pixels into 4⇥ 4 subpixels, and make the footprints smaller
accordingly. This handles edges better, but for simplicity we will talk about pixel rather
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than subpixel footprints.
Projected hemisphere. We will use the unit disk D to express hemispherical unit

vectors. The point s = (s, t) 2 D represents the unit vector (s, t,
p
1� s2 � t2) on the

hemisphere. Let us also define the extended unit disk as the union of the unit disk and
a special symbol ?, which allows for normal distributions that sometimes return invalid
normals. This is less common than working with hemispheres, but it will be useful shortly.

Normal maps can be given directly or as the derivative of a heightfield. We use the
direct option, though all but one normal map in our examples do come from a heightfield
(the exception is the metallic paint flakes). The normal map is then defined as a function
n : R2 ! D from points u = (u, v) in texture space to normals s = (s, t). The Jacobian of
n(u), denoted J(u), plays an important role in determining highlight brightness, and points
where det J(u) = 0 cause problems unless we are careful.

Intrinsic roughness. We could treat the surface as perfectly specular; however, we
found that it is useful to consider a small amount of unresolved fine roughness. This matches
the real world in that perfect smoothness is unachievable and the limits of geometric optics
are reached at very high resolutions. It also prevents singularities (infinitely bright high-
lights), which arise with perfectly specular surfaces when det J(u) = 0, and cleanly deals
with normal maps that contain piece-wise constant regions.

NDFs. We can now define a normal distribution function (NDF) as a probability distri-
bution on the extended unit disk, with the obvious measure. (The associated random event
is simply a “choice of normal”.) This definition slightly deviates from standard references
such as [132] and [7], but it is fully compatible with them, and is actually more convenient.
In hemispherical terms, NDFs like Beckmann and GGX require an additional cosine term to
integrate to 1, and their associated sampling routines also bake in a cosine (see eq. (4) and
(28) in Walter et al. [132]); in our formulation, no cosines need to be worried about. Further-
more, we now have more freedom in what passes as an NDF: any suitable plane function can
be restricted to the unit disk and properly normalized. In particular, Gaussians are perfectly
good NDFs, and this includes anisotropic and non-centered ones. Finally, statements such as
“blur an NDF by a Gaussian” now have a very precise meaning. Even though this is di↵erent
from spherical convolutions with vMF or Kent distributions, the di↵erence is not critical to
us: we simply use the convolutions to avoid singularities coming from unrealistically perfect
surfaces.

The P-NDF can now be defined as the probability distribution of the random variable
defined by sampling the footprint P , evaluating the normal at the sampled location, and
perturbing by the intrinsic roughness kernel. The last step can sometimes result in a normal
outside of the unit disk; these events are collected by the probability of ?, and are often
near zero in practice. Figure 3.13 shows di↵erent P-NDFs as the size of the pixel footprint
increases. Note that quite large footprint sizes are required for these NDFs to start to mimic
analytic normal distributions like Beckmann.
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Figure 3.5: The P-NDFs of a smooth specular heightfield with a Gaussian power spectrum, with a
pixel footprint covering about 15⇥ 15, 30⇥ 30, 90⇥ 90 and 300⇥ 300 texels respectively.
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Figure 3.6: Flatland illustration of P-NDFsampling and evaluation. (a) A normal map is a 1D
curve n(u) of the texture coordinate u. (The other component of the normal vector is

p
1� n(u)2).

(b) The pixel of interest projects to a Gaussian footprint given by Gp(u). (c) The P-NDFD(s)
giving the probability density of a given normal (s,

p
1� s2), assuming an intrisic roughness kernel

Gr(s) with � = 0.01. (d) P-NDFevaluation in flatland can be visualized as integration of the
combined Gaussian query Gc[P, s] over the segmented graph of the normal map. In areas where the
Gaussian is e↵ectively zero (outside of the ellipse) we can prune the segments using a hierarchy.

3.4 P-NDFEvaluation in Flatland and 3D

Our core challenge is to find an evaluation algorithm for the P-NDFD(s) for a half-vector
s, corresponding to a given footprint on a given normal map and with a given intrinsic
roughness; indeed, with such an algorithm at hand, it is straightforward to plug the P-
NDFinto a standard microfacet BRDF, which can be used for direct illumination calculations:

fr(i,o) =
F (i.h)G(i.h)D(h)

4 (i.n) (o.n)
(3.1)

where h = (i + o)/ki + ok is the half vector, n is the unmapped surface normal, F is
the Fresnel term, and G is a shadowing-masking term (only needed to avoid infinities at
grazing). In the following sections, we will first make the P-NDFevaluation problem more
approachable by analyzing the situation in flatland, and then present the full 3D solution,
which naturally follows from the flatland case.

The flatland situation is simpler: there is only one texture parameter u. The normal



CHAPTER 3. DETAILED RENDERING FROM COMPLEX SURFACES 31

map can be written as a function n(u) returning normals in (�1, 1), which is analogous to
the unit disk from the 3D case. The full normal vector is (n(u),

p
1� n(u)2). The pixel

footprint P will turn into a Gaussian reconstruction kernel Gp(u) that integrates to 1. Let
X be a random variable that is distributed according to Gp(u). The key question is, what is
the distribution of the random variable n(X) on (�1, 1)? This is not a simple multiplication
or convolution of the normal map with Gp, but instead a pdf of a dependent random variable.
The situation is illustrated in Figure 3.6.

We can write down the P-NDFas:

D(s) =

ˆ 1

�1
Gp(u)�(n(u)� s)du =

X

i

Gp(ui)

|n0(ui)|
, (3.2)

where ui are the roots of the equation n(u) = s. The delta function restricts the integral
to points where n(u) = s, and the second equation intuitively accounts for the “speed” of
crossing the root; it only works if a finite set of roots exists. As we can see, the P-NDFwill
have singularities at points where n0(u) = 0. These correspond to inflection points of the
original heightfield. This analysis shows that the P-NDFcan have infinite values. If we use
a pinhole camera and a point light, this can cause infinitely bright pixels. (Our distant
light/camera approximation is not the culprit; infinities could occur even if we did not make
this approximation.) Furthermore, there could be constant regions in the normal map, so
we get n0(u) = 0 for whole intervals, and corresponding delta functions in the P-NDF.

To avoid singularities and other problems inherent in perfect specular surfaces, we intro-
duce a tiny amount of finite roughness to the normal-mapped surface. Since the P-NDFis
just a function on the interval (�1, 1), we can convolve it with a Gaussian Gr(s) easily:

D(s) =

ˆ 1

�1

Gr(s� s0)

ˆ 1

�1
Gp(u)�(n(u)� s0)duds0

=

ˆ 1

�1
Gp(u)

ˆ 1

�1

Gr(s� s0)�(n(u)� s0)ds0du

=

ˆ 1

�1
Gp(u)Gr(n(u)� s)du

=

ˆ 1

�1
Gc[P , s](u, n(u))du. (3.3)

In the last step, we combined the two 1D Gaussians into a single 2D one:

Gc[P , s](x, y) = Gp(x)Gr(y � s). (3.4)

By changing the integration order and eliminating delta functions, we have removed any
notion of root finding or singularities from the problem, leaving a single well-defined integral
of a one-dimensional real function. An elegant way to intuitively visualize the result is that
we would like to integrate the combined reconstruction kernel Gc[P , s] along the graph of the
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normal function, the plane curve (u, n(u)). Note, though, that the measure is the standard
line measure on the u axis, not arc length along the graph. Figure 3.6 (d) illustrates this
intuition, and immediately leads to an accelerated query idea: we can use a hierarchy to
prune all normal map segments in areas where Gc[P , s] is e↵ectively zero.

In flatland, Gc is a 2D Gaussian, so we can subdivide the graph into many line segments,
and integrate the combined kernel along the line segments. This leads to integrals of 1-
dimensional Gaussians over the segments, which can be computed easily in terms of erf(·).
This shows the benefit of choosing Gaussian filters; other choices such as splines would lead
to integration problems without closed-form solutions.

Also note that we made the graph piecewise-linear, instead of the full integrandGc(u, n(u)):
the latter would be a bad choice, since the Gaussian can be much narrower than the dis-
cretization step. We would like to handle specular highlights arbitrarily smaller than the
finest discretization level, and this choice is key to achieving that goal.

3D analysis. We can extend the above line of thinking to three dimensions, with two-
dimensional texture space parameterized by u = (u, v), and a normal function n : R2 ! D.

A 2D Gaussian reconstruction kernel Gp : R2 ! R now models the pixel footprint P .
The random process of choosing a position u by sampling Gp and taking its normal will have
the following probability distribution:

D(s) =

ˆ
R2

Gp(u)�(n(u)� s)du =
X

i

Gp(ui)

| det J(ui)|
. (3.5)

This is in direct analogy to the flatland derivation. While the flatland case has singularities
at the inflection points of the original one-dimensional heightfield, here we have singularities
at det J(u) = 0, which is a set of curves in uv-space where the curvature of the original
heightfield flips between elliptic and hyperbolic. These curves directly correspond to the
“folds” we often see in P-NDFvisualizations. Again, piecewise constant normal maps (or
a�ne regions of the heightfield) make det J(u) = 0 over whole regions, causing delta functions
in D(s). In fact, we have tried to implement eq. (3.5) using analytic root finding and found
it impractical due to the singularities.

Therefore, as in flatland, we introduce intrinsic roughness. This is accomplished by a 2-
dimensional Gaussian kernel Gr(s), which convolves the P-NDF. The derivation is identical
to flatland except with bold letters:

D(s) =

ˆ
D
Gr(s� s0)

ˆ
R2

Gp(u)�(n(u)� s0)duds0

=

ˆ
R2

Gc[P , s](u, n(u))du. (3.6)

where
Gc[P , s](x,y) = Gp(x)Gr(y � s) (3.7)

We can again visualize this intuitively as integration of the combined 4D reconstruction
kernel Gc[P , s] along the graph of the normal function, (u, n(u)), which is a 2D surface in
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2 triangles / texel 32 triangles / texel

Figure 3.7: A patch of the normal map with 9 ⇥ 9 texels. The z-component of the normal is
visualized using iso-lines, to clearly depict curvature discontinuities. Using 32 triangles per texel
shows better smoothness than 2, at no extra storage.

4D space. This is hard to plot; however, the intuition that the graph can be triangulated
and Gc reduces to 2D Gaussians over the triangles is correct. The hierarchical pruning idea
also carries over from flatland.

In summary, we have observed that the P-NDFD(s) is not trivially evaluated at a single
point (direction) s. However, under Gaussian pixel and roughness kernels, we have cast this
evaluation as an integration problem, which can be solved by discretizing the normal map
into small a�ne patches. (Note, though, that the specular highlights we handle can still
be much smaller than the patches.) The next section discusses the details of solving this
integration problem.

3.5 Analytic integration

To numerically evaluate equation (3.6), we choose to discretize the normal map n(u, v)
into triangles, and linearly interpolate the normal across them. More precisely, we linearly
interpolate the s and t values; the third coordinate is implied.

The simplest solution is to split each normal map texel into two triangles. This is some-
times su�cient, but we found that this discretization can produce triangular artifacts in the
P-NDF, if the resolution of the normal map is too low compared to the features it depicts. If
this is an issue, we can up-sample the normal map, or subdivide texels into 4⇥ 4 sub-texels
using bicubic Catmull-Rom interpolation. Any other subdivision could be used, but 4 ⇥ 4
naturally matches the control polygon of the bicubic patch. Figure 3.7 shows the di↵erence
between the two options.

Integrating a 2D Gaussian over a triangle 4. Our goal is to compute integrals of
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the form

I =

ˆ
4
Gc(u, n(u))du =

ˆ
4
G(u)du. (3.8)

Since we linearly interpolate the normals, n is an a�ne function on 4, which allows us to
collapse the 4-dimensional combined Gaussian Gc into some other 2D Gaussian G.

This problem has been studied, and an R package implements one possible solution
[95]. There exist numerical algorithms for evaluating the cumulative distribution function
�(x, y, ⇢) of a bivariate Gaussian with �x = �y = 1 and covariance ⇢ [35], which can be
adapted to evaluate the desired integral. The PolyCub package also takes a similar approach.
We have implemented this method and it works correctly, but appears slower than our
method. A related problem for spherical Gaussians has been studied by Xu et al. [139].

Below we describe the implementation that we found to perform well in our case. 4 is
a triangle from our triangulation; due to its construction, we only have right triangles, with
two sides aligned to the axes. If 4 is the triangle given by (u0, v0), (u1, v0) and (u0, v1), we
obtain an integral

I =

ˆ
u1

u0

 ˆ
f(u)

v0

G(u, v)dv

!
du, (3.9)

where f(u) achieves a triangular integration domain:

f(u) =
(u1 � u)v1 + (u� u0)v0

u1 � u0
. (3.10)

So far, we have just explicitly stated the problem. Eliminating v by carrying out the inner
integration, and substituting x for the argument of the resulting erf function, this leads to
integrals of the form

experf(a, b, x0, x1) =

ˆ
x1

x0

exp(�a(x� b)2)erf(x)dx (3.11)

for some constants a and b, and shifted bounds x0 and x1. In fact, the same form will
result if we center the triangle instead of the Gaussian, or if we transform the problem so
the Gaussian is unit, or with any other similar approach. This integral does not have an
elementary solution, but we can approximate it as follows.

We choose to approximate the function erf(x) on the interval [�3, 3] by a piece-wise
quadratic function on six subintervals, and as �1 and 1 for |x| � 3. The problem thus
separates into integrals of the form

expquad(a, b, c0, c1, c2, x0, x1) =

ˆ
x1

x0

exp(�a(x� b)2)(c0 + c1x+ c2x
2)dx, (3.12)

which can be solved analytically using a computer algebra system. The result is long but
not fundamentally di�cult.
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heightfield patch h(u) normal map n(u) 1/| det J(u)|

2 triangles / texel 32 triangles / texel 2 triangles / texel
↵ = 0.001 ↵ = 0.001 ↵ = 0.05

Figure 3.8: Top row: A heightfield h(u) with a Gaussian power spectrum, its normal map n(u)
and the 1/| det J(u)| term that specifies the highlight brightness on a perfectly specular surface
(with singularities at points where the original heightfield flips curvature). Bottom row: the P-
NDFcorresponding to the footprint, computed using our approach. Left to right, with roughness
0.001 and two triangles per texel (showing some artifacts), with 32 triangles per texel, and with
roughness 0.05 and 2 triangles per texel (no artifacts).

Figure 3.8 illustrates the result of our integration algorithm on a particular normal map
patch.

Comparison against reference. The correctness of the derivation can be easily checked
against the binning method. That is, we use 100 million samples of Gp, look-up the normal
map, perturb by Gr, and store the samples in bins. Figure 3.24 shows the result. The time-
sequence comparison in Figure 1 is also computed using this method. Note the excellent
match between the two images, computed using completely di↵erent methods. A minor
di↵erence comes from the fact that the binning inherently computes bin integrals instead
of bin center values like our evaluation. The supplementary data contains several di↵erent
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our evaluation binning
32 triangles/texel 100 million samples

Figure 3.9: Comparison of the P-NDFevaluated by our approach to the reference P-NDFcomputed
by binning, demonstrating the correctness of our derivations, for a single pixel of the cutlery model.
A minor di↵erence comes from the “anti-aliasing” of the binning method, which naturally computes
bin integrals instead of bin center values like our evaluation.

NDFs compared against the reference, in floating point format. Note that we only provide
single-pixel rather than full-frame reference comparisons, since the latter would be extremely
slow to compute using the 100 million samples (see Figure 3.3), and would arguably provide
less insight than NDF comparisons.

3.6 Implementation

Hierarchical pruning of texels. To increase performance, we limit the Gaussians to
be non-zero only within 5� (a reasonable approximation). Therefore, many texels can be
pruned, because either Gp or Gr are zero over the whole texel. We can trivially reject texels
that fall outside of Gp. For Gr we utilize a min-max hierarchy over the normal map. More
precisely, for each texel, we precompute the minimum and maximum value of s(u, v) and
t(u, v), and build a quad-tree hierarchy over these bounds. For a given query of D(s), we
traverse the hierarchy, pruning whole groups of texels where Gr is guaranteed to be beyond
5�. The recursive traversal is similar to many other bounding volume approaches.

Importance sampling. Sampling from a P-NDFis easy by definition, using the same
technique as was used to create the binning reference: simply take the normal of a random
surface point seen through the pixel, and perturb by the intrinsic roughness kernel.

Adding other light paths. In our implementation, we separate the glint component
of the image (i.e. direct illumination on normal-mapped specular surfaces from point lights)
from all other light paths, which are computed using path tracing; any other standard
algorithm could be used as well. On the first bounce from the camera, we use the full normal
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map for importance sampling. On further bounces we use a global P-NDFapproximation for
both sampling and evaluation, since an accurate P-NDFno longer makes a di↵erence here.
We could also use a normal map mip-mapping method in that case. A simple extension
would be to smoothly transition to a normal map mip-mapping method in the distance,
once glinting becomes insignificant.

Alternatively, our algorithm can be treated as a new “black-box” BRDF with an addi-
tional pixel footprint specification, while keeping all other parts of a renderer unmodified.
However, we prefer to get separate timings, and we wanted to make sure the glint component
is completely deterministic, to avoid any confusion about how much noise comes from the
true glints vs. the algorithm. For this reason, we also do not use area lights, depth of field,
or motion blur in our results, though they would be easy to add.

3.7 Results

Our implementation uses the Mitsuba framework [51], and runs on a 6-core Intel i7-4770K
desktop at 3.5 GHz, hyperthreaded to 12 threads. Below we describe the scenes shown
in Figure 3.16. Please see their temporal versions in the attached video. Note how the
strong glinting is correct, given the normal map and the lighting; our method is entirely
deterministic and does not produce any Monte Carlo noise. Our timings (Table 3.2) refer
to one frame (1280 ⇥ 720). Note how the overhead of our algorithm is smaller than the
standard rendering with other light paths. Also note that our performance depends on the
number of pixels with glinty materials, and is independent of scene complexity.

Snail. This scene illustrates, on the snail’s shell, a smooth heightfield created by inverse
FFT from an isotropic Gaussian spectrum with randomized phase, converted to a normal
map. The features of the normal map are smaller than a pixel, and yet the result is far from
smooth, producing a fairly dramatic glint e↵ect.

Metallic paint snail. Metallic paint, often used on cars, is specifically designed to show
glints. Composed of several layers, the most important are the top clear-coat (which provides
the smooth specular highlight) and the colored absorptive layer with embedded aluminum
flakes [104]. We model the flakes using a normal map that is constructed by clustering the
pixels into Voronoi cells, whose centers are chosen using Poisson disk sampling, and assigning
a fixed normal to each cell, drawn from the Beckmann distribution. No normal interpolation
is necessary (or desirable) in this case: each texel has a constant normal. No subdivision
beyond 2 triangles is required either. We also added a di↵use lobe to approximate multiple
internal reflections between the flakes and the clear-coat. The snail is about 10 cm long,
making the flakes more visible than on a car.

Blender. This scene shows an energy drink blender with a bumpy plastic body and
a brushed metal lid. Brushed metal is notoriously di�cult to render under sharp lighting;
typical compromises include increasing groove size, light size and roughness to unrealistic
levels. None of this is necessary with our approach. We generated a normal map using the
inverse FFT approach but with an anisotropic Gaussian power spectrum, and added noise



CHAPTER 3. DETAILED RENDERING FROM COMPLEX SURFACES 38

isotropic noise metallic flakes ellipsoid bumps

brushed metal with dents scratched metal with dents ocean waves

(snail) (metallic snail) (blender body)

(blender lid) (cutlery)

Figure 3.10: Still frames from our five scenes: snail (showing a simple isotropic noise normal
map), metallic paint snail (modeling metallic flakes embedded in paint), blender (showing brushed
metal with dents and plastic with ellipsoid bumps), cutlery (scratched metal with dents) and ocean
(temporally varying waves caused by wind). We used simple sRGB in these images, but any tone-
mapping could be applied. The full animations are shown in the supplementary video. Normal map
contrast was enhanced for visualization purposes.
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Snail Metallic Blender Cutlery Ocean
Our 2.2 1.0 5.5 6.2 9.9
Global 15.6 19.5 19.0 8.7 -
Envmap - - 20.9 6.1 23.5
Total 17.8 20.5 45.4 21.0 33.4

Table 3.2: Timings of a typical frame in minutes on a 6-core hyperthreaded i7 machine. “Our”
refers to the runtime of our direct illumination algorithm, the rest is the cost of standard path
tracing. We split environment lighting into a separate component.

to the normals to simulate tiny dents. For the blender body, we used an ellipsoid bump
heightfield, which produces glints of di↵erent appearance from the snail.

Cutlery. This scene shows metallic cutlery with strong scratches from heavy use. A
configuration like this, under strong small LED lighting fixtures, is often seen in restaurants.
We generated the scratches as randomly oriented, slightly blurred line-shaped valleys. We
then added dents through noise, like with brushed metal above.

Ocean waves. Finally, we show our method applied to the ocean, with similar but
larger features than previous examples. Here we model the ocean as a single rectangle with
a normal map generated using the inverse FFT method [120]. While good anti-aliased ocean
renderings have been possible using LEAN or LEADR methods, we can produce very sharp
and correct glints even in the distance, where multiple waves project to a pixel.

3.8 An Improvement using Gaussian Elements

As demonstrated in previous sections, our basic triangulation-based solution is able to gen-
erate detailed glints from complex surfaces. However, this approach is still expensive and
lack full generality in material and illumination support. In this section, we introduce an
e�cient and general method that can be easily integrated in a standard rendering system.

A key design decision of our improved approach is the representation of the high-resolution
specular surface detail. We propose to represent the normals of the surface, with intrinsic
roughness applied, as a 4-dimensional position-normal distribution. This distribution can be
accurately approximated as a mixture of millions of 4-dimensional Gaussians (on the order
of the number of texels). We will denote these Gaussians as elements.

Below, we first explain this idea in flatland (where the Gaussians are 2-dimensional), and
the next subsections will transfer our intuitions to the full 4D case.

Mathematical framework in flatland

In flatland, the domain analogous to the unit disk (projected hemisphere) is simply the
interval [�1, 1]. We repeat the P-NDFevaluation in flatland with intrinsic roughness (Equa-
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tion 3.3) as:

DP(s) =

ˆ 1

�1

Gr(s� s0)

ˆ 1

�1
Gp(u)�(n(u)� s0) du ds0

=

ˆ 1

�1
Gp(u)Gr(n(u)� s) du. (3.13)

Earlier, we evaluate the integral by assuming n(u) is piecewise linear, which works but
leads to harder integrals without closed form solutions. We instead precompute an approxi-
mation to the whole second factor, Gr(n(u)�s). This function is what we propose to be our
surface representation, the position-normal distribution N (u, s). Note that both Gr and Gp

are normalized (they integrate to 1). The top row of Figure 2.8 also demonstrates the idea:
(a) shows a flatland surface and (b) the position-normal distribution of this surface. Note
that normalization of N over u is not needed; it is su�cient that Gr is normalized over s.

Next, we propose to approximate N as a sum of 2D Gaussians in u and s, with scaling
coe�cients ci, means xi and covariance matrices ⌃�1

i
:

N (u, s) = Gr(n(u)� s) ⇡
mX

i=1

Gi(u, s), (3.14)

where

Gi(u, s) = ci exp

✓
�1

2
(x� xi)

T⌃�1
i
(x� xi)

◆
(3.15)

and x = (u, s)T . A key advantage of this representation is that the P-NDFquery (for a given
P and s) can be written as:

DP(s) =

ˆ 1

�1
Gp(u)N (u, s) du ⇡

mX

i=1

ˆ 1

�1
Gp(u)Gi(u, s) du. (3.16)

Conveniently, the integral inside the sum has an e�cient closed-form solution: as s is fixed,
this is a product of two 1D Gaussians, which is just another Gaussian, easily integrable on
the infinite domain. Fortunately, this convenience will carry over to the full 4D case. This
is in contrast to our previous approach, which leads to much harder finite-domain integrals.

Creating a Gaussian mixture

A key question is how to create the Gaussian mixture approximation to N (u, s). It would
be interesting to consider hierarchical EM techniques [131, 53], but typical applications of
EM start from discrete samples. In our problem, the distribution is available explicitly.
Specifically, we have access to the Jacobian of the normal map, letting us tightly align
anisotropic Gaussians to surface curvature. EM would also introduce randomness, losing the
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(a) overshoot (b) clumping

Figure 3.11: If the sampling rate is insu�cient, or an overly large �h is used, this leads to overshoot
(a): the Gaussians do not follow the distribution closely enough. In contrast, an overly small �h
used for the seed Gaussians leads to a clumping artifact (b). Both problems can be avoided by using
a su�ciently small step size h and setting �h = h/

p
8 log 2.

guarantee that animated normal data will remain temporally coherent. Therefore we use a
more direct approach specialized for our application.

Flat and curved elements. When creating the Gaussian mixture representing a surface
heightfield, we can think about approximating the heightfield as locally first-order (flat), or
we can approximate the normal map as locally first-order, essentially making the heightfield
approximation second-order (curved). In the following, we will explore and compare both
approaches. We will define flat elements as ones given by axis-aligned Gaussians (i.e. ones
with a diagonal covariance matrix); intuitively, these represent flat surface patches with a
constant normal. We also define curved elements to be given by general Gaussians; these
represent patches with approximately first-order local normal variation, thus a second-order
variation of the surface heightfield.

Seed points. As a first step, we distribute m seed points ui in the normal map domain.
Each of these will be converted into an element by considering the value, and optionally
the derivative, of the normal map function at ui. The simplest approach to choose the seed
locations is uniform sampling with step h; the ideal value of h will depend on the frequency
content of the normal map function.

Next, we need to choose the standard deviation �h of the Gaussians in the normal map
domain. Consider two Gaussians with standard deviation of �h whose centers are h apart;
we would like them to decay to half of their peak value exactly at the midpoint between
them. Setting �h = h/

p
8 log 2 achieves this, and works well in practice.

Flat elements. To convert a normal map into flat elements, we are approximating the
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normal n(u) as locally constant; that is, the surface is assumed locally flat near ui. The i-th
Gaussian we are creating can be written as:

Gi(u, s) = ci exp

✓
�(u� ui)2

2�2
h

◆

| {z }
position band

exp

✓
�(s� n(ui))2

2�2
r

◆

| {z }
normal band

. (3.17)

This results in a 2D Gaussian, whose inverse covariance matrix is diagonal, with values 1/�2
h

and 1/�2
r
on the diagonal. We can see the above 2D Gaussian as a product of a Gaussian

band in positions around the sampling point ui, and a Gaussian band in normals around
the value n(ui). The resulting approximation can be seen in Figure 2.8(c): we can see how
axis-aligned Gaussians are suboptimal for representing the position-normal distribution of a
smooth surface.

Curved elements. For curved elements, we are intuitively trying to make the Gaus-
sian locally align with the position-normal distribution, by approximating the normal map
function n(u) as linear (first-order) throughout the element. To achieve this, we replace
the above normal band around n(ui) with a “sheared” band, which follows the first-order
expansion n(u) ⇡ n(ui) + n0(ui)(u� ui). This leads to the following definition:

Gi(u, s) = ci exp

✓
�(u� ui)2

2�2
h

◆
exp

✓
�(s� n(ui)� n0(ui)(u� ui))2

2�2
r

◆
. (3.18)

By using the shorthand notation �u = u� ui, �s = s� n(ui) and n0 = n0(ui), we can write
this as:

Gi(u, s) = ci exp

✓
� �u2

2�2
h

◆
exp

✓
�n02�u2 � 2n0�u�s+ �s2

2�2
r

◆
. (3.19)

This lets us write the 2⇥ 2 inverse covariance matrix of this Gaussian as follows:

⌃�1
i

=
1

�2
h

✓
1 0
0 0

◆
+

1

�2
r

✓
n02 �n0

�n0 1

◆
. (3.20)

The result can be seen in Figure 2.8(d): the position-normal distribution is approximated
much better, with subtle artifacts still visible with 80 elements, but barely any error with
160 elements.

The seed size �h and the sampling step h need to be chosen well, otherwise approximation
artifacts will result (Figure 3.11). The seed size can be fixed by following our �h heuristic, but
the ideal step size will depend on the normal map frequency content. For well-sampled normal
maps without excessive high frequencies, we found setting h to half a texel was su�cient for
accurate results. More discussion of step size (and the resulting storage requirements) can
be found in the next section.
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Framework and mixture construction in 4D

Now that we have the flatland derivations, in this subsection, we transfer the flatland deriva-
tions to actual normal maps, and turn the framework into a full algorithm in 4D afterwards.

For a 2D normal map, we can similarly define the 4D position-normal distribution, and
approximate it as a mixture of Gaussians:

N (u, s) = Gr(n(u)� s) ⇡
mX

i=1

Gi(u, s), (3.21)

where the Gi are 4-dimensional Gaussians in positions and normals. They can be represented
as triples (ci,xi,⌃i) of a scaling coe�cient, center and a 4⇥ 4 covariance matrix:

Gi(x) = ci exp

✓
�1

2
(x� xi)

T⌃�1
i
(x� xi)

◆
, (3.22)

where x = (u, s)T is a 4D column vector. The constant ci should be chosen such that the
integral of Gi equals the area of the normal map it represents, e.g. 1/4 of a texel’s area,
when using 4 elements per texel. Again, we can evaluate the P-NDFe�ciently:

DP(s) =

ˆ
R2

Gp(u)N (u, s) du ⇡
mX

i=1

ˆ
R2

Gp(u)Gi(u, s) du, (3.23)

where the latter integrand collapses to a 2D Gaussian, leading to a closed form solution.
Please refer to the Appendix for details.

Like in flatland, we can create the Gaussian mixture by distributing seed points in texture
space, and turning each seed point into either a flat or curved element, as detailed below.

Flat 4D elements. To convert a 2D normal map into flat elements, we define si = n(ui),
�u = u�ui and �s = s�si. Extending the flatland idea to a 4D Gaussian is straightforward:

Gi(u, s) = ci exp

✓
�k�uk2

2�2
h

◆
exp

✓
�k�sk2

2�2
r

◆
. (3.24)

This covariance matrix can be easily seen to be diagonal: ⌃�1
i

= diag(�2
h
, �2

h
, �2

r
, �2

r
)�1.

As an aside, a mixture representing a collection of flat elements (as in metallic paint)
does not necessarily need to be sampled from an underlying normal map. It can also be
created directly: we can use Poisson sampling [27] to distribute seed Gaussians, and assign
to each a random constant normal (e.g. drawn from the Beckmann distribution). This is
used for our metallic paint flakes approximation.

Curved 4D elements. Here we are approximating the normal function n(u) as linear:
n(u) ⇡ si + J�u, where J is the Jacobian of n at ui. The Gaussian then becomes:

Gi(u, s) = ci exp

✓
�k�uk2

2�2
h

◆
exp

✓
�k�s� J�uk2

2�2
r

◆
. (3.25)
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(a) sampling (b) evaluation (c) combined

Figure 3.12: Our improved material model can be used inside a standard BRDF sampling/evaluation
framework with multiple importance sampling. BRDF sampling alone (left) captures the reflection
of the light through the flat areas of the map, but is suboptimal for rendering the scratches. Light
sampling (middle), using our fast P-NDFevaluation under the hood, captures illumination from the
high-intensity parts of the HDR light texture onto the scratches. The combined result (c) has the
benefits of both estimators.

By expanding k�s�J�uk2, we find that the 4⇥ 4 inverse covariance matrix of this Gaussian
can be written (using block notation) as:

⌃�1
i

=
1

�2
h

✓
I 0
0 0

◆
+

1

�2
r

✓
JTJ �JT

�J I

◆
. (3.26)

3.9 Implementation using Gaussian Elements

In this section, we will introduce key implementation using Gaussian elements. Specifically,
we will discuss importance sampling and acceleration of the algorithm using a 4D hierarchy.

Importance sampling

The above sections dealt with P-NDFevaluation, which is the more challenging part, but for
integration in Monte Carlo rendering, we also need to be able to sample P-NDFs on a given
footprint P .

We could sample the underlying normal map from which the Gaussian mixture is gener-
ated, and perturb the sampled normal by the intrinsic roughness. This is the same approach
we use for generating a ground truth P-NDF. An alternative way is to sample from the Gaus-
sian mixture directly, picking an element proportional to its contribution to the footprint,
then picking a normal from that element. The advantage of the first is speed and a simple
implementation. However, it only works for mixtures that have been constructed from a
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normal map, which need not be true in general (our metallic flakes in the top of Figure 3.16
are such an example). Furthermore, the latter method samples a distribution that matches
our evaluation exactly, instead of just approximately. Therefore, we use the latter option in
our results.

Having the ability to evaluate and sample the P-NDFenables us to fully integrate the al-
gorithm into a multiple importance-sampling framework [129], and support various sources of
illumination: environment maps and area lights, including ones with HDR emission textures.
Figure 3.12 shows a scratched surface rendered under a textured area light. We separate the
two estimators (sampling and evaluation); the components include the weights, so that the
sum of the separated images is the combined image. The separation we observe supports
natural intuition: the reflection of the light through the flat parts of the scratched map
is easy to render by BRDF sampling (a), but shading the scratches requires sampling the
high-intensity spots on the lightsource and evaluating the P-BRDF and thus the P-NDFin
that direction (b). The combined image (c) has the benefits of both.

Acceleration hierarchy

The number m of 4D Gaussian elements in our mixture will be in the millions: a typical
sampling step h is about half texel to one texel, which for a 20482 normal map will produce
16 million elements. Clearly, only a tiny number of these Gaussians will have a non-negligible
contribution to a given query footprint Gp(u) and a given query half-vector s. This problem
is identical to one faced by Jakob et al. [55]and our triangulation-based approach earlier,
except the primitives they are bounding are point reflectors and triangles, respectively. They
address this issue by 4D bounding-volume hierarchies over the (u, v, s, t)-space, and we follow
a similar approach with some improvements.

A straightforward approach would be to create a 4D bounding box for each Gaussian
element (treating their contribution as negligible beyond some distance, e.g. using a 3� rule),
and build a hierarchy on these bounding boxes in a top-down manner, using median splits. A
P-NDFevaluation query in this hierarchy is given by a rectangle in (u, v)-space, bounding the
footprint Gaussian Gp(u), and a point in (s, t) space, specifying the half-vector of interest.
The contributing Gaussians can be found by a top-down traversal, pruning bounding boxes
with no intersection with the query.

We found this natural approach works, but its performance can be enhanced by two
additional ideas. First, we can trade o↵ storage for performance: instead of having a single
hierarchy, we subdivide (s, t)-space into a few hundred cells (sub-domains), and build a much
smaller hierarchy per cell. Our query is point-wise in (s, t), so each query can be immediately
answered by a single one of these smaller sub-hierarchies, and can therefore be faster. Of
course, this is at the expense of extra storage, since an element will commonly occur in
multiple sub-hierarchies.

An additional speedup can be achieved by stopping the build process earlier (at about 5
Gaussians per leaf node), since our closed-form solution per Gaussian is fast, and at some
level becomes less of a bottleneck than traversal operations.
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Finally, since our P-NDFsampling is done using the element approximation, instead of
sampling the underlying normal map, we need to accelerate the sampling operation. Here
we just need to sample the footprint Gaussian, obtaining a (u, v) pair, and then quickly find
all elements that contribute to this pair. We simply use a separate 2D hierarchy over the
(u, v) domain to answer this query.

(a) 24 sec (b) 3114 sec (c) 300 sec (d) Ground truth (e) Our approx.
Gaussian elem. Triangulation Triangulation Slice of N (u, s) Slice of N (u, s)

32 �/texel 2 �/texel (full 4D) (full 4D)

Figure 3.13: Left 3 images: P-NDFimages evaluated in single-threaded C++; the timings are
for evaluating the visualizations themselves, not final renderings. Our method (a) using Gaussian
mixtures is about 130⇥ faster than our triangulation-based solution when the normal map is dis-
cretized using 32 triangles per texel (b). The match is very good, because our Gaussian mixture fits
the position-normal distribution well. Our method is, moreover, still more than 12⇥ faster than our
previous approach if using only 2 triangles per texel (c), and has higher quality. Right 2 images:
Accuracy of fitting the actual 4D position-normal distribution N (u, s) with our Gaussian mixture.
The full distributions are four-dimensional and cannot be visualized directly. Therefore we slice
the space by taking a small segment of a normal map scanline, and show only the s-component of
normals, integrating along the t-component. Note how our approximation is accurate, with minimal
overshoot.

3.10 Results using Gaussian Elements

We implemented the improved algorithm in C++. For rendering final images, we integrated
our P-NDFevaluation and sampling code in the Mitsuba framework [51].

Correctness and performance

First, we compare the P-NDFs computed using our method to our earlier solution, which is
accurate and can be treated as ground truth. Figure 3.13 (left images) shows a good match
using our improved P-NDFevaluation, while demonstrating a 130⇥ speedup. One may think
that the speed-up is because of overly fine subdivision (32 triangles per texel). However, it
turns out that decreasing the subdivision rate of our previous method significantly reduces
the quality and is still 12⇥ slower than our method.
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triangulation Gaussian elements triangulation Gaussian elements

Figure 3.14: Rendering comparison to our previous triangulation-based solution (with full quality
settings), demonstrating that a close match in the P-NDFvalues translates to a close match in
renderings using our improved Gaussian elements approach. We separate the specular component
of the image and use an identical sampling pattern for a direct comparison. Top: direct specular
component on a simple curved surface, showing a match down to specific glints. Bottom: cutlery
scene with additional light transport added. We achieve a speedup of about 32⇥ in rendering the
specular component.

In addition to comparing P-NDFs, we also directly compare the ground truth position-
normal distribution N (u, s) to our approximation using Gaussian mixtures. This can be
seen in Figure 3.13 (right images). Since these are 4D distributions, we visualize them by
slicing along a small segment of a normal map row, and integrating along the t-component
of the normal. This shows that our approximation matches the ground truth well, if the
right sampling step is chosen.

We also compare to our basic triangulation-based approach on an actual rendering in
Figure 3.14. Here, for a direct comparison, we separate the specular component and use a
point light like our previous method; we also use the same sampling pattern. We get closely
matching results, with a speedup of 32⇥ in computing the direct specular component (this
is less than in Figure 3.13, because other operations become important, notably tracing eye
and shadow rays).

E↵ect of sampling rate on quality

Of course, a key issue is whether the step size h delivers su�cient accuracy, and this depends
on the specific normal map, and on the desired intrinsic roughness �r. In our experience,
setting h to half a texel size delivers accurate results for �r = 0.005, for typical normal maps
that do not contain excessive fine noise. We use these settings in our final image and video
results.

Figure 3.15 shows the result of varying the step size h, setting it to 0.5, 1, and 2 texels.
This corresponds to 4, 1, and 0.25 elements per texel, respectively. With 4 elements per
texel, both the image and the P-NDFvisualization show no artifacts. With one element per
texel, some error can be seen in the P-NDFvisualization but the rendering itself is barely
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(a) h = 0.5 texel (b) h = 1 texel (c) h = 2 texels

Figure 3.15: Comparison of di↵erent sampling steps h. When setting h to half a texel (a), i.e.
4 elements per texel, neither the image nor the P-NDFvisualization show approximation artifacts;
this setting is what we use in our final results. When h = 1 texel (b), i.e. one element per
texel, the rendering is only slightly degraded but some individual Gaussians become visible in the
P-NDFvisualization (b). With h = 2 texels (c), i.e. one element per 4 texels, the rendered highlight
starts showing signs of lower contrast, while the P-NDFimage clearly shows overshoot and individual
Gaussians.

degraded. With one element per 4 texels, the P-NDFimage shows obvious overshoot and
individual Gaussians; this causes directional blurring, whose e↵ect on the rendering is some
loss of specular contrast.

E↵ect of element sampling rate on quality

Of course, a key issue is whether the step size h delivers su�cient accuracy, and this depends
on the specific normal map, and on the desired intrinsic roughness �r. In our experience,
setting h to half a texel size delivers accurate results for �r = 0.005, for typical normal maps
that do not contain excessive fine noise. We use these settings in our final image and video
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Figure 3.16: Final image renderings using our improved method. Insets are zooms of image itself
(not re-rendered at high resolution). Top: car paint (scratched coating with embedded metallic
flakes). Both e↵ects use our method; the scratches use curved elements and the metallic paint uses
flat elements. Bottom: leather sofa on a wooden floor; both materials use a combination of a
macro-level standard normal map, and a micro-level map handled using our technique.

results.
Figure 3.15 shows the result of varying the step size h, setting it to 0.5, 1, and 2 texels.

This corresponds to 4, 1, and 0.25 elements per texel, respectively. With 4 elements per
texel, both the image and the P-NDFvisualization are accurate. With one element per
texel, some error can be seen in the P-NDFvisualization but the rendering itself is barely
degraded. With one element per 4 texels, the P-NDFimage shows obvious overshoot and
individual Gaussians; this causes directional blurring, whose e↵ect on the rendering is some
loss of specular contrast.
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Final renderings

We also illustrate our method’s capabilities on final image renderings, shown in Figure 1
and 3.16. Results of this kind would not be easily achievable by the method of Jakob et
al. [55](due to lack of support for smooth explicit normal maps), or our triangulation-based
method (due to lack of support for high-frequency environment map and area lighting).
Please make sure to watch the temporal versions of these results in the included video.

Kettle. This scene (Figure 1) demonstrates a glinty scratched stainless steel material
similar to one shown previously for the basic approach. However, note that our rendering is
lit by area and environment lighting without multiple passes or other special handling. In
fact, our performance is only 1.4⇥ slower than the same scene rendered with a traditional
microfacet BRDF with no glinty behavior (2.65 vs. 1.88 min).

Car door. This scene is shown in Figure 3.16, top. The material combines two di↵erent
glinty e↵ects. A top coating is modeled by a scratched normal map, represented using curved
elements. The bottom layer of metallic flakes embedded in the paint under it is represented
using flat elements and has been created directly by Poisson sampling, without the need for
a normal map. Lighting is from an environment map combined with a point light.

Wood floor and leather sofa. This scene is shown in Figure 3.16, bottom. It shows a
leather sofa on a wood floor. It is demonstrating an additional useful feature of combining a
macro-scale bump map (handled using the standard approach of shading frame perturbation)
with a micro-scale normal map handled using our P-BRDF approach, similar to [155]. This
lets our method render materials that have interesting structure at multiple scales, which
would require immensely large normal maps to represent using a naive single-map approach.

Time and storage. All images are rendered at 1280⇥ 720, with 1024 samples per pixel
(1600 for leather sofa). These sampling rates were used to achieve low Monte Carlo noise
in the videos; good still images can be produced with fewer samples. The timings on a
36-thread Amazon EC2 machine (c4.8xlarge) were 2.6 min (kettle), 6.8 min (car door) and
7.6 min (leather sofa).

The storage requirements depend on normal map size and sampling rate. Our results use
a 20482 texture and 4 elements per texel, which requires 720M to store the Gaussians and
an additional 400M for the acceleration hierarchy. If using 1 element per texel (which may
well be su�cient for most applications), the costs would be 180M and 100M respectively.
The normal map itself would take 32M (in floating point precision).

3.11 An Extension using Wave Optics

So far, we have presented a triangulation-based approach and an improved Gaussian elements
approach for accurate and e�cient rendering of detailed surfaces. Theoretically, with either
of these methods, we should be able to match real world appearance exactly. However, when
we look at the real photos in Figure 3.18, we notice the colors even if they are illuminated
by a white light source. This is an interesting phenomenon that we immediately conclude as
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geometric optics wave optics wave optics
single wavelength spectral

Figure 3.17: The Cutlery scene rendered using wave optics. Left: Rendering with our improved
geometric method. Middle: Using wave optics, even with a single fixed wavelength, our method
generates a more natural appearance as compared to geometric optics. Right: A spectral rendering
additionally shows subtle but important color glint e↵ects. Insets show enlarged regions and repre-
sentative BRDFs generated using each method. We encourage readers to zoom in to better see color
and detail, and to view the full resolution supplementary images to see the subtle details on all of
the figures.

impossible for traditional geometric optics—it will produce exactly white highlights under
white light source.

This observation leads to three questions. First, if geometric optics has its limitations at
such fine level of detail, is wave optics able to give us more accurate results? Second, can
we design a rendering algorithm based on the more accurate wave optics models, but also
able to compute spatially-varying solutions with high-resolution detail? Third, how close
is geometric optics to wave optics, apart from the color di↵erence? To our knowledge, our
work is the first to consider all these questions in full generality, modeling the surfaces as
arbitrary discretized heightfields.

In this section, we discuss how to evaluate the detailed BRDF integrals for our wave optics
di↵raction models. Our high-level idea for e�ciently approximating the integral in equation
(2.8) is to approximate the phase-delay reflection function R?(s) by a weighted combination
of Gabor kernels, which are products of a 2D Gaussian with a complex exponential (plane
wave). These kernels are well suited to representing the high-frequency features found in
typical R?(s), while also having other desirable properties.

Before we proceed, we briefly list the symbols used in our wave optics models in Fig-
ure 3.19. Detailed explanations of these symbols, together with the background knowledge
for wave optics, are introduced in Chapter 2.
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Figure 3.18: Real world photos showing colors under a white light. Left: the back of a laptop. Right:
an aluminum patch. Both photos are taken with a Canon EOS 5D Mark III ESLR with a small
LED light. Note how these materials produce colors even if they are generally believed to be white.

i Imaginary unit for complex numbers, i2 = �1
� Wavelength of light
n Average surface normal (equal to z-axis)
s 2D point (on the XY plane)

H(s) Height of surface above s

H
0(s) Gradient of height function
S̄ Domain of height function (region on XY plane)
AS̄ Area of S̄
!i Direction from which light arrives (3D unit vector)
!o Direction of reflected light (3D unit vector)
  = !i + !o

 2D projection  (removing its z-component)
fr Bidirectional reflectance distrib. function (BRDF)
F Surface reflectance (e.g., from Fresnel equations)

⇠1, ⇠2, ⇠3 See figure 2.5

Figure 3.19: List of symbols used in our wave optics models.

Gabor kernels

Let us define a Gabor kernel as the product of a 2D Gaussian and a complex exponential:

g(s;µ, �,a) = G2D(s;µ, �) e
�i2⇡(a · s) (3.27)

where G2D(s;µ, �) =
1

2⇡�2 exp
⇣
�ks�µk2

2�2

⌘
is a normalized 2D isotropic Gaussian. Here µ is

the center, � the width and a the plane wave parameter. This definition is similar to others
used in the literature; the normalization constant of the Gaussian and the additional 2⇡
factor in the complex exponential are chosen to simplify the following derivations.
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The Fourier transform of a Gabor kernel can be written as another Gabor kernel:

F [g(s;µ, �,a)](v) = e�i2⇡(µ · (v+a)) e�2⇡2
�
2kv+ak2

=
1

2⇡�2
e�i2⇡(µ ·a) g

✓
v;�a,

1

2⇡�
,µ

◆
(3.28)

Notably, Gabor kernels have an analytical Fourier transform that is itself a Gabor kernel.
This means that the kernels and their transforms both have spatially localized support
(ignoring negligibly small values of the Gaussian component), which is a key property for
designing an e�cient pruning algorithm.

Approximating Phase Shifts with Gabor kernels

As explained in Chapter 2, the highfield introduces spatially-varying phase shifts R(s) for
di↵erent wavelengths (Equation 2.6). However, the function R is highly complicated for
further computation. So, we approximate R with Gabor kernels. We first subdivide the
heightfield domain S̄ into a grid of cells. We use a uniform grid so all the cells are identically-
sized squares, matching the original heightfield texels, but an adaptive subdivision could also
be used. Then we select a set of cells, with centers mk, that covers the support of the current
coherence kernel. Since the cells are much smaller than the coherence area, we approximate
the coherence kernel as being constant over a cell with value wk = w(mk�xc). Then we place
a Gabor kernel centered on each grid cell designed to approximate R(s) in its neighborhood.
Together this gives us an approximation for R?(s) of the form:

R?(s) ⇡
X

k

wkRk(s) =
X

k

wkCk g(s;mk, �k,ak) (3.29)

where Ck is a complex constant, incorporating an appropriate scaling coe�cient and phase
shift.

We choose �k = lk/2, where lk is the side length of the cell. This choice was found to
give good results experimentally. A sum of Gaussians is not an exact partition of unity; this
leads to slight approximation error that manifests itself as spurious periodic copies of the
main transform image in the Fourier domain. However, for the choice �k = lk/2, the copies
are weak enough that we do not observe them in practice.

Next, we approximate the heightfield H(s) in each cell by its first order expansion around
mk:

H(s) ⇡ H(mk) +H
0(mk) · (s�mk) (3.30)

= H
0(mk) · s+ (H(mk)�H

0(mk) ·mk) (3.31)

where H 0(mk) is the gradient of the heightfield at mk. Substituting this approximation into
the definition of R(s), we can approximate a single grid cell’s contribution as:

Rk(s) = B2D(s;mk, lk) ⇠2 e
� i2⇡⇠3

� H(s) (3.32)

⇡ l2
k
G2D(s;µk, �k) ⇠2 e

� i2⇡⇠3
� (↵k+H

0(mk) · s) (3.33)
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ground truth 2x2 kernels / texel 1 kernel / texel

1 kernel / 2x2 texels 1 kernel / 4x4 texels 1 kernel / 8x8 texels

Figure 3.20: A color-mapped (range [-1,1]) visualization of the real component of R(s) for the
isotropic noise heightfield (the imaginary component looks similar). The area depicted is about
64 ⇥ 64 texels, using the resolution of 1 micron / texel. Note the common structure seen in these
functions: high-frequency ripples aligned with slopes of the original heightfield, with frequency in-
creasing proportional to slope. This structure is ideal for approximation by Gabor kernels. These
images show the approximation quality for various kernel sampling densities. All our results use 1
kernel per texel (i.e. per micron). Note that as the number of kernels decreases, the approximation
degrades, as expected.

where ↵k = H(mk)�H
0(mk) ·mk. B2D is a binary box function indicating the domain of

the grid cell, which integrates to the cell’s area l2
k
. Then we replace the box function with a

2D Gaussian of the equal area.
Comparing the coe�cients in Equation 3.33 with the definition in Equation 3.29, we have

Ck = l2
k
⇠2e

� i2⇡⇠3
� (H(mk)�H

0(mk) ·mk) (3.34)

ak =
⇠3H 0(mk)

�
(3.35)

which completes our Gabor approximation for R?(s).
Figure 3.20 shows R(s) for an example heightfield compared to its approximation as a

sum of Gabor kernels. While the sampling rate is slightly visible in the approximation,
overall it closely matches the high frequency details in the original.
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Figure 3.21: The heightfields used in our wave optics model. Left to right: isotropic bumps, brushed
metal, scratched metal. These are 5122 crops of the full 81922 maps. The units (horizontal and
vertical) are microns (µm), so the full maps cover a square area about 8.2 mm ⇥ 8.2 mm large.

BRDF approximation

Finally we use our Gabor kernel approximation to evaluate the BRDF. Starting from Equa-
tion 2.11 we have:

fr(!i,!o) =
⇠1
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where we can use the above definitions of the quantities Ck and ak, and equation (3.28)
to evaluate the Fourier transform of the Gabor kernel. Thus we can evaluate the sum in a
straightforward manner by iterating over all the cells within the coherence area. We also
apply pruning to non-contributing cells, as detailed in the next section.

3.12 Results using Wave Optics

Implementation Details

Before we show our results using wave optics, we first provide key implementation details of
our Gabor kernel solution.

Heightfields and Gabor kernels. We use pre-defined high resolution (8K ⇥ 8K)
heightfields as texture maps to specify the microgeometry, where each texel represent a fixed
size of 1 square micron in the real world. The heightfields are tiled repeatedly to achieve a
high resolution over a surface. The texels in a heightfield form a uniform grid naturally, so,
we convert each texel into a Gabor Kernel, as specified in Section 3.11.
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# evaluations (isotropic) # evaluations (brushed)

Figure 3.22: Visualization of the numbers of Gabor kernels that are evaluated to calculate the BRDF
values toward di↵erent directions. Note that the shapes of the corresponding BRDFs are captured
well, and that a large number of evaluations are successfully pruned.

For simplicity, we assume no distortion from the texture map, i.e. the texture coordinates
are defined to be area preserving and orthogonal in terms of u and v directions in the world
coordinate system.

Acceleration by pruning. To accelerate computation, the key is to quickly decide
whether a Gabor kernel contributes to the desired outgoing direction !o. Regardless of
the cancellation from the complex numbers, each Gabor kernel is bounded by a Gaus-
sian G2D(s;mk, �k) positionally and by G2D(v;�ak,

1
2⇡�k

) directionally. Although in theory
Gaussians have infinite support, in practice we limit them to within ±3 standard deviations,
and clamp them to zero outside this region so they have only localized support.

We pre-generate a mipmap-style hierarchy for each heightfield, where each node contains
both positional and directional bounding boxes of its 4 child nodes. For each BRDF query,
we perform a top-down traversal of this hierarchy, discarding nodes that are not within
the coherence region S̄ using their positional bounding boxes. At the same time, we use the
directional bounding boxes to prune the nodes that will not contribute to the query direction
 /�.

Figure 3.22 shows the number of evaluations towards di↵erent directions to generate an
example BRDF image. In general, each Gabor kernel contributes to a much larger range
directionally in wave optics than the elements in geometric optics [146]. This explains the
soft appearance in these images, as well as slower performance of wave optics. However,
our hierarchical pruning is still e�cient. In practice, we have a more than 50⇥ speedup as
compared to the un-accelerated implementation.

Importance sampling. With the Gabor kernels defined to represent a heightfield, it is
straightforward to perform BRDF importance sampling to get the outgoing ray for global
illumination. First, we randomly pick a Gabor kernel within the coherence region according
to its weighting function w(s). Then, we immediately know that the chosen Gabor kernel
contributes to a Gaussian directionally, as analyzed in the acceleration part. By sampling
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this Gaussian, we have the sampled query direction  /� and thus the corresponding outgoing
direction !o.

The sampling weight can be calculated as the BRDF evaluation with sampled !o, divided
by the sampling pdf. However, in practice, we found that wave optics e↵ects are essentially
not observable in indirect lighting. So, we assume that our sampling weight is always 1, i.e.
discarding the complex cancellations and assuming contribution only from the Gaussian part
of each Gabor kernel. This gives us significant speed-up, allowing the indirect illumination
to use more samples to converge. This is roughly equivalent to reducing the coherence area
used for indirect illumination to the size of our Gabor kernels.

Practical rendering pipeline. For convenience, we separate the final rendered image
into three components. First, direct illumination from point lights. Second, indirect illumi-
nation from point lights. Third, illumination from other lights, including the environment
lighting, both direct and indirect. The separation allows us to use very few samples per
pixel to render the most time-consuming first part, usually only 4 to 25 samples on a regular
sub-pixel grid.

Spectral rendering. For each BRDF evaluation, we compute for di↵erent wavelengths
ranging from 0.36 microns to 0.83 microns, i.e. the visible spectrum. We find that using
8 spectral samples is generally good enough to produce identical results to those generated
using more samples. We split the wavelength range into bins and use the midpoints (not end-
points) of the bins as the samples. We follow the standard spectrum samples!XYZ!RGB
method to eventually convert the spectral values to the sRGB color space.

We also find it useful to perform the top-down pruning only once using the largest
wavelength. In this way, we record all contributing Gabor kernels first, then evaluate them
for all spectrum samples at once. As a result, our computation time scales sub-linearly with
the number of spectrum samples, which gives us another 3⇥ speedup, compared with brute
force spectral rendering.

Heightfield and BRDF visualizations

Figure 3.21 shows a colormap visualization of the heightfields used in our results. For
all heightfields, we use a discretization step of 1 micron. The heightfields were generated
procedurally by inverse FFT noise generation, and (in the case of scratches) by drawing lines
with randomized positions, depths, and widths.

In Figure 3.23, we show visualizations of the outgoing BRDF lobes of our model and
geometric optics, for a fixed incoming direction and footprint (coherence area). This illus-
trates the di↵erences between geometric and wave optics, and also the di↵erences between a
single-wavelength and spectral simulation. Note that the appearance of high-frequency fea-
tures is clearly di↵erent in the geometric and wave solutions: the geometric solutions contain
sharp folds in areas where the normal map Jacobian becomes singular [147]. The wave optics
solutions have no such features, and the high frequencies in them are more reminiscent of
laser speckle. Also note the significant color e↵ects in the full spectral wave optics version.
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geometric single spectral
optics wavelength

Figure 3.23: Visualizations of the outgoing BRDF lobes on the projected hemisphere. Top: isotropic
bumps, middle: brushed, bottom: scratched. Note the clearly di↵erent high-frequency features pre-
dicted by geometric and wave optics. Also note the significant color e↵ects predicted by wave optics
(here we are using 8 spectral samples).

Ground truth comparison

In Figure 3.24, we show BRDF lobes computed with our approach (for a single wavelength)
side-by-side with lobes computed using the FFT algorithm applied to equation 2.11. Note
the close match, despite our method taking a completely di↵erent approach of Gabor kernel
approximation.

Rendered results

In this subsection, we illustrate our method’s capability to render actual scenes using wave
optics, as shown in Figures 3.17, 3.26, 3.25, and 3.27.

Scene configurations and performance comparisons are listed in Table 3.3. In general, for
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isotropic bumps brushed metal

Figure 3.24: Comparison of BRDF lobes computed using our Gabor kernel approach (left image in
each pair) to ground truth computed by evaluating equation 2.11 using the FFT algorithm (right
image).

Scene Patch Cutlery Laptop Tumbler
# Point light(s) 1 1 1 2
# Env. light 0 1 1 1
Material Al Ag Al Fe
# Samples (direct) 4 9 25 25
# Samples (ind.+env.) N/A 256 1024 1024
Direct (geom.) 9.6s 3.1s 37.4s 19.8s
Direct (single) 3.7m 0.8m 6.4m 1.9m
Direct (spectral) 13.1m 2.4m 21.1m 6.4m
Indirect + env. N/A 4.0m 25.1m 9.7m
All (geom.) N/A 4.2m 25.7m 10.0m
All (single) N/A 4.8m 31.5m 11.6m
All (spectral) N/A 6.4m 46.2m 16.1m

Table 3.3: Scene configurations including materials of the main objects and number of samples
per pixel, and performance comparisons between geometric optics and wave optics with 1 and 8
spectral samples. For the performance of the Patch scene, we use the isotropic noise heightfield as
representative.

direct illumination from point lights, our method with a single wavelength is about 5� 20⇥
slower than geometric optics, and about another 3.5⇥ slower with 8 spectral samples. This is
because of the wide directional spread predicted by wave optics, as analyzed earlier. However,
direct illumination only takes up about half of the overall computing time. Considering
indirect lighting and environment lighting together, the performance of our wave optics
method is within 1.5⇥ of geometric optics, and is thus a practical solution. In the rest of
this subsection, we will discuss individual scenes.

Patch. This is a simple scene showing a 5 cm ⇥ 5 cm patch. The camera is looking
towards the center of the patch from an elevation angle of 45�. The point light is on the
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isotropic brushed scratched

Figure 3.25: The Patch scene showing renderings of di↵erent heightfields with a point light. (Top
row) Spectral. (Middle row) Single wavelength. (Bottom row) Geometric.

opposite side, and moves left and right in the video. Figure 3.25 shows renderings of three
di↵erent heightfields (isotropic noise, brushed and scratched), each rendered using multiple
wavelengths, single wavelength (0.4 microns) and geometric optics for comparison. We added
isotropic noise on top of the brushes and scratches to make them more visible under the point
light.

From these images, we can clearly see that our method is able to produce characteristic
structures from the underlying heightfields: intuitively, round highlight for isotropic, vertical
anisotropic highlight for brushed and spiderweb-like highlight for scratched. These shapes
indicate the correctness of our method. Also, since di↵erent wavelengths behave di↵erently
in wave optics, colors are expected from spectral rendering.

Cutlery. This scene shows silver cutlery with strong scratches, rendered using a point
light with static greyscale environment lighting, in order to make sure that the colors are
from di↵raction. In Figure 3.17, we can clearly see the colored scratches rendered using
multiple wavelengths. Also, even with a single wavelength, our method is able to generate a
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Figure 3.26: Left: Rendering of a laptop with a point light and environment lighting using our
method. Top right: Close up rendering of the corner of the laptop with the same lighting condition.
Bottom right: A photograph of a MacBook (around 20 cm ⇥ 4 cm region) lit by a small LED
light in a dark room. Our method is able to produce appearance that is perceptually similar to the
photograph, showing colored glints from the underlying noisy microstructure of the aluminum laptop
body.

more convincing result, as we compare with the geometric method by Yan et al. [146]. The
geometric method arguably produces harsher glints, due to the sharper folds in the BRDF
lobes predicted by the P-NDF theory.

Laptop. This scene shows a laptop with a roughened aluminum matte finish (modeled
as a Gaussian random heightfield). It is rendered using a point light and environment
lighting. We can observe colored glints in Figure 3.26. Albeit subtle, these colored glints are
pervasively observed in the real world. To further verify this e↵ect, we set up a simple scene
in a dark room, illuminating a MacBook using an LED light from a cell phone. In this way,
we can see strong colored highlights. Our method is able to produce perceptually similar
appearance.

Tumbler. This scene illustrates a tumbler with brushed metal on the body under two
point lights and environment lighting. The heightfield resembles brushing towards one di-
rection, and thus is highly anisotropic. As shown in Figure 3.27, our method is able to
handle the anisotropy, resulting in two vertical lines of highlights. From the insets, we can
also see that the geometric method generates wider highlight peaks but narrower highlights
overall, while our method is able to produce thin peaks but with much wider spread. This
observation corresponds to the brushed BRDF images in Figure 3.23, where most energy
concentrates in the central vertical line for wave optics. A similar observation was noted by
Dong et al. [25]. Moreover, the observation is also in accordance with the geometric GGX
BRDF [132], well known for its “long tail” and its ability to better represent slow fallo↵s
of highlights than other geometric BRDFs such as Beckmann. The question of why wave
optics often leads to longer tails is complex; a simple though incomplete explanation is that
wave optics is less influenced by finer scale roughness, leading to sharper peaks, while o↵-
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Figure 3.27: The Tumbler scene rendered with two point lights and environment lighting, showing
brushed aluminum with strong anisotropy. Insets compare our spectral method (top row) with the
geometric method (bottom row). We can see that the geometric method produces wider highlight
peaks but narrower highlights overall, and misses the colored glints.

peak dropo↵ depends on destructive interference which tends to be somewhat random and
incomplete, leading to stronger tails.

3.13 Summary

In this Chapter, we present detailed rendering for complex surfaces. We analyze the inability
of statistical BRDFs, and come up with our P-NDF solution on top of microfacet BRDFs. We
first describe a basic approach to accurately calcuate P-NDFs using triangulation, leading to
closed-form solutions. Then we improve it by treating a detailed surface as a four-dimensional
position-normal distribution, and fit this distribution using 4D Gaussian elements. This gives
our method the ability of handling both evaluation and sampling queries, enabling the first
practical solution with over 100 times speedup. Finally, we introduce wave optics to detailed
rendering to correctly generate di↵raction e↵ects such as colors. We use Gabor kernels to
approximate the phase shifts introduced by the underlying heightfield, and derive an analytic
solution for spatically-varying, detailed wave BRDFs.

Our detailed rendering has changed the BRDF’s nearly 4 decades of statistical use, but
there is still room for improvements for our methods. One key issue is the storage of detailed
surfaces, which may take up to the level of gigabytes for production. E�cient compression
and querying thus become crucial to the practicality of our methods. Also, currently our
approach only looks at single specular reflection, ignoring inter-reflection, layered materials,
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refraction, or complex 3D structures (e.g., in biological iridescence). Furthermore, the com-
putational expense of our wave optics approach still requires separation of direct illumination
due to small lightsources from other components, and using a di↵erent (cheaper) BRDF for
these components; further accelerations should be explored. Improved importance sampling
techniques would also help. Physical measurement to acquire the heightfields would be
another interesting addition.

With the development of display and computing technologies and the increasing demand
for better graphics from people’s everyday lives, we believe that detailed rendering is becom-
ing a key for the next generation Computer Graphics and to achieve realism indistinguishable
from the real world. Note that, our detailed rendering brings out the details from known
microstructures. In the next Chapter, we will continue to another important component of
photorealism: detailed appearance modeling, to deal with materials whose optical properties
are not yet fully understood.
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Chapter 4

Detailed Appearance Modeling of
Animal Fur

4.1 Introduction

In Chapter 3, we have introduced detailed rendering. Given any specified microstructures
on surfaces, our method is able to generate convincing details, thus enhancing the realism
of computer synthesized images. Note that, in detailed rendering, how the surface mate-
rial interacts with the light is known—millions of specular microfacets reflect rays like tiny
mirrors.

Actually, it is exactly the optical behaviors of di↵erent materials that make it possible
for us to distinguish whether certain materials are di↵use, glossy, or glinty. However, there
are numerous kinds of natural materials in the real world where we are not exactly sure how
they interact with the light. That explains why some of these materials, such as the butterfly
wings, cloth and human skin, are still very di�cult to render realistically.

Fortunately, in Computer Graphics, people study the optical properties of unknown ma-
terials or structures. This field is known as appearance modeling. In this chapter, we
demonstrate the full process of appearance modeling from observations to accurate appear-
ance/reflectance models. Specifically, we focus on physically-based modeling and rendering
of animal fur.

In Computer Graphics, accurate physically-based fur rendering is often required for cre-
ating realistic furry appearance for animals. This is a long-standing problem [61] with many
approaches proposed to address the geometric complexity of fur. However, current fur re-
flectance models are mostly derived empirically or from those for human hair, such as the
Kajiya-Kay [61] or Marschner model [75]. Fur has a distinct di↵usive and saturated appear-
ance, as shown in Figure 4.1, which is not fully captured by these models since their focus
is largely on the specular reflection and refraction. We also conduct measurements for a
number of di↵erent types of fur, to confirm that previous hair reflectance models cannot fit
reflectance profiles from fur fibers (see Figures. 4.7, 4.10, 4.11).
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Figure 4.1: A rendering of the Wolf scene under environment lighting using (left) our physically-
based double cylinder fur reflectance model with parameters from our database of animal fur samples,
and (right) energy conserving Marschner model [18, 75] with best-fit parameters. Insets showing
detailed comparisons from top to bottom using our model, Marschner model and Kajiya-Kay model.
Since the Marschner model consists of only specular lobes, it often produces dark regions (limbs and
tail). Furthermore, since the TT lobe is extremely strong in the Marschner model, especially for
light colored fur fibers, it completely fails in heterogeneous regions (head) where dark colored fur is
covered by light colored fur. The Kajiya-Kay model produces empirically plausible but hard-and-solid
appearance, and it doesn’t fit the measured reflectance data in Sec. 4.5.

These observations motivated us to look into the literature on di↵erences between hair and
fur [8, 21, 22] (Section 4.3). Briefly, a single fur fiber cannot be modeled as a simple dielectric
cylinder similar to hair models. It often contains a non-negligible scattering structure inside
called the medulla (Figure 4.2), which significantly a↵ects the appearance of a fur fiber.
In contrast, for human hair, the medulla usually takes up less than one-third of the fiber
diameter and can be neglected. A key insight of this dissertation is to take medulla scattering
into account for a novel physically-accurate fur reflectance model, leading to the following
contributions:

Double Cylinder Fur Fiber Model: In Section 4.4, we develop the physical dou-
ble cylinder model for a fur fiber. As shown in Figure 4.4, our model consists of three
anatomically-based components—cuticle, cortex and medulla. The surface of the outer cylin-
der represents the cuticle, the inner cylinder represents the scattering medulla, and the cortex
lies between them. We also introduce a multi-layer cuticle model to better capture reflection
e↵ects (Figure 4.3).

Measurement and Database of Fur Reflectance: To validate our physical model,
we use a gantry setup to measure 2D reflectance profiles of single fur fibers from nine di↵erent
animals, as well as a tenth measurement on human hair for reference (Section 4.5). We fit
our physical model to the measured data, showing quantitative agreement in the space of
2D reflectance profiles (Figure 4.7). We also show that existing hair reflectance models like
Kajiya-Kay and Marschner do not fit key features of the appearance (Figures 4.10, 4.11).
These results clearly indicate that our accurate modeling of cuticle reflection and medulla
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scattering are critical for fur rendering.
We provide the first database in computer graphics, of reflectance measurements and fit

parameters for nine types of animal fur. The parameters can directly be plugged into our
rendering model, or provide a baseline for an artist to slightly vary parameters to obtain
di↵erent types of appearance. Fit parameters are listed in Table 4.2.

Next, we focus on the practicality of our double cylinder model, especially the medulla
that results in complicated light paths. This complexity directly leads to significant pre-
computation, and limits fur rendering to be near-field only. Even for hair rendering, e�cient
far field integration schemes are lacking. State of the art methods either assume that the
azimuthal section of hair fibers are perfectly smooth [75] so that the far-field integration can
be solved, or resort to numerical integrations as well as pre-computation [18].

Motivated by these observations, we aim to improve the e�ciency and practicality of fur
rendering, and provide a reflectance model that is simple to implement in modern rendering
systems. Specifically, we describe a near field fur reflectance model in Section 4.8, focusing
on simplicity and accuracy as compared to our original model. In Section 4.9, we illustrate
how our near-field model integrates to far-field, and propose a novel multi-scale rendering
scheme, focusing on e�ciency. Overall, our major contributions are:

Simple reflectance model: Our local illumination model builds upon the double cylin-
der model representing the cuticle-cortex-medulla structure of fur fibers (Figure 4.18 (b)).
We unify the cortex and the medulla’s indices of refraction (IORs), removing most of the
complicated types of light interactions between them. This simplification finally results in
only 5 lobes in our model (Figure 4.18 (c)), compared to 11 lobes previously. In particular,
we keep the R, TT , and TRT lobes in hair models (with intensities modified slightly because
of attenuation by the medulla) and only add two new scattered lobes, TT s and TRT s. In this
way, our reflectance model (BCSDF) is fully analytic, as opposed to our basic model which
requires implict ray tracing. The simplicity of our model also benefits importance sampling
(Section 4.10), leading to faster convergence (Figures 4.28 and 4.29). Our BCSDF can be
included in existing hair rendering systems with minimal extra e↵ort, and unifies hair and
fur rendering. We are motivated by observations in the literature on fur fibers (Figure 4.19),
and we verify this simplification by the accuracy of fits to real measurements (Figure 4.24).

Improved accuracy and practicality: We improve the accuracy of the model by
considering di↵erent roughnesses of azimuthal and longitudinal sections, as has been observed
in previous studies [18, 10]. Moreover, we find that the medulla is not purely scattering, and
can also absorb light [8]. With a more general model taking these factors into consideration,
our error for fitting measured data is lower than previous in most cases, even with the
simplification of IORs discussed above, as shown in Figure 4.24.

We also observed that the precomputed data for medulla scattering provided earlier,
essentially a set of 4D tables, is low rank. We exploit tensor decomposition, the high dimen-
sional analogue to 2D singular value decomposition (SVD), to compress it to as low as 150
KB, compared to more than 600 MB originally.

Analytic near/far field solution: Our model starts with analytic near-field solutions,
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as opposed to the implicit ray tracing required previously. Then we integrate our near-
field model over the azimuthal section, by partitioning the range of integration into a few
(< 5) segments. Finally, we analytically integrate for each segment using piecewise linear
approximation. Moreover, we show how our analytic integration transitions between near
and far field fur rendering, enabling multi-scale rendering for the first time (Figure 4.30).
This is especially useful when a pixel covers a small range over the azimuthal section. Our
multi-scale rendering benefits hair rendering as well, as shown in Figure 4.32.

Significant speedup: Due to the simplicity of our reflectance model and the e�ciency
of our analytic integration, compared with our original double cylinder model, we achieve a
6� 8⇥ speedup in generating equal quality results. We show more results and comparisons
in Section 4.10 as well as in the accompanying video.

With our improved near and far field model, physically-based hair and fur rendering is
now possible. However, accurate rendering also requires global illumination for the di↵usive
and saturated appearance of the hair or fur volume. In fact, compared to local illumination
that considers how light interacts inside individual fibers, global illumination caused by light
scattering within the fur volume is usually brighter and more visible, composing the main
part of the appearance.

However, rendering with global illumination is slow. Therefore approximate methods are
common, the most popular of which is the dual scattering technique [154]. Dual scattering
produces reasonably good results and allows real-time implementation1. It simplifies light
scattering by assuming that all scattering events happen only along main paths, i.e. straight
lines along incident directions. However, it is not applicable for fur rendering. This is
mainly because the complex scattered lobes within individual fur fibers break the main path
assumption. Even if we extend dual scattering to handle these scattered lobes, the result
still doesn’t match the path traced reference (Figure 4.33). This will be analyzed in detail
in Section 4.11. Moreover, dual scattering only works with direct lighting, and is limited
to point lights and directional lights. It also does not support transparency of hair fibers.
Compared to path traced results, dual scattering still generates a hard and solid appearance
(Figure 4.33).

We develop a novel BSSRDF (Bidirectional Surface Scattering Reflectance Distribution
Function) solution to global illumination, addressing many of dual scattering’s limitations.
We analyze failure cases of dual scattering in Section 4.11, and propose our model with three
components: direct illumination from individual fur fibers, dual scattering to handle specular
light transport, and BSSRDF for all other scattering events. In Section 4.12 and 4.13,
we describe our BSSRDF model, and explain how to convert properties from fur fibers to
BSSRDF parameters with the help of a multi-layer perceptron neural network (MLPNN).
We validate our model in Section 4.14, and show close matches of our predicted renderings,
compared with the path traced reference.

1Currently, we focus on the o✏ine rendering part of dual scattering as well as our method, though
real-time implementation is a natural next step for our model.
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Specifically, our global illumination model has these major advantages:

BSSRDF-based approximate global illumination. Our method is the first ap-
proximate global illumination model that is suitable for both hair and fur rendering. We
also provide the first empirical scheme of conversion from hair/fur parameters to BSSRDF
parameters using a neural network. Our neural network is simple, consisting of only two
hidden layers, and is fast to evaluate and easy to integrate into renderers for practical use.
Furthermore, it only uses one scene for training with di↵erent parameters, and it generalizes
well on others.

Color bleeding and accurate appearance. Dual scattering and other non-physically-
based methods assume light transport only along main paths and assume local similarity
with the fur fiber being shaded, resulting in opaque solid colors and BRDF style global
illumination approximation. Our BSSRDF model is able to handle color bleeding from the
fur volume for the first time, e.g. the color-filled shadow in Figure 4.33 (c), and its general
softer appearance. Moreover, in Section 4.14, we show that our model also generates much
more accurate appearance, especially in terms of highlight and overall shading distributions,
compared to the reference.

Further inter-reflections. Dual scattering works only with direct illumination. It is
not clear how to apply it in o✏ine renderers where environment or indirect lighting also
lights the hair volume, and where the lit hair volume a↵ects other objects. In contrast, our
BSSRDF global illumination model (Section 4.11) naturally fits into o✏ine renderers with
environment lighting and further global illumination (Section 4.13). Moreover, we extend
our BSSRDF model to handle global fur-to-fur inter-reflections approximately for the first
time.

E�cient performance. In addition to its accuracy, our method is also e�cient. Thanks
to the BSSRDF’s ability to “sum up” complex scattering events and higher order bounces,
we’re usually able to achieve an order of magnitude speedup, compared with the path traced
reference with our improved double cylinder model. Detailed timing information is listed in
Figure 4.33 and Section 4.14.

4.2 Related Work

Physically-based hair reflectance models: Marschner et al. [75] proposed a physically-
based hair reflectance model. The hair fibers are considered as rough dielectric cylinders,
where three scattering paths contributing to the primary and secondary highlights are mod-
eled: R, TT and TRT . The reflectance lobe from each path is separated into a product of
longitudinal and azimuthal scattering profiles. Zinke et al. [152] formalized hair reflectance
models by introducing the notion of the Bidirectional Curve Scattering Distribution Func-
tion (BCSDF). Sadeghi et al. [107] reformulated the model of [75] into an artist friendly
representation. d’Eon et al. [18] extended Marschner’s model from an energy conserving
perspective by modeling higher-order scattering lobes such as TRRT , and by fixing energy-
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conserving issues at grazing angles. Recently, d’Eon et al. [16] proposed a “non-separable”
reflectance lobe representation by relating longitudinal contributions with relative azimuths,
while still keeping a factored representation longitudinally and azimuthally. These methods
produce excellent results for hair, but are not suitable for fur (see Figures 3.1, 4.10), since
they exclude scattering from the medulla, which is prominent in fur fibers. Concurrent work
[63] focuses on elliptical hair fibers explicitly, revealing di↵erent optical properties compared
to circular sections.

Non physically-based hair/fur reflectance models: Kajiya and Kay [61] introduced
a methodology for rendering fur using 3D textures, together with an empirical fur shading
model. The model approximates fur fibers as opaque cylinders. By extending the Phong
model, it produces a di↵use lobe and a specular lobe centered around the fiber’s tangent.
Goldman et al. [36] empirically improved the Kajiya-Kay model by giving it di↵erent opacity
values for di↵erent viewing angles. Zinke et al. [153] noticed the inability to fit the measured
scattering from human hair fibers using Marschner’s model, so they proposed an ad-hoc
method by blending a di↵use lobe with Marschner’s model to capture the di↵usive hair
reflectance observed in their measurement data. Though these methods generate plausible
rendering results, they are not physically based, nor energy conserving. Moreover, they do
not fit the observed reflectance profiles for fur fibers as accurately as our physically-based
model.

Multiple scattering inside hair volume: Since hair contains many fibers, multiple
scattering is di�cult to compute. The dual scattering approximation [154] assumes local
similarity of hair strands, and derives an analytical multiple scattering model, which is later
extended by [140] to enable real-time rendering and editing under environment lighting.
Shadow map related methods [73, 151, 110] use transparency to compensate the missing
transmittance of light in [61]. Moon et al. [83] applies photon mapping into the hair volume,
trading noise with overblur or bias. In this dissertation, we focus on the optical properties
from a single fur fiber, and use a standard multiple scattering renderer [51] to obtain global
e↵ects.

Importance sampling for hair: To be e�cient, a reflectance model requires an im-
portance sampling method in a global illumination renderer. Hery and Ramamoorthi [47]
proposed an importance sampling scheme for reflectance lobes of the Marschner model. Ou
et al. [90] extended the sampling scheme to separately sample di↵erent lobes. d’Eon et al. [17]
proposed an e�cient technique based on the extended model from [18] by first performing a
lobe selection based on the energy of each scatter type, then importance sampling the lon-
gitudinal and azimuthal scattering profiles respectively. We develop an e↵ective importance
sampling method for our fur reflectance model, based upon [17].

Near field scattering and far field approximation: Far-field approximation based
methods [61, 75, 18] regard single hair fibers as thin curves, and assume collimated incident
light rays over the width of the fiber. This approximation gives hair fibers a flat appearance
at a close viewing distance. Zinke et al. [152] proposed an analytical near-field solution to
render fibers viewed up close. Our method is based on near-field scattering, and we refer to
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the same integration technique in [18] when far-field approximation is needed.

Precomputation and empirical models: Precomputation-based rendering methods
such as [113, 135, 86, 87, 99] work by solving a subset of the problem in advance. These
methods are usually very e�cient. However, since precomputed data can take up significant
storage, they are practical only under a confined set of inputs. Empirical models such as [117,
93, 26] use approximations and numerical methods to get the reflectance or scattering profiles.
These models often require measurements or simulations covering the entire parameter space.
Our model includes a precomputation step in a low-dimensional 3D parameter space to
account for medulla scattering, storing a 1D profile for each combination of these parameters.
We compress the precomputed profiles to 20MB.

Near field scattering and far field approximation: Far-field approximation [61, 75,
18] assumes that hair fibers are very thin, usually thinner than a pixel. Hence, the accurate
incident position on the azimuthal section is not important, compared to the integral over
it. Thus, they always assume collimated incident light covering the width of a hair fiber.
Since the positional information is lost, far field approximation produces a flat appearance
when viewed close up so that a hair fiber covers more than one pixel. Zinke et al. [152]
introduced near-field scattering by considering accurate azimuthal incident positions, and
mathematically revealed the relationship between near and far field scattering. We propose
an accurate and analytic method for our improved model with support for both near-field
and far-field rendering, benefiting both hair and fur models.

Hair global illumination methods: Accurate global illumination requires simulating
actual light bouncing between hair fibers. Moon et al. [83] extended photon mapping to
store and query photons within the hair volume as light bounces inside. Hery et al. [47]
and d’Eon et al. [17] proposed di↵erent importance sampling schemes for hair BCSDFs to
accelerate the convergence of path traced global illumination.

Most non physically-based approximate global illumination methods treat hair fibers as
semi-transparent. To compensate for light transmittance through fibers to the shading point,
shadow map based methods [73, 151, 110] accumulated transparency of hair fibers to approx-
imate the optical thickness of hair fibers that the light goes through. To enable transparency
looking from the camera, alpha blending based methods [111, 33, 110, 150] proposed di↵er-
ent ways to approximate the back-to-front blended self-occlusion e↵ects. While generating
plausible results, none of these methods are physically-based, and they have not been shown
to be applicable for accurate fur reflectance models.

The only physically-based approximation to hair global illumination is the dual scattering
approximation method [154]. It assumes that scattering events happen along the main path
— the light reaches the shading point by penetrating through the hair volume in a straight
line (global scattering), and scatters along the camera path into the hair volume, then back
to the shading point (local scattering). Though successfully used in practice, dual scattering
cannot be applied for fur rendering (Section 4.11). Furthermore, it doesn’t account for
transparency or color bleeding.
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Figure 4.2: Structure of human hair and animal fur fibers. From left to right: section of a human
hair fiber, cuticle of a human hair fiber, section of a cougar fur fiber, cuticle of a corsac fox fur fiber.
Note major di↵erences in the size of the medulla and complexity of the cuticle. Images authorized
by [137, 34].

4.3 Di↵erences between Hair and Fur Fibers

In this section, we describe key di↵erences between hair and fur fibers. While the subject
has received little attention in computer graphics, a number of references in other fields [8,
21, 22, 118] discuss microscopic variations, that we summarize here.

Hair and fur fibers share some common structures. They are often cylindrical shaped
with some extent of eccentricity. As shown in Fig. 4.2, from outer to inner, a single fiber is
divided into three layers: the cuticle which covers the fiber’s surface with inclined scales, the
cortex which contains nearly all colored pigments within the fiber, and the medulla which
lies in the center of the fiber with complex internal structure that scatters light that goes
through.

Inspite of these common structures, hair and fur fibers do have several structural dif-
ferences. Here we only introduce the most important features for our model that result in
clearly di↵erent optical properties. For a comprehensive and detailed study, we refer the
reader to the literature mentioned at the beginning of this section.

Medulla: The most obvious di↵erence is that animal fur fibers usually have significant
medullas inside. For human hair, the medulla is very small, and it can often be neglected.
However, animal fur fibers can have medullas that hold up to the total size of the cylinder
(Fig. 4.2).

The structure within the medulla volume is often complicated, while some animals, such
as polar bears, have hollow medullas in their fur. In any case, the medulla acts as an internal
scattering structure, giving the fur a generally di↵usive appearance. The medulla could be
filled with solid transparent materials or simply air, which indicates that the medulla could
have a di↵erent refractive index compared to the cortex. There are usually no pigments
inside the medulla.

Cuticle: While a human hair shaft has cuticle scales that resemble roof shingles,
cuticles on fur can have complex shapes (Fig. 4.2). The outer surface of animal fur fibers is
usually rougher than that of human hair. Following [18], we account for roughness of both
longitudinal and azimuthal sections of a fur fiber in our model, assuming they have the same
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Figure 4.3: (Left) A microscope photograph of a sample of polar bear fur. Note the obvious coating
formed by the cuticle scales. (Right) A slice of cuticle scales on human hair shaft. Images authorized
by [8, 44].

value for simplicity.
Additionally, as Fig. 4.3 shows, the cuticle layer forms a clear coat over the cortex,

within which, multiple cuticle scales stack up and form a layered structure. These properties
increase cuticle reflectance compared to Fresnel reflectance from a dielectric interface. In
our model, we consider the cuticle as multiple layers of dielectric slab with air outside both
sides of each layer. The unpolarized reflectance for each layer is given by [119] as

F (✓i, 1) =
1

2

(
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)
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(4.1)

where Fs and Fp are s-polarized and p-polarized Fresnel reflectance respectively. Considering
l layers together, the reflectance is then given by [119] as

F (✓i, l) =
l · F (✓i, 1)

1 + (l � 1) · F (✓i, 1)
(4.2)

As pointed out by [118] and [44], the internal composition of the cuticle layer may give
rise to a di↵erent refractive index than the cortex. Additionally, the air interface between
layers could be absent. We simplify all these properties by extending l into a real number,
while using the same refractive indices for the cuticle and the cortex. The value of l is
decided in our fitting step in Sec. 4.5. l is usually within a typical range of (0.5, 1.4), while
a single dielectric interface produces a value of l ⇡ 0.5, since F (✓i, 1) is for a double-sided
slab.

4.4 Double Cylinder Fur Fiber Model

We now develop our physical double cylinder model for single fur fibers, based on the
above observations. Our model consists of three structural components—cuticle, cortex
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Figure 4.4: Schematic of our double cylinder model in longitudinal section (left) and azimuthal
section (right). Our model considers the medulla and cuticle e↵ects as introduced in Sec. 4.3. We
mark new types of paths TrT , TrRrT , TttT , TtrtT , TttRttT that our model introduces. For clarity
we hide TT and TRT paths that were previously considered by [75] in Fig. 2.6. These TT, TRT
paths enter the cortex, but miss the medulla entirely.

and medulla — each with their respective physically-based optical properties. As shown in
Fig. 4.4, the surface of the outer cylinder represents the (multi-layer) cuticle, the inner cylin-
der represents the medulla, and the cortex lies between them. The two cylinders are coaxial
with relative radius 1 for the outer cylinder and  for the inner cylinder, which is known as
the medullary index, i.e., the ratio between the radius of the medulla and the radius of the
fur fiber.

Table 4.1 lists all the parameters used in our model. The parameters derive largely from
those in [75]. These include the refractive index ⌘ and roughness �, the scale tilt ↵ and
absorption coe�cient �c,a for the outer cylinder (cortex). In addition, we need to consider
the (probably di↵erent) refractive indices in the cortex and medulla. Moreover, since the
medulla is a scattering medium, we must include its scattering coe�cient �m,s and its phase
function with anisotropy g. Note that the cortex doesn’t have scattering structures inside
it, and the pigments are seldom found in the medulla, as stated in Sec. 4.3. Hence, the
scattering of the cortex and the absorption of the medulla are not required in our model. We
don’t explicitly use the eccentricity parameter, but it is taken into account in the refractive
indices, as in [75].

With the double cylinder model, the types of paths through a single fiber are significantly
enriched. Apart from those that were previously considered in hair models, our model
introduces new types of paths that are not captured by previous methods such as TrT ,
TrRrT , TttT , TtrtT and TttRttT , as shown in Fig. 4.4. The upper-case letters indicate
interactions with the outer cylinder interface, while the lower-case ones are with the inner
cylinder interface. When light transmits through the inner cylinder interface, volumetric
scattering events happen.

The medulla’s significant contribution to the optical properties of a single fiber could be
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Parameter Definition
 medullary index (rel. radius length)
⌘c refractive index of cortex
⌘m refractive index of medulla
↵ scale tilt for cuticle
� roughness of cuticle (stdev.)
�c,a absorption coe�cient in cortex
�m,s scattering coe�cient in medulla
g anisotropy factor of scattering in medulla
l layers of cuticle

Table 4.1: Parameters used in our double cylinder model.

Figure 4.5: (Left) A photograph of a real fur fiber under bright field microscopy with medulla
filled half with air and half with a mounting medium. (Right) Our Monte Carlo simulated back-
lit microscopic appearance of fur fiber samples with unmounted and mounted medulla (two images
stitched). Photograph publicly licensed by [21].

observed when the medulla is filled with a medium of similar refractive index as the cortex.
This makes the medulla much more homogeneous and significantly reduces scattering. As
shown in Fig. 4.5, when it is back-lit, the medulla filled with mounting medium appears nearly
invisible. However, if filled with air, it is dark due to internal reflections and scattering. Our
model produces similar results by tuning �m,s and ⌘m accordingly. To our knowledge, this
phenomenon cannot be simulated with any other hair/fur reflectance models.

4.5 Database: Measurements and Validation

To justify the double cylinder model, and to experimentally observe the influence of the
cuticle and the medulla, we take full 2D far-field reflectance measurements of a fur fiber. We
create a database of reflectance profiles using fur fibers of 9 animal species (plus a human
hair). From each dataset, we also fit a set of parameters for the double cylinder model. The
raw reflectance data and the fit parameters are available on http://viscomp.ucsd.edu/

projects/fur.

Measurement Setup: Measurements are made using the UCSD spherical gantry
(Figure 4.6). Our gantry has two robotic arms, on which the light source and the sensor are

http://viscomp.ucsd.edu/projects/fur
http://viscomp.ucsd.edu/projects/fur
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Figure 4.6: (Left) The spherical gantry we use to measure individual fibers’ reflectance profiles.
(Right) Illustration of setup for two-dimensional far-field reflectance measurements.

attached at approximately 2 feet and 3 feet away from the sample respectively. We use a
150-watt DC-regulated quartz halogen bulb, a digital camera with 35 mm lens and a 12-bit
1/1.8” CCD sensor. We straighten a fur fiber on the sample plate, fix the incident direction
of light at a point on the fiber, and record radiance towards discretized directions over the
entire outgoing sphere. More details are found in [125].

We fix the light source at (✓i,�i) = (�40�, 0�) and capture images with the camera
sweeping over �r 2 [�20�, 200�] at 5� steps and ✓r 2 [10�, 50�] at 2� steps. For simplicity,
we omit the r subscripts and just use (✓,�) to describe the 2D reflectance profiles. The
swept range covers all the specular and di↵usive scattering lobes introduced in prior human
hair reflectance models, but only spans across a quarter-sphere for e�ciency reasons. In
other words, we implicitly assume that the fur fiber is symmetric over the incident plane.
To ensure the validity of this assumption, before taking 2D measurements, we spin each fur
fiber along its tangent until a qualitatively symmetric 1D normal plane reflectance profile is
captured. If such symmetry in reflectance pattern is never observed, we simply dispose of
the sample. The proportion of samples disposed due to asymmetry is about 10%.

For each direction, we capture 5 images for 5 stops in shutter speed (25 images in total).
Each image is first cropped to a 25-by-25-pixel patch which contains the fiber. Next, the 5
patches for each shutter speed are averaged to eliminate temporal noise. Finally, we leverage
the 5 averaged patches under di↵erent shutter speeds to reconstruct an HDR radiance signal.
During this process, the aperture of the camera is fixed at f/8, and the 5 stops in shutter
speed to construct HDR radiance values are 12.5, 25, 50, 100 and 200 ms. In each of
the 25-by-25-pixel image patches, the sample fiber takes up approximately 100 to 200 pixels,
depending on its actual width. Note that, for measurements and subsequent fits, we consider
the data as gray-scale images.

Database: The 9 animal species in the database are bobcat, cat, deer, dog, mouse,
rabbit, raccoon, red fox and springbok. Fur fibers are donated by a taxidermy store. We also
measure the reflectance profile of a human hair for comparison and verification against prior
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Figure 4.7: 2D reflectance profiles measured from di↵erent animals’ fur fibers (left), synthesized
from full 3D volumetric path tracing of a double cylinder (middle), and from our factored rendering
model from Section 4.6 (right). The signals are in arbitrary units and displayed in logarithmic space
to visualize perceptual brightness.

work. Our goal is to investigate the range of reflectance patterns from fur fibers. We do not
focus on taxonomic details; the names of the 9 species are only for reference. The recorded
profiles show that the 10 samples (including a human hair fiber) do span a qualitatively
large space in the BCSDF domain, and we consider them to include the most important
reflectance phenomena.
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Figure 4.8: Illustration of general positions and shapes of all the major lobes we observed in our
database.

The entire database is displayed in the left column of Figure 4.7. Note that a small region
of the 2D profile around � = 180� could not be measured accurately, where the camera points
directly at the light source2. Also note that many profiles resolve subtle patterns of bright
and dark stripes. We believe that these stripes arise from thin-film interference between light
reflected o↵ the front and the back side of the cuticle layer.3 Modeling these interference
patterns in our double cylinder model is beyond the scope of the dissertation.

A schematic of the key lobes observed in these measurements is shown in Figure 4.8,
and some examples are given in the left column of Figure 4.10. The name for each lobe
corresponds to its contributor path, where their assignments are verified through virtual
experiments using volumetric light transport simulation on 3D double cylinder models. The
Marschner model fails to produce satisfying fits to the reflectance profiles of fur fibers, as
shown in the right column of Figure 4.10, since it supports only the R, TT and TRT lobes.
Furthermore, even for these 3 lobes, there exist significant inconsistencies between what the
Marschner model predicts and what we observe in the reflectance profiles. Some key features
are:

• The reflectance from a fur fiber may have a blurry and partly occluded TT component
around � = 180� (mouse and raccoon) or even an absent TT component (cat). Note
especially the sharp edge at � ⇡ 150� where TT vanishes for the raccoon. Additionally,

2Since the light cannot be a perfect point light, a single fur fiber could not fully block it, thus resulting
in extremely bright values. In practice, we narrow the range of the light using four paper-made walls around
it, reducing the unmeasurable range to at most 10 degrees azimuthally.

3 We check the di↵erence in incident angle between rays that contribute to two consecutive bright fringes
on our profiles. An analysis in optical path di↵erence shows that to resolve the pattern requires the thickness
of the cuticle to be approximately 10 micrometers, which conforms in magnitude with values reported in the
literature.
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the TRT component may become dimmed (mouse) or absent (cat). These phenomena
are due to light being scattered away from the original TT and TRT paths by the
medulla.

• The R component in the reflectance profile of a fur fiber is usually extremely bright
and blurry, and cannot be explained with Fresnel reflection alone (dog, mouse, raccoon
and springbok). The phenomena are caused by the cuticle, where the reflectance is
boosted by reflection o↵ the front and the back surfaces of the cuticle.

• Forward and/or backward di↵usive lobes appear in many profiles. The centers of the
lobes mostly lie around the normal plane where ✓ ⇡ 0� (cat, red fox, springbok). These
lobes are most likely due to the medulla, which provides a volume filled with randomly
distributed dielectric interfaces and is prone to multiple scattering. Additionally, less-
scattered light through the medulla can still be observed in some cases as a glow around
(✓,�) = (40�, 180�) (mouse, red fox).

All of these phenomena can be well modeled by the double cylinder model proposed in
the previous section (middle column of Figure 4.7).

Parameters and Fitting: We now fit parameter values (Table 4.1) for our double
cylinder model from the measured 2D reflectance profiles. We can then use these parameters
to define an explicit double cylinder geometry, and run a 3D volumetric light transport
simulation. We compare the simulated reflectance profiles to the measurements (second
column of Figure 4.7). We also compare (third column) to the reflectance generated by our
factored rendering model introduced in Section 4.6 with the same set of parameters.

As our model has more parameters than previous hair models, fitting parameters over
1D slices of the measured reflectance profiles as in [75, 106] would lead to over-fitting. We
therefore fit directly to the measured 2D profiles.

For each fur sample, we initialize a first estimate of the parameters manually. Then,
we run full 3D volumetric light transport simulation over the double cylinder to generate a
synthetic 2D reflectance profile. We use an expectation-maximization algorithm to iteratively
find the optimized parameters with lowest root-mean-squared error between the measured
and simulated 2D reflectance signals. This optimization is quite expensive (but need only
be done once o✏ine), since simulation must be used in the inner loop of the optimization
to generate simulated reflectance profiles and must be noise-free so as to provide a smooth
energy landscape. However, at the resolutions of our measured reflectance profile (45⇥21)
and using 512 samples per pixel, the optimization procedure can converge to an acceptable
minimum within several hours. A similar optimization is used to fit parameters of the
Marschner and Kajiya-Kay models, where needed for comparison, with the only di↵erence
being that we directly use the analytical form of these models to generate 2D profiles, instead
of using Monte Carlo simulation.

Table 4.2 lists the optimized parameters in our double cylinder model for each fur sample.
We also render a fur ball for each material in Figure 4.9 using our practical rendering model
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Parameter Unit Bobcat Cat Deer Dog Mouse
 unitless 0.78 0.85 0.87 0.69 0.60
⌘c unitless 1.40 1.43 1.54 1.55 1.38
⌘m unitless 1.27 1.35 1.42 1.37 1.38
↵ degree 4.44 3.97 2.93 2.47 1.05
� degree 4.86 4.94 5.35 4.21 4.70
�c,a diameter-1 0.75 0.48 1.81 0.37 0.50
�m,s diameter-1 3.18 2.58 2.75 3.17 2.93
g unitless 0.54 0.62 0.39 0.18 0.65
l unitless 0.50 0.59 0.69 0.53 0.89

Simulation NRMSE 8.1% 6.7% 8.4% 9.1% 7.8%
Rendering model NRMSE 7.2% 5.3% 7.9% 9.1% 8.5%

Parameter Unit Rabbit Raccoon Red fox Springbok Human
 unitless 0.66 0.59 0.69 0.85 0.34
⌘c unitless 1.36 1.23 1.43 1.55 1.21
⌘m unitless 1.34 1.23 1.38 1.32 1.21
↵ degree 4.41 1.20 2.25 0.03 0.87
� degree 6.97 5.27 4.86 8.43 2.03
�c,a diameter-1 0.83 0.38 0.73 0.96 0.83
�m,s diameter-1 2.53 3.45 2.99 3.06 4.30
g unitless 0.31 0.35 0.63 0.03 0.38
l unitless 0.65 1.51 0.53 0.54 1.49

Simulation NRMSE 9.4% 12.2% 5.9% 8.4% 15.4%
Rendering model NRMSE 8.4% 10.1% 6.3% 7.0% 19.3%

Table 4.2: (Top) Optimized parameters fit from our measured data using our simulated double
cylinder model. Our rendering model shares exactly the same set of parameters. All length-related
parameters are calculated assuming the azimuthal section of every fiber is a unit circle. All angle-
related parameters are in degrees. (Bottom) Normalized RMS error of our simulated model and our
rendering model.

that will be introduced in Section 4.6. Note that, since our measurements are gray-scale,
we need to set the RGB values for the cortex absorption manually to introduce color in the
renderings. For all the fur balls, we set �c,a = 0.2, 0.4, 0.6, replacing the original fit parameter
�c,a.

Several observations can be made from Figure 4.9. First, none of these renderings display
large black regions. This is di�cult for Marschner model to replicate, since its lobes are all
purely specular. Figure 4.17 further validates this observation, showing that the Marschner
model produces large black areas under area lighting. Second, forward/backward scattered
lobes a↵ect the appearance significantly. Strong forward scattering (mouse, red fox) blurs
regions in the middle of these fur balls, where there are usually more fur fibers behind, so
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Figure 4.9: Renderings of a fur ball with 9 di↵erent sets of fit parameters. All the images are
rendered using 1024 samples per pixel with top-front area lighting.

that the forward scattering energy penetrates and further scatters. Backward scattering
(springbok) blurs the top and bottom regions, where the fur layer is usually thin and not
viewed perpendicularly, and it visually enhances the reflection lobe. These e↵ects indicate
that the Kajiya-Kay model is not enough to represent the scattered lobe, since it is strictly
uniform azimuthally, as shown in the comparison in Figure 4.11. Third, for reflection lobes
with similar roughness and cortex refractive indices, the one with more cuticle layers l always
produces stronger reflection lobes (cat slightly brighter than bobcat, deer much brighter
than dog). Thus, both our medulla and cuticle models make a qualitative di↵erence in the
appearance of fur, which cannot be captured by previous methods.

Validation: As shown in Figure 4.7, we demonstrate quantitative similarities between
the measured 2D profiles, simulated ones by path tracing an actual double cylinder, and
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Figure 4.10: Comparisons of synthesized profiles using our rendering model (left column) and
Marschner model (right column, first three rows). We also compare with empirically synthesized
profiles by blending a di↵usive (D) lobe into the Marschner model as in [153] (right column, last
row). From top to bottom: dog fur profiles, human hair profiles, mouse fur profiles. Lobes are
marked in the synthetic 2D profiles.

profiles generated using our rendering model,4 which will be introduced in Section 4.6. The
RMS errors are shown in Table 4.2, and are comparable for the simulation and rendering
model, being below 10% in almost all cases.

We compare visually with the Marschner model in Figure 4.10. Since the Marschner
model is purely specular, it fails in every measured profile to produce similar results, except
in the case of human hair. Even when a di↵use lobe is blended into it, as suggested by [153],
it still cannot match the measured reflectance. This is because the blended-in di↵use lobe
is always symmetric longitudinally at ✓ = 0� and doesn’t distinguish forward and backward
scattering e↵ects. We also show comparisons for 2D profiles generated using the Kajiya-Kay
model. Since the Kajiya-Kay model is azimuthally independent and its shape changes slowly,

4Since our rendering model uses near field scattering, we integrate over azimuthal o↵set h to generate
these far field 2D profiles, using the same technique as that introduced by [18].
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Figure 4.11: Comparisons of synthesized profiles using our rendering model (left column) and the
Kajiya-Kay model with specular (S) and di↵use (D) lobes (right column).

we only compare two representative fur fibers in Figure 4.11. Kajiya-Kay produces only a
di↵use lobe and a specular cone, eliminating all other interesting lobes.

4.6 A Practical Rendering Model

The physical double cylinder model enables us to run light transport simulation on an op-
tically faithful representations of a fur fiber. However, as evaluating integrals over multiple
volumetric scattering events is costly, the model remains impractical for rendering. In this
section, we develop a practical rendering model, which can be plugged into global illumina-
tion renderers.

Overview

Under the far-field approximation, most prior reflectance models for hair obtain a compact
BCSDF for the fiber. However, as introduced in Section 4.2, to model more sophisticated
appearances of fur at a close distance, it is essential to include near-field e↵ects; if necessary,
these could be integrated to obtain far-field approximation. Thus, we analyze the potential
scattering paths for an incoming ray hitting the double cylinder, based on its incident position
and direction.

We make this approach practical through a few key approximations. First, our near-
field model incorporates factored approximation for rendering, similar to far-field hair mod-
els [75, 18]. However, unlike those models, which consider a longitudinal and an azimuthal
reflectance profile being generated collectively by all collimated incident rays over the width
of the fiber, we consider an azimuthal and a longitudinal distribution being generated by each
ray we trace through the fiber. This approach is equivalent to having varying BCSDFs over
h in Figure 4.4, which makes our model compatible with the far-field BCSDF framework, yet



CHAPTER 4. DETAILED APPEARANCE MODELING OF ANIMAL FUR 83

enables near-field e↵ects. In [152], the approach we use is classified as a near-field scattering
model with constant incident illumination. Hence, we can leverage previous work, keeping
the R, TT and TRT terms identical, but adding lobes for TrT , TttT , TtrtT , TrRrT and
TttRttT paths, indicated in Figs. 4.4 and 4.12. Note that our framework can also handle
general higher-order scatterings, but in our experiments, the contributions from those paths
were insignificant.

It remains to find the forms of azimuthal and longitudinal scattering functions for each
lobe. Conceptually, given the incident position and direction of a ray that enters the fiber, we
ray-trace its chief specular ray [18, 154] on the 2D azimuthal and longitudinal cross sections
of the fiber. We consider the direction at which the chief specular ray leaves the fiber as the
center of a reflectance lobe, and accumulate the attenuation factors, and the azimuthal and
the longitudinal roughnesses along the specular path, in the form of a Gaussian outgoing
lobe. This is shown for the TttT path PQQ0P in the azimuthal section in Figure 4.12. In
practice, rays are traced using closed-form analytical formulae. Longitudinal distributions
are further simplified to conform to previous work, reducing to Gaussians with o↵sets/width
for e↵ective cuticle tilt/roughness. Finally, for those paths that enter the medulla, and
are scattered by it, we must also include a scattered lobe (see broad yellow lobe at Q0 in
Figure 4.12). We precompute medulla scattering separately for 2D azimuthal/longitudinal
profiles (Figure 4.13), based on [26], reducing scattering to a table lookup.

Formally, the near-field scattering distribution for each ray is,

S(✓i, ✓r,�i,�r, h) =

P
p
Mu

p
(✓i, ✓r)Nu

p
(h,�)

cos2 ✓i
(4.3)

+M s(✓i, ✓r,�)

P
p
N s

p
(h,�)

cos2 ✓i
p 2 {R, TT, TRT, TrT,T ttT, T trtT, TrRrT, T ttRttT},

where � = �r � �i, while Mp and Np are respectively longitudinal and azimuthal scattering
profiles that depend on the fur parameters in Table 4.1. We generalize equation 2.16 in a few
respects. Note the h parameter (Figs. 4.4, 4.12) for near-field scattering. The superscripts
s and u stand respectively for paths scattered by the medulla, and unscattered. (We will see
that a single longitudinal M s is adequate for all scattered paths p). The paths p include R,
TT and TRT from previous hair models, as well as new terms specific to fur. Note that only
unscattered lobes will be present for R, TT , TRT , TrT , TrRrT paths that never transmit
into the medulla, while TttT , TtrtT and TttRttT will have both scattered and unscattered
lobes. Finally, we choose to replace the 1/ cos2 ✓d term with 1/ cos2 ✓i per [47] to mitigate the
energy conservation issues at grazing angles at the cost of losing reciprocity, as analyzed by
d’Eon et al. [.] This substitution also simplifies our rendering model, since the cosine terms
are completely cancelled out in equation 2.14.

Simple Lobes: Consider rays that do not enter the medulla at all (p 2 {R, TT, TRT, TrT, TrRrT}).
In this case, there is no scattering from the medulla, and we can drop the superscripts. The
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Figure 4.12: Illustration of evaluating the azimuthal scattering function for the type of path TttT .

azimuthal profile is simply
Np(h,�) = Ap(h) ·Dp(h,�), (4.4)

where Ap is the attenuation along path p, considering Fresnel terms on the cuticle and
absorption along interior paths. Dp is the azimuthal distribution of scattered energy, a
Gaussian with width determined by considering the roughness from all the surfaces the ray
has interacted with. Both Ap and Dp share the same representation with unscattered lobes in
equations 4.7 and 4.8. For the longitudinal profile of a ray, we follow [75, 18] and approximate
it with a Gaussian distribution5,

Mp(✓i, ✓r) = G(✓r;�✓i + ↵p, �p), (4.5)

where ↵p is the accumulative angular tilt of the chief specular ray on path p due to interaction
with the cuticle scales, and �p is the roughness for path p, which is empirically given by
accumulating cuticle roughness. These expressions reduce to previous work for the lobes R,
TT , TRT from the hair model. We now proceed to develop general formulae for paths that
interact with the medulla.

Unscattered Lobes

We first discuss lobes that are not scattered by the medulla, giving expressions for Mu

p
and

Nu

p
. Consider the azimuthal profile in Figure 4.12. Conceptually, we simply ray-trace the

5There are known energy leak issues at grazing angles since Gaussian lobes are unbounded, as analyized
and accurately solved in [18]. However, the accurate solution requires heavy computation and has numerical
precision issues. Instead, we simply fold energy cuto↵s outside [-90, 90] degrees back (e.g. 93 degrees back
to 87 degrees), which works well in practice.
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chief specular ray incident at P in the 2D azimuthal cross-section, accumulating attenuation
and surface roughness along the path to give the intensity and width of the outoging Gaussian
lobe centered at P 0. In practice, ray-tracing can be replaced with simple analytic formulae.

An interesting observation is that certain types of paths only happen in specific zones
over the o↵set h (see Figure 4.12). For example, depending on the size of the medulla, the
traditional hair model paths T , TT and TRT are only possible for large h, and must enter
the medulla otherwise. In practice, we solve geometrically for the boundaries of these zones,
corresponding to �i2 = 90� and �t2 = 90�, and only consider the relevant paths within each
zone.

Azimuthal Scattering Profile: The azimuthal profile is given by equation 4.4, but
additional handling is required for chief specular rays that hit and enter the medulla (p 2
{TttT, T trtT, T ttRttT}). We split the contribution into two terms: the multiple scattered
light for which we computeM s andN s in the next sub-section based on precomputed medulla
scattering; and the unscattered light considered here, which is simply attenuated as it passes
through the medulla. For instance, in a TttT path as shown in Figure 4.12,

Nu

p
(h,�) =ATt(h) · Att(h) · AtT (h) ·Du

p
(h,�). (4.6)

Here, Att(h) is the attenuation factor for a chief specular ray transmitting through the
medulla (QQ0 in Figure 4.12).

With this background, a simple expression can be written for general higher-order paths,
which can also be used for our TtrtT and TttRttT lobes. If we regard p as a string of length
n, while pi (i = 1 . . . n) represents each vertex in p, we can write,

Ap(h) =
nY

i=1

F (pi) ·
nY

i=2

exp(��t(pi�1pi) · |pi�1pi|) (4.7)

where F is the (extended) Fresnel term, |pi�1pi| is the length of segment pi�1pi, and �t(pi�1pi)
equals either �c,a of the cortex or �m,s of the medulla, as the segment’s extinction coe�cient.

Similarly, at every intersection, the direction of p alters by angle �(pi). Thus, the
outgoing azimuth could be computed by accumulating these deviation angles as �p(h) =
⇡+

P
n

i=1 �(pi), where ⇡ accounts for the inversion of the incoming direction. For the distri-
bution term D, similar to [18, 154], we accumulate the roughness i.e., �2 at each intersection
pi along the path p. Since the outgoing distribution is a Gaussian lobe G centered at �p(h),
we can derive an analytic form,

Du

p
(h) = G

0

@�p(h),

vuut
nX

i=1

�2(pi)

1

A (4.8)

where �(pi) = 0 if the intersection pi is not on the cuticle. Explicitly, the width is given by the
number of upper-case (cortex) letters, and is � for p 2 {R},

p
2� for p 2 {TT, TrT, T ttT, T trtT},

and
p
3� for p 2 {TRT, TrRrT, T ttRttT}.

Longitudinal Scattering Profile: The unscattered longitudinal profile is given by
equation 4.5. All that remains is to determine the center ↵p and width �p of the unscattered



CHAPTER 4. DETAILED APPEARANCE MODELING OF ANIMAL FUR 86

lobes. We follow previous work for R and TT lobes, setting (↵R, �R) = (↵, �) for R, cor-
responding to the cuticle tilt and roughness, while (↵TT , �TT ) = (�↵/2,��/2). For other
lobes, we approximate

↵p = ↵TT � nR↵

�p = �TT + nR� + (n mod 2)(�/2), (4.9)

where n is the length of p, and nR is the number of Rs appearing in p. The general idea
is that, every reflection on the cuticle decreases its tilt angle and increases roughness. The
final �/2 compensates for lobes exiting backwards, since they are usually wider than forward
lobes [16]. Thus, ↵p = ↵ for p 2 R, ↵p = �↵/2 for p 2 {TT, TrT, T ttT, T trtT} and
↵p = �3↵/2 for p 2 {TRT, TrRrT, T ttRttT}. Similarly, �p = �/2 for p 2 {TT, T ttT},
�p = � for p 2 {R, TrT, T trtT} and �p = 2� for p 2 {TRT, TrRrT, T ttRttT}. Note that, to
our knowledge, longitudinal lobes’ parameters were empirically given in most previous work;
equation 4.9 provides a reasonable approximation to extend prior work to general paths that
may enter the medulla.

Scattered Lobes

In this sub-section, we consider azimuthal specular paths p, deriving the scattering functions
Nu

p
and N s

p
. In both cases,

Np(h,�) = A(p, h) ·D(p, h,�), (4.10)

where A is the attenuation along p, and D is the distribution of energy for �, considering
surface roughness for unscattered lobes and scattering inside the medulla for scattered lobes.

Zone partition: Our first observation is that certain types of paths are only likely to
happen in specific zones over the o↵set h (see Figure 4.12). We partition h into three types
of zones and mark di↵erent types of paths in each partition. The boundaries of these zones
could be geometrically solved at �i2 = 90� and �t2 = 90� respectively. So, given an incoming
o↵set h, we first find possible types of paths, then calculate each type’s scattering functions.

Unscattered lobes: Our insight is that, attenuation and roughness terms are accumu-
lated along the specular path p. If we regard p as a string of length n, while pi (i = 1 . . . n)
represents each letter in p, we could write the unscattered absorption term as

Au(p, h) =
nY

i=1

F (pi) ·
nY

i=2

exp(��t(pi�1pi) · l(pi�1pi)) (4.11)

where F is the (extended) Fresnel term, l is the length of segment pi�1pi, and �t(pi�1pi)
equals either �c,a of the cortex or �m,s of the medulla, as the extinction coe�cient along each
segment.
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Figure 4.13: Precomputing medulla scattering. We enumerate �m,s and g, and vary azimuthal
o↵set h0 and longitudinal incident angle ✓0

i
respectively.6We store the yellow-marked scattered lobe

in every outgoing azimuth �0 and longitudinal outgoing angle ✓0r.

Similarly, at every intersection, the direction of p alters by angle �(pi). Thus, the outgoing
azimuth could be computed by accumulating these deviation angles at each intersection as

�(p, h) = ⇡ +
nX

i=1

�(pi), (4.12)

where ⇡ accounts for the inversion of the incoming direction originally pointing outward.
For the distribution term D, similar to [18, 154], we accumulate the roughness i.e., �2 at

each intersection pi along the path p. Since the outgoing distribution is a Gaussian lobe G
centered at �(p, h), we can analytically write the distribution term D for unscattered lobes
as

Du(p, h) = G

0

@�(p, h),

vuut
nX

i=1

�2(pi)

1

A (4.13)

where �(pi) = 0 if the intersection pi is not on the cuticle.
Note that, when a path enters the bottom zone in Figure 4.12, the formulae for R, TT ,

TRT lobes are identical to previous work. For example, in our notation the NR(h,�) = F1 ·
G(�2�i1 , �) and NTT (h,�) = F 2

1 exp(��c,a · ¯PP 0) ·G(2�t1 �2�i1 +⇡,
p
2�), which correspond

to Eqn 7-8 in [75] and Eqn. 11-13 in [18]. While our TttT lobe has formula NTttT (h,�) =
F 2
1F

2
2 exp(��c,a · 2 ¯PQ� �m,s · Q̄Q0) ·G(2�t1 � 2�i1 + 2�t2 � 2�t2 + ⇡,

p
2�), which cannot be

represented by any previous work. Here for simplicity we write Fresnel terms on the surface
of cuticle and medulla as F1 and F2 respectively.

When the path p 2 {TttT, T trtT, T ttRttT} goes through the inner cylinder, scattering
events happen, and this medulla scattering needs to be taken into account (the broad yellow
lobe from Q0 in Figure 4.12). We rely on precomputation, and make a number of significant

6In the precomputation, we assume all sub-paths are entering the medulla horizontally, since the az-
imuthal section is rotationally-invariant.
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approximations to the full volumetric multiple scattering computation, to enable a practical
rendering model.

Precomputation of Medulla Scattering: Our precomputation approach is similar
in spirit to the empirical BSSRDF model by Donner et al. [.] However, since we use factored
lobes, we precompute scattering profiles by 2D volumetric path-tracing separately for az-
imuthal and longitudinal components, for all possible combinations of scattering parameters,
as illustrated in Figure 4.13. Here, we don’t consider surface e↵ects (reflection, refraction,
Fresnel, etc) for the medulla; instead we compute these e↵ects in the evaluation steps. In
e↵ect, we are precomputing 4D tables CN(�0;h0, �m,s, g) azimuthally and CM(✓0

r
; ✓0

i
, �m,s, g)

longitudinally (1D profiles for 3D sets of parameters). We use primes to distinguish nota-
tion from the main parameters. Our precomputation is entirely scene-independent, and only
needs to be done once. We also make CN and CM available online, so other researchers can
use them directly. After compression, these tables takes up only about 20MB. The appendix
discusses details.

Azimuthal Scattering Profile: The scattering lobe is usually large and di↵usive,
and therefore not significantly a↵ected by the smaller e↵ects of surface roughness. We also
ignore refraction by the cortex-air interface, and assume that the light leaving the medulla
is attenuated by a constant factor corresponding to the thickness of the cortex. Moreover,
we assume that the precomputed scattered lobe from the medulla doesn’t change its shape
after transmitting outside. Finally, we assume that there is only one scattered lobe that is
not further reflected by the cortex; the appendix discusses a first step towards relaxing this
assumption.

In analogy to equation 4.6, the azimuthal scattering profile from a TttT path is,

N s

p
(h,�) =ATt(h) · A0

tT
(h) ·Ds

p
(h,�). (4.14)

Note that the distribution Ds is not normalized, and accounts for the reduction in energy
1�Att(h) due to the unscattered lobe already considered. The final attenuation A0

tT
is now

approximated simply as exp[��c,a · (1 � )], corresponding to the thickness of the cortex.
We simply need to add one more attenuation term for TtrtT ,

N s

p
(h,�) =ATt(h) · Atr(h) · A0

tT
(h) ·Ds

p
(h,�). (4.15)

Note that the scattered lobe arises only on the final rt segment; any scattering in the ear-
lier segment will be considered as part of TttT . A similar expression can be used for the
TttRttT lobe. More generally, the attenuation of a scattered lobe consists of two parts.
First, the energy reaches into the medulla. Second, the scattered energy is further absorbed,
transmitting through the cortex.

The distribution term D for a scattered lobe is simply a query into the precomputed
azimuthal scattering profile CN(�0;h0, �m,s, g). Since we precompute the medulla as a unit
circle, h0 and �m,s need to be normalized by radius , leading to

Ds

p
(h,�) = CN(�� �p(h);h

0/, �m,s/, g), (4.16)



CHAPTER 4. DETAILED APPEARANCE MODELING OF ANIMAL FUR 89

Figure 4.14: Illustration for computing longitudinal scattered lobe M s. Refractions are considered
here at P , Q, P 0 and Q0.

where �p is the angle at which the ray enters the medulla.
Figure 4.12 shows a TttT path on the azimuthal section. As illustrated, the unscattered

lobe exits at P 0, carrying a Gaussian lobe due to surface roughness. The scattered lobe
emerges from segment QQ0, whose distribution is queried from the precomputed medulla
scattering profile at the normalized o↵set h0/ = sin �t2 .

Longitudinal Scattering Profile: The longitudinal scattered lobeM s is p-independent,
because every type of path p has the same ✓i and ✓r. However, it is �-dependent. As Figure
4.13 illustrates, the longitudinal profiles we precompute are for � = 0 (the upper lobe) and
� = ±180� (the lower lobe). We compute M s at both azimuths, and linearly interpolate
the results for any �. Thus, for simplicity we omit � in the following, and take � = 0 for
illustration.

We query the precomputed longitudinal distribution for the medulla CM , considering
refractions through the cuticle and the cortex. As Figure 4.14 shows, ✓0

i
and ✓0

r
could be

solved geometrically. Similar to the azimuthal case, we query the precomputed distribution
at ✓0

r
,

M s(✓i, ✓r) = µ · Ft · CM(✓0
r
; ✓0

i
, �m,s/, g), (4.17)

where Ft = (1�F (✓r+↵, l)) · (1�F (✓0
r
)) is the product of (extended) Fresnel transmittance,

and µ is the normalization factor.

Implementation Details and Validation

Importance Sampling: Our importance sampling scheme is similar to [17], where we first
perform a lobe selection, then sample this lobe azimuthally and longitudinally. Here, we treat
all scattered lobes together. If an unscattered lobe p is chosen, we sample a Gaussian around
its azimuthal outgoing center �p(h) and its longitudinal outgoing center �✓i+↵p. This leads
to a near-perfect importance sampling scheme. If the (summed up) scattered lobe is chosen,
we perform a cosine-weighted sampling longitudinally and a uniform sampling azimuthally,
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Wolf Chipmunk Cat Fur pelt
# Strands 1.6 M 503 K 729 K 12.5 K
# Segs 8 8 10 5

Area light X X
Env. light X X X
# Samples 1600 1600 2500 1024

Time 60.8 min 23.6 min 56.2 min 12.4 min

Table 4.3: Statistics for all of our scenes. We represent fur fibers using line segments for each fur
fiber. # Strands is the number of fur fibers, and # Segs is the number of segments along each fur
fiber. # Samples is the number of samples per pixel.

taking advantage of the fact that the scattered lobe is smooth. For multiple importance
sampling, which queries the PDF at a given outgoing direction, we first perform a lobe
selection similarly, then compute the corresponding PDF value at the outgoing direction,
depending on whether the scattered or unscattered lobe is selected.

Non-separable lobes: In [16], the non-separable lobes representation was introduced
to accurately capture light scattering through a hair fiber. In this representation, the center
and width of longitudinal lobes further depends on the relative azimuth �. Indeed, there are
quality improvements in rendering results from the original paper. However, we find that the
main di↵erence is the shape of the R lobe, which is the only one that spans a large range over
azimuthal angles. Thus, when applied to our double cylinder model, we simply represent
our R lobe as non-separable, and leave other lobes using the traditional representations.

Validation: We compare 2D profiles generated using our rendering model with mea-
sured data and simulations in Figure 4.7. Our rendering model closely matches the measured
reflectance profiles, and has comparable error (Table 4.2) as a full simulation, in some cases
even being closer to the measurements. This is not surprising, since the physical double
cylinder model is exactly the same. Minor discrepancies are due to approximations, such as
factoring longitudinal and azimuthal scattering profiles, empirical longitudinal lobe centers
and widths, and medulla scattering approximations.

4.7 Results

In this section, we show results generated using our rendering model, and visual comparisons
to previous methods. All results use our rendering model as a shader within Mitsuba [51],
run on an Intel 6-core 3.6 GHz i7 4960X CPU, hyperthreaded to 12 threads. Statistics of
each scene such as number of strands, number of samples and timings are listed in Table
4.3. The times are total wall clock running time, including global illumination; the cost of
evaluating our model is comparable to that of the Marschner model, which produces almost
identical timings. For all the scenes, all parameters are directly derived from our database
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 = 0.85
�m,s = 0.75

 = 0.85
�m,s = 1.5

 = 0.85
�m,s = 3.0

 = 0.85
�m,s = 6.0

 = 0.25
�m,s = 2.58

 = 0.5
�m,s = 2.58

 = 0.75
�m,s = 2.58

 = 0.99
�m,s = 2.58

Figure 4.15: Renderings of the Cat scene under environment lighting using our rendering model,
with (left) increasing scattering coe�cients �m,s and (right) increasing medulla size. Note the
di↵erences between the first and fifth images, where the fifth image produces a strong TT term on
the eyebrows and a clear secondary highlight on the forehead, which are characteristics from the
Marschner model, because it is using a small medullary index or radius  = 0.25.

in Table 4.2, except for the absorption term �c,a which accounts for di↵erent colors.7 We
also account for the fact that the medulla does not absorb light, by multiplying �c,a by the
medullary index . For wolf and chipmunk, since we don’t have corresponding fur samples,
we refer to parameters for dog and mouse from our database instead.

In comparisons, we consider [18] as a correct implementation of the Marschner model,
so that the dark appearance generated is due to specularity of the model itself, rather than
energy conservation issues. For the Marschner model, we use its optimized fitting parameters
from Fig. 4.10, rather than ad-hoc settings from industry such as enlarging azimuthal rough-
ness. For the Kajiya-Kay model, we enable global illumination by normalizing equation 2.15,
since the model itself is not energy conserving.

Wolf: Figure 4.1 shows our rendering result for a Wolf model with a side-by-side com-
parison with the Marschner model. The wolf model is placed on a turn-table to demonstrate
consistency of our rendering model, by rotating it in our accompanying video. The envi-
ronment lighting is manually blurred prior to rendering. Insets are provided to compare
with the Marschner and Kajiya-Kay models. All the renderings are path traced (for global
illumination between fibers and the environment) using 1600 samples per pixel (spp) at a
resolution of 1920 ⇥ 1080. Our double cylinder model produces a di↵usive and saturated
appearance, while the Marschner model is highly specular and dark. Note that, our method
actually produces brighter highlights with the layered cuticle model than Marschner, but
these are less visually obvious due to low local contrast. The Kajiya-Kay model produces
a hard and solid appearance even with global illumination. Intuitively, compared to our
model, it is visually similar to a BRDF vs BSSRDF (BCSDF) comparison.

7 For comparisons, we use colored textures to assign �c,a in the Marschner model for each fiber rooted
at texture coordinate (u, v) as �c,a = � log(T (u, v))/4, where T (u, v) 2 [0, 1] is the texture color at (u, v),
considering each color channel.
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Figure 4.16: Renderings of the Chipmunk scene using (top) our double cylinder rendering model
and (bottom) Marschner model illuminated with a strong area light and a dim environment light.

Cat: In Fig. 4.15, we render a close-up view of a cat head with depth of field e↵ects
under environment lighting, showing details of each fur fiber. We use our optimized fit
parameters for cat fur in our database. All renderings use a sampling rate of 2500 spp with
resolution 1024 ⇥ 1024. We can see that our rendering produces both a blurred area (top
left of the eye) and distinct appearance (around the whisker) due to di↵erent arrangements
and orientations.

We also show how an artist can manually vary key parameters of the model to get a
range of appearances. Figure 4.15 shows renderings with varying scattering coe�cients �m,s,
as well as medulla size . We observe that, artistically, �m,s closely controls color saturation,
and  determines the “specularity”, or the extent of similarity between hair and fur. In the
video, we rotate environment lighting to show color transitions of the cat fur from gold to
dark orange under di↵erent lighting conditions.

Chipmunk: Figure 4.16 is rendered with a sharp and strong area light, and a relatively
dim environment light. The skin of the chipmunk is dark colored. The Marschner model
again produces unrealistically specular and dark appearance, since the light easily penetrates
the fibers and hits the skin. However, primary (uncolored) and secondary (colored) high-
lights are still visible in the Marschner model. Both models are rendered using 1600 spp at
resolution 1920⇥ 1080. In the video, we rotate the area light to see moving highlights, while
other parts never get fully dark in our model.

Fur pelt: Figure 4.17 contains a pelt of fur placed on a checker board rendered using
1024 spp with resolution 1024⇥ 1024. A large area light illuminates the pelt from the top-
left. Our model gives a realistic di↵usive and saturated appearance, while the Kajiya-Kay
model looks hard and solid. The Marschner model produces classic primary and secondary
highlights, but leaves other regions black. By blending a di↵use lobe into the Marschner
model as proposed by [153] (a solution that is widely adopted by the industry), one can
generate a di↵usive appearance. However, the blending technique lowers the intensity of the
original lobes in the Marschner model, especially for the reflected lobe R, which leads to
a flat appearance. Furthermore, this approach is empirical and the existence of the di↵use
lobe cannot be explained physically.
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Figure 4.17: Renderings of the Fur pelt scene under area lighting. (Top left) Our rendering model.
(Top right) Marschner model. (Bottom left) Kajiya-Kay model. (Bottom right) Marschner model
blended with di↵use lobe.

4.8 Improvement: Simplified Near Field BCSDF
Model

In previous sections, we have revealed the structural di↵erences between hair and fur fibers,
and have developed a double cylinder model correspondingly. However, fur rendering is still
complicated due to the complex scattering paths through the medulla.

In this section, we focus on simplicity. We develop a number of optimizations that improve
our double cylinder model’s e�ciency and generality without compromising accuracy, leading
to a practical fur reflectance model. Similar to our previous approach, we validate our
simplified model against measured data in Figure 4.24 and Table 4.7. Furthermore, we will
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Parameter Definition
⌘ refractive index of cortex and medulla
 medullary index (rel. radius length)
↵ scale tilt for cuticle
�m longitudinal roughness of cuticle (stdev.)
�n azimuthal roughness of cuticle (stdev.)
�c,a absorption coe�cient in cortex
�m,s scattering coe�cient in medulla
�m,a absorption coe�cient in medulla
g anisotropy factor of scattering in medulla
l layers of cuticle

Table 4.4: Parameters used in our BCSDF model.

Figure 4.18: Our improved fur reflectance model with unified indices of refraction (IORs).

also describe an e�cient piecewice analytic BCSDF model that unifies near and far field
rendering in Section 4.9.

Overview

Our first observation is that, di↵erent indices of refraction (IORs) of the cortex and the
medulla are mostly responsible for complex paths and lobes. However, in most of the fitting
results presented earlier, the IORs between the cortex and the medulla are close. The
similarity indicates that, complex types of paths such as TrT and TtrtT are often too weak
to be observed. Furthermore, Figure 4.19 shows a rare and extreme case where the IORs are
clearly di↵erent. In this case, our original model with di↵erent IORs of the cortex and the
medulla is supposed to be more accurate, but still fails to match the ground truth.

Based on this observation, we unify the IORs for the cortex and the medulla. Despite
the assumption, this leads to a much simpler model, an analytic solution, and comparably
accurate results as our previous model. With unified IORs, the light path no longer reflects
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Figure 4.19: Setting the medulla’s index of refraction di↵erent from the cortex results in dark edges
at the interface between them (a) for a fur fiber of polar bear lit from behind with directional lighting
(1.45 for the cortex and 1.0 for medulla). This deviates from the photometric ground truth, even
though polar bears’ medullas are filled with air inside complex structures (c). Our local illumination
model with unified IOR (1.45) does not have this problem (b). Microscopic photo courtesy of Carrlee
et al. [8].

or changes direction at the interface between the cortex and the medulla. Our model now
shares the same light paths from hair models8 — R, TT and TRT . The only di↵erence is
that, TT and TRT paths can be scattered passing through the medulla, forming scattered
lobes TT s and TRT s. Thus, we write our near field BCSDF as:

S(✓i, ✓r,�i,�r, h) =
SR + STT + STRT + Ss

TT
+ Ss

TRT

cos2 ✓i
, (4.18)

where Sp = Mp(✓i, ✓r)Np(h,�) represent unscattered lobes and Ss

p
= M s(✓i, ✓r,�)N s

p
(h,�)

represent scattered lobes. p is from the set of reduced types of paths {R = 0, TT = 1, TRT =
2}. Ss

R
is always zero.

Apart from unifying the IORs, we improve our double cylinder model by introducing the
medulla’s absorption and di↵erent longitudinal/azimuthal roughness. Figure 4.20 demon-
strates that the medulla can absorb light because of its complex internal structure, and that
there are cases where pigments are found within the medulla [8]. We also take di↵erent lon-
gitudinal/azimuthal roughness into account, since these di↵erences are often observed [34]
and used in practice [18, 10].

Table 4.4 lists all the parameters used in our model, Figure 4.18 (c) illustrates all the
lobes in our BCSDF model, and Figure 4.21 shows decomposed renderings using each lobe.
Except for the R lobe that does not pass through the cortex, all other lobes produce colored
appearance. The medulla blocks most TT light paths from previous hair models, thus
producing a dark TT lobe and bright TT s lobe. Though much simpler with only 5 lobes, our
improved model is slightly more accurate, as validated in Table 4.7. Furthermore, individual

8We also need to consider attenuation by absorption in the medulla, in the formula for the R, TT and
TRT lobes, as given in Table 4.6.
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Figure 4.20: The medulla absorbs light due to both its complex structure and the pigments inside.
(a) Photograph of a fur fiber with the medulla filled with a mounting medium to minimize medulla’s
scattering. We can still see the structure of the medulla. (b) Solid ladder-like medulla which is
comparably thick as the cortex. (c) Pigments are found filling brown bear’s medulla, as reported by
Carrlee et al. [8].

Figure 4.21: (a) A rendering of a lock of hair with medulla. (b-f) With the unification of IORs,
our reflectance model has only 5 lobes. From left to right, results rendered using lobe R, TT , TRT ,
TT s and TRT s, with path traced global illumination (Section 4.10).

lobes in our model are more e�cient to evaluate, replacing more costly implicit ray tracing
with closed-form expressions (Section 4.8, Figure 4.26). The pre-computed data for scattering
lobes can be accurately compressed (Section 4.8) to make storage negligible (much less than
a megabyte in all).
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Lobe p Shift ↵p Roughness �p

R ↵ �m

TT �↵/2 �m/2
TRT �3↵/2 3�m/2
Lobe p Distribution M s

TT s lerp
�
(CM

�=0, C
M

�=⇡
)

TRT s lerp
�
(CM

�=0, C
M

�=⇡
)

Table 4.5: Shift and roughness of longitudinal lobes.

Lobe p Attenuation Ap or As

p

R F

TT (1� F )2 exp
⇣
�2sc�c,a+2sm(�m,a+�m,s)

cos ✓d

⌘

TRT (1� F )2F exp
⇣
�4sc�c,a+4sm(�m,a+�m,s)

cos ✓d

⌘

TT s F exp
⇣
� (sc+1�)�c,a+�m,a

cos ✓d

⌘

TRT s (1� F )F exp
⇣
� (3sc+1�)�c,a+(2sm+)�m,a+2sm�m,s

cos ✓d

⌘

Lobe p Center �p Variance �2
p
or Distribution Ds

p

R �2
n

TT 2(�t � �i) + ⇡ 2�2
n

TRT (⇡ + 2�t) + 2(�t � �i) + ⇡ 3�2
n

TT s �t � �i CN(�s

p
� �)

TRT s 3�t � �i + ⇡ CN(�s

p
� �)

Table 4.6: Attenuation and distribution of each azimuthal lobe.

Unscattered lobes (R, TT , TRT )

Since the light paths in our model no longer deviate from those in hair models, our model
unifies hair and fur rendering (Figures 4.21 and 4.32). Thus, the unscattered lobes are very
similar to the Marschner model.

Longitudinal unscattered lobes. As in previous work, we approximate the longitu-
dinal scattering profiles for each lobe using an empirical Gaussian distribution Mp(✓i, ✓r) =
G(✓r;�✓i + ↵p, �p). Their centers and variances are listed in Table 4.5.

Similarly, the azimuthal unscattered lobes are evaluated using Np(h,�) = Ap(h)·Dp(h,�)
(Table 4.6). However, with the unification of IORs, we are able to derive closed-form ex-
pressions for both the attenuation term and the distribution term, rather than needing to
use implicit ray tracing.

Azimuthal attenuation. As shown in Figure 4.18 (c), the R lobe (p = 0) will be
reflected by the cuticle directly, so it is attenuated by the Fresnel reflection F (⌘0, �i). The
TT (p = 1) and TRT (p = 2) lobes both refract through the cuticle twice, thus attenuated
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by two Fresnel transmissions, i.e. (1 � F )2. And the TRT lobe has an additional internal
Fresnel reflection. Besides, both TT and TRT are attenuated traveling through the cortex
and possibly the medulla, which are exponential fallo↵s with the distances 2sc and 2sm
traveled within the cortex and the medulla, respectively. This is how colors are introduced.
We list the attenuation terms for individual unscattered lobes R, TT and TRT in Table 4.6,
and give a general representation9 as

A0(h) = F, (4.19)

Ap(h) = (1� F )2F p�1TcTm p � 1, (4.20)

where F = F (⌘0, �i, l) is the Fresnel term with respect to cuticle layers l as in previous work,
Tc = exp(�2psc�c,a/ cos ✓d) and Tm = exp(�2psm(�m,a + �m,s)/ cos ✓d) are the attenuations
within the cortex and medulla, respectively. The division by cos ✓d is to account for elongated
azimuthal paths when viewed from an oblique longitudinal angle. Here, di↵erent azimuthal
o↵sets h decide di↵erent Fresnel terms F , as well as distances sc and sm a path travels, and
thus the attenuation terms Tc and Tm.

Azimuthal distribution. For the distribution term Dp of unscattered lobes, since
they are Gaussians G(�p(h)� �; �p) (Equation 4.8), what we need are their centers �p and
variance �p. To find their centers, we follow the corresponding light paths, performing mirror
reflections or refractions at intersections until the path leaves the double cylinder, as shown in
Figure 4.18. In this way, the exiting azimuth �p can be calculated, such that each refraction
makes the path deviate its direction by �t � �i, and each internal reflection introduces a
deviation of ⇡+2�t. For the distribution’s variance, accumulating the squared roughness �2

n

at each cuticle intersection is a simple multiplication with the number of intersections p+1.
Similar to the attenuation terms, we also list the centers and variances of the distribution
terms for lobes R, TT and TRT in Table 4.6, and give a generalized representation as

�p(h) = 2p�t � 2�i + p⇡, (4.21)

�2
p
= (p+ 1)�2

n
. (4.22)

Scattered lobes (TT s,TRT s)

As introduced in Section 4.6, the scattered lobes involve two large pre-computed lookup
tables CM and CN . In this subsection, we first describe how the pre-computed data can
be compressed. Then we minimize interactions between the scattered lobes and the cuticle,
so that querying the scattered lobe is simplified. Finally, we derive closed-form expressions
for their attenuation and distribution terms (Table 4.6), so that the previous implicit ray
tracing is no longer required.

9These general representations for all our attenuation and distribution computations also hold for ar-
bitrary higher-ordered lobes, such as TRRT and TRRT s. However, we ignore them in our renderings for
simplicity.
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Figure 4.22: Illustration of tensor decomposition.

Compression. We treat these precomputed longitudinal and azimuthal scattering pro-
files CM and CN as 4D tensors, and refer to tensor decomposition techniques to compress
them.

Tensors are high dimensional analogues to vectors or matrices, and can be regarded as
multidimensional arrays. Tensor decomposition is a generalization of matrix singular value
decomposition (SVD). In tensor decomposition, a d-dimensional tensor A is represented as
a linear combination of R “simpler” tensors, each represented as the tensor product of d
vectors:

A =
RX

r=1

�rA(r) =
RX

r=1

�r · a(r,1) ⌦ a(r,2) ⌦ · · ·⌦ a(r,d), (4.23)

where the (i1, i2, . . . , id)-th element of A(r) is the product of the i1-th element of a(r,1), the
i2-th element of a(r,2), . . . , and the id-th element of a(r,d) (Figure 4.22).

Here, R is the rank of tensor A, and each A(r) is rank 1. Similar to SVD for matrices, by
assuming that the coe�cients �r are sorted in decreasing order and keeping only the largest
k coe�cients, we are able to reconstruct tensor A approximately as

A ⇡
kX

r=1

�r · a(r,1) ⌦ a(r,2) ⌦ · · ·⌦ a(r,d). (4.24)

If a relatively small k is needed to appoximate tensor A accurately enough, we say that
A is low rank. In this case, we only need to store k ⇥ d vectors to accurately reconstruct it,
which is significantly less than the storage for A itself.

We apply this tensor decomposition scheme to compress the precomputed scattering pro-
files CM and CN , both with resolution 24 ⇥ 16 ⇥ 16 ⇥ 720, storing radiance at 24 values
of �m,s, 16 values of g and 16 values of h or ✓i towards 720 outgoing directions. We use
scikit-tensor, a Python module for multilinear algebra and tensor factorizations, to perform
tensor decomposition using the alternating least squares (CP-ALS) algorithm. Our experi-
ments show that, it usually takes less than one minute (single-threaded) to decompose either
longitudinal or azimuthal precomputed data, with a maximum of 500 iterations. After the
decomposition, we find that using up to rank 16 is good enough to accurately capture the
complex shapes of all precomputed data.
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Figure 4.23: Comparison of measured (solid lines) and compressed (dotted lines) scattering pro-
files. Using our tensor decomposition scheme, the compressed profiles have good matches with the
measured data over a wide range of parameters.

The resulting coe�cients take only 150 KB in storage, which is negligible compared to
the 600 MB raw data earlier. Figure 4.23 verifies the accuracy of our compression.

Note that previous tensor decomposition techniques for visual data [127, 134, 124] usually
perform more complicated factorizations, using N-mode SVD with a core tensor. However,
in our application, we find using a combination of rank 1 tensors su�ces.

Longitudinal scattered lobes. The longitudinal scattered lobes are still interpolated
between the precomputed lobes at � = 0 and � = ⇡. However, we find that in Equation 4.17,
the normalization factor µ is costly to compute but still approximate. Besides, the Fresnel
transmittance cancels the normalization in most practical cases. Thus, we simplify the
queries to use the incident and outgoing longitudinal angles directly as

M s(✓i, ✓r,�) = lerp
�
(CM

�=0(✓i, ✓r), C
M

�=⇡
(✓i, ✓r)). (4.25)

Azimuthal attenuation. Our azimuthal attenuation term Ap consists of two parts.
The first part is the attenuation from the beginning to the point where the p-th segment
starts intersecting the medulla, i.e. before the medulla scatters. Specifically, for TT s (p = 1),
we consider the first segment, and for TRT s (p = 2), we consider the second rather than the
first two, since the first segment’s contribution is already accounted for in TT s. In analogy
to the unscattered lobes, we write the first part of the attenuation as Ta = exp(�[(2p �
1)sc�c,a + 2(p � 1)sm(�m,a + �m,s)]/ cos ✓d). The second part is the attenuation after the
medulla’s scattering, attenuated by the medulla of distance  and by the cortex of distance
1�. We assume no reflection/refraction events happen when exiting the cuticle. Thus, the
second part of the attenuation becomes Tb = exp(�[�m,a+(1�)�c,a]/ cos ✓d). The overall
attenuation term is thus

As

p
(h) = (1� F )F p�1TaTb. (4.26)
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Parameter Unit Bobcat Cat Deer Dog Mouse
 unitless 0.88 0.87 0.91 0.68 0.66
⌘ unitless 1.69 1.36 1.60 1.58 1.35
↵ degree 5.48 3.65 3.52 2.94 0.55
�m degree 11.64 5.66 7.00 5.77 8.39
�n degree 7.49 1.34 4.53 18.94 2.80
�c,a diameter-1 0.64 0.06 1.39 0.01 0.04
�m,s diameter-1 1.69 2.47 2.51 2.44 1.34
�m,a diameter-1 0.17 0.12 0.09 0.00 0.06
g unitless 0.44 0.60 0.46 0.26 0.36
l unitless 0.47 0.44 0.45 0.60 2.36

NRMSE (original) 7.2% 5.3% 7.9% 9.1% 8.5%
NRMSE (improved) 6.8% 6.4% 7.1% 7.3% 4.7%

Parameter Unit Rabbit Raccoon Red fox Springbok Human
 unitless 0.79 0.65 0.86 0.82 0.36
⌘ unitless 1.47 1.19 1.49 1.48 1.20
↵ degree 3.14 1.81 2.64 4.61 0.70
�m degree 11.91 7.44 9.45 8.02 2.05
�n degree 10.52 6.88 17.63 11.46 3.75
�c,a diameter-1 0.24 0.25 0.39 0.32 0.41
�m,s diameter-1 0.78 2.30 3.15 2.45 3.49
�m,a diameter-1 0.10 0.14 0.21 0.31 0.00
g unitless 0.12 0.08 0.79 0.19 0.28
l unitless 1.03 2.00 0.68 0.46 1.79

NRMSE (original) 8.4% 10.1% 6.3% 7.0% 19.3%
NRMSE (improved) 6.0% 9.7% 6.2% 8.1% 16.1%

Table 4.7: (Top) Optimized parameters fit from our measured data using our far field model. All
length-related parameters are calculated assuming the azimuthal section of every fiber is a unit circle.
All angle-related parameters are in degrees. (Bottom) Normalized RMS error of our original double
cylinder model and our improved model.

Azimuthal distribution. For the distribution term Ds

p
(h,�) = CN(�s

p
(h) � �), we

derive the direction �s

p
of the p-th segment, and use the di↵erence angle �s

p
� � to query

from the precomputed azimuthal scattering profile CN . Similar to the unscattered lobes, the
direction of the p-th segment that enters the inner cylinder is given by

�s

p
(h) = (�t � �i) + (p� 1)(⇡ + 2�t). (4.27)

Intuitively, Equation 4.27 is the result of one refraction into the outer cylinder for the TT s

lobe (p = 1), or one refraction plus one internal reflection for the TRT s lobe (p = 2).
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The final azimuthal scattered lobes are written as N s

p
(h,�) = As

p
(h) ·Ds

p
(h,�).

In summary, for longitudinal scattered lobes, we simplify the interactions of the scattered
lobes with the cuticle by ignoring the cuticle refraction. In this way, complex normalization
is avoided along with Fresnel transmittance. For azimuthal scattered lobes, we assume
that they originate from the center of the double cylinder and are attenuated evenly for all
directions by the medulla and the cortex successively. So, compared to our previous model,
our model does not have the additional di↵usive lobe, and it accounts for absorption from
the medulla. The simplicity of our model naturally leads to the ease of implementation. We
provide implementation details in Section 4.10.

4.9 Improvement: Piecewise Analytic BCSDF Model

So far, we’ve derived a near field BCSDF. Now we show how to make a far field BCSDF
approximation, which is especially e�cient in reducing variance where hair or fur fibers are
much thinner than a pixel. We then describe how to transition between near and far field
models to make a multi-scale BCSDF that integrates per pixel. Our multi-scale BCSDF
is the first model that is able to produce near field appearance when viewed close up, and
requires no sampling when viewed far away.

Far field BCSDF model

To enable far field approximation, we need to integrate the near field azimuthal scattering
profiles Np and N s

p
over the azimuthal o↵set h. Both unscattered and scattered lobes share

the same representation

N(�) =
1

2

ˆ 1

�1

A(h) ·D(h,�) dh, (4.28)

For simplicity, we focus on the range h 2 [0, 1] since it is always equivalent for symmetric
queries (h,�) and (�h,��). Thus, Equation 4.28 becomes

N(�) =
1

2

ˆ 1

0

A(h) ·D(h,�) dh+
1

2

ˆ 1

0

A(h) ·D(h,��) dh

, N (+)(�) +N (�)(�). (4.29)

Unscattered lobes. We first look at the attenuation term. Our observation is that, the
attenuation term Ap from Equation 4.20 can be treated as the product of four components:
(1 � F )2, F p�1, Tc and Tm. These four components are all functions of h — for the former
two components with Fresnel terms, h defines di↵erent incident angles �i, and for the latter
two absorption components, h decides the distances light travels within cortex and medulla
sc and sm. Another observation is that, these components are either monotonic or smooth
when h changes. So we start with partitioning h into a few segments (Figure 4.25 (a)). Then,
for maximum accuracy, we linearize the entire first two components (1� F )2 and F p�1 and
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Figure 4.24: (Left) Reflectance profiles measured from di↵erent animals’ fur fibers. (Middle) Syn-
thesized profiles using the our original double cylinder model. (Right) Synthesized profiles using our
analytic far field BCSDF model in Section 4.9. All profiles are scaled and displayed in logarithmic
space for perceptual brightness.

the distances sc and sm in the latter two components. Thus, the attenuation term A(h)
becomes the product of two linear functions and two exponentials of linear functions.

Then we analyze the Gaussian distribution term Dp(h,�) = G(�p(h) � �). Here we’re
not interested in its variance which is constant with h. Instead, we focus on its center that
varies with h. As shown in Equation 4.21, when h changes, �t and �i change with it. So,
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similar to the attenuation term, with segmented h, we are able to represent �t and �i with
linear functions. Since a Gaussian is an exponential of squared variables, the distribution
term ends up with an exponential of a quadratic polynomial.

With the piecewise polynomial representation inside both the attenuation term Ap and
the distribution term Dp, we’re able to represent the azimuthal scattering profile Np for
unscattered lobes in a simple form. Note that the product of two linear functions from
Ap makes a quadratic polynomial, and the product of two exponentials of linear functions
from Ap and the exponential of a quadratic polynomial from Dp together makes another
exponential of a quadratic polynomial. So, we have the following form for unscattered lobes:

N (+|�)
p

(�) =
1

2

nX

i=1

ˆ
hi

hi�1

Q1(h) · exp(Q2(h)) dh, (4.30)

where Q1 and Q2 are quadratic polynomials. This can be easily solved analytically, as will
be described with details in the Appendix.

Scattered lobes: The scattered lobes are similarly handled. For the attenuation term
As

p
in Equation 4.26, we linearize the Fresnel terms 1 � F , F p�1 as well as the distances

sc and sm, resulting in the product of two linear functions and two exponentials of linear
functions.

Since the distribution term Dp is queried rather than computed as a Gaussian, it is even
simpler so that we directly linearize it. So the entire distribution term is a linear function.

Thus, the final result of the azimuthal scattering profile N s

p
for scattered lobes has the

form

N s(+|�)
p

(�) =
1

2

n�1X

i=1

ˆ
hi

hi�1

C(h) · exp(L(h)) dh, (4.31)

where C is a cubic polynomial that is the product of linearized components (1 � F ), F p�1

and Ds

p
, and L is a linear function of the product from Ta and Tb. This integral can also be

solved analytically with even simpler results than unscattered lobes.

Segmentation. We observed that when h is large, i.e. the incident position is away from
the center, the linear terms change more rapidly. So we partition h 2 [0, 1] quadratically, i.e.
hi =

p
i/n. For unscattered lobes, we find that using 5 segments is enough in most prac-

tical renderings, while using 8 segments generates indistinguishable scattering profiles. For
scattered lobes, since they are even smoother, we find 4 segments good enough throughout
all computations.

Acceleration. In practice, we usually don’t have to integrate all n segments. Given a
specific h, we immediately know its relative exiting azimuth �p(h). For unscattered lobes,
since the distribution term is a Gaussian around �p(h), it is safe to assume that a path that
is incident from h contributes only within this outgoing range [�p(h) � 3�p,�p(h) + 3�p].
Based on this observation, for a segment h 2 [h1, h2], we can limit its contribution within
the range [min{�p(h1),�p(h2)}�3�p,max{�p(h1),�p(h2)}+3�p]. So we simply throw away
all the queries with � that are not within this range. In this way, each query for unscattered
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Figure 4.25: (a) Illustration of far field integration. The longitudinal section is partitioned into n
segments. For each segment, we compute its contribution to the queried relative exiting azimuth.
(b) Illustration of calculating a pixel’s coverage for multi-scale rendering. A pixel (marked red on
the image plane) is first projected to the hit point (red segment at the hit point), then projected
again towards the fiber (blue segment).

lobes now requires an average of only 2� 4 integrations in practice. However, for scattered
lobes, since the distribution term is precomputed for every direction, the acceleration scheme
does not apply.

Validation. To verify the accuracy of all these simplifications / improvements, we re-
fitted all the measured fur reflectance profiles and compared the NRMSE10 with previous
fitting results.

We use Ceres Solver [1], a nonlinear least squares minimizer, to fit the measured profiles.
The fittings are performed in logarithemic space, with the cost function defined as the
sum of all per-pixel di↵erences of the log-measured and log-fitted values, divided by the
range between the minimum and maximum log-measured values. The initial values of all
parameters are manually set. The fitted profiles are generated using our far field model,
with 8 segments for unscattered lobes and 5 segments for scattered lobes. Fitting each
profile takes 2 ⇠ 3 minutes in our test platform.

Figure 4.24 shows 3-way comparison of the measured data, our previously fitted profiles
and new fitted profiles. From these profiles, we can see that even with only 5 lobes, our
method is still able to produce similar forward scattered lobes (e.g. red fox) and backward
scattered lobes (e.g. raccoon). Also, with the introduction of medulla absorption, and the
unification of IORs thus reducing the complexity of light scattering, our model has much
“cleaner” forward scattered regions near (✓ = 10�,� = 180�) (e.g. mouse and rabbit), which
cannot be handled previously. The introduced azimuthal roughness intuitively smoothes
the fitted profiles azimuthally. It is especially obvious for the R and TT lobes, so that the
high-intensity regions fit better (e.g. raccoon, rabbit and dog). Note that our new method
may not be consistently better than previous over these regions. This is expected, since the

10Normalized RMS Error, or precisely, RMS error of the fitting result divided by the range of measured
data.



CHAPTER 4. DETAILED APPEARANCE MODELING OF ANIMAL FUR 106

MR,TT,TRT

↵R,TT,TRT ...............Table 4.5
�R,TT,TRT ...............Table 4.5

NR,TT,TRT(h or [hi�1, hi])
AR,TT,TRT ...............4.19, 4.20
DR,TT,TRT .....................4.8

�R,TT,TRT .................4.21
�2
R,TT,TRT

................. 4.22

M s

TT,TRT

CM
..........................4.24

N s

TT,TRT
(h or [hi�1, hi])

As

TT,TRT
......................4.26

Ds

TT,TRT

�s

TT,TRT
...................4.27

CN
.......................4.24

Figure 4.26: A dependency tree of variables for BCSDF evaluation. Equation numbers are marked.
All the variables required for both unscattered and scattered lobes are also listed in Tables 4.5 and
4.6.

fitting procedure is aimed at global optimization.
One limitation of our method would be that, our results are slightly more blurred lon-

gitudinally, indicating larger longitudinal roughness fitted. This may relate to a cuticle
scattering phenomenon observed as stripes in almost all measured profiles, and we leave it
as future work. Also, there are cases (e.g. human) where neither our previous method or
our improved method produce good fits, indicating that the double cylinder model can be
further improved.

Table 4.7 lists all the fitted parameters and NRMSE values. As analyzed above, though
our near field model makes several approximations for scattered lobes, and our far field
model builds upon it with further piecewise linear approximations, our model still has better
results in most cases. Note that our model is much simpler and more general, and the new
parameters in our model (�n and �c,a) provide better flexibility for artist control.

Multi-scale BCSDF model

Far field approximation is accurate when hair or fur fibers are thinner than a pixel. However,
when viewed close up, a fiber’s width may cover several pixels, i.e. each pixel actually covers
a small range over the azimuthal section. In these cases, far field approximation will produce
ribbon-like appearance (Chapter 2). To deal with these cases, we propose our multi-scale
BCSDF model. We use each pixel’s coverage on hair or fur fibers to decide the range of
azimuthal o↵set h it covers, and integrate per pixel instead of per fiber. In this way, we
integrate similar to far field approximation, but keep the accurate near field appearance.

Pixel-wise integration. Suppose we know that a pixel covers a range of azimuthal
o↵set h 2 [h1, h2]. We extend Equation 4.28 to integrate only within this range as

N(�) =
1

h2 � h1

ˆ
h2

h1

A(h) ·D(h,�) dh, (4.32)
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Figure 4.27: Validation of far field and multi-scale rendering. We render the same scene viewed
close up (left three columns) and viewed from far (right three columns), using 1024 spp (top half)
and 64 spp (bottom half). Timings are listed for 1024 spp and 64 spp, respectively. When zoomed
out, our far field and multi-scale models perform around 1.5⇥ slower than near field. When zoomed
in, our multi-scale model performs closer to near field, since the range to integrate becomes smaller
for each pixel.

where the term 1/(h2 � h1) guarantees energy conservation. When a pixel fully covers
the entire azimuthal section, Equation 4.32 degenerates to the far field case Equation 4.28.
And in the limit case where h1 and h2 are infinitesimally close, it becomes the near field
scattering representation N(h,�) = A(h) ·D(h,�). These two cases indicate that our multi-
scale BCSDF model bridges both near and far field scattering, and is consistent when scaling
between them.

Calculating a pixel’s coverage. Now that we have a multi-scale BCSDF model, what
remains is to find a pixel’s coverage [h1, h2]. Figure 4.25 illustrates the way to calculate
it. Assuming that pixels are round rather than square on the image plane, we can tell how
large a pixel’s coverage is at the hit point in world coordinates using its diameter, denoted
as Chit. This is very similar to ray di↵erentials [50]. Then, the projected pixel at the hit
point becomes a disk, facing along the camera’s look-at direction !lookat. We project the
disk again towards the hit fiber, i.e. onto the direction !fiber. Finally, we compare it with
the fiber’s radius rfiber in world coordinates to get the pixel’s coverage. So, we have

Cfiber ⇡ (!fiber · !lookat)Chit/rfiber (4.33)

as the pixel’s coverage in the azimuthal section of the fiber, with the same unit as h 2 [�1, 1].
Here !fiber is the direction from the camera to the fiber’s center within the same azimuthal
section with the hit point. The fiber’s center can be calculated when performing ray-cylinder
intersections. However, unless viewed from extremely close so that a fiber covers a very large
area in the image plane, !fiber is always close to the camera ray’s direction !camera. So, in
practice, we replace !fiber with !camera in Equation 4.33 for simplicity.
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Figure #Strands #Segs #Samples Time Method
Hair Lock 4.21 1K 210 1024 3.7min N/M/F
Raccoon 4.30 260K 22 1024 14.1min M
Hamster 4.29 580K 15 1024 36.9min N

Cat 4.31 267K 9 256 3.8min M
Hair 4.32 53K 64 1024 17.3min M

Table 4.8: Statistics for our scenes, all rendered in 720p, using di↵erent rendering methods (N for
near field, M for multi-scale, F for far field). Each of the (# Strands) fur fibers is represented using
(# Segs) line segments. # Samples is the number of samples per pixel.

After getting a pixel’s coverage, the azimuthal range to integrate can be written as
[h�Cfiber/2, h+Cfiber/2]. This range is then clamped to be within [�1, 1], in case a pixel is
much larger than a fiber’s width, or it covers the boundary of a fiber. To integrate, we use
the same segmentation scheme for far field approximation, clipping segments to be within
this range.

Validation. We render the same insets using our near field, far field and multi-scale
BCSDF models. As shown in Figure 4.27, when viewed far away, the di↵erences between our
three methods are barely visible, but the far field and multi-scale models produce significantly
less noise. When viewed close up, our multi-scale model still generates the same results as
compared to the near field model, but the far field results look flat. A similar e↵ect is seen
in Figure 4.30, where the multi-scale model produces the same appearance as the near field,
but is much less noisy.

4.10 Results using the Improved Model

Implementation

In this section, we provide a brief summary of how to implement our improved near and far
field model within global illumination renderers. We discuss two relevant aspects: evaluation
and sampling.

BCSDF evaluation. Since our improved reflectance model unifies hair and fur rendering
with only two additional scattered lobes, our BCSDF evaluation easily fits in a hair rendering
system. We provide a dependency tree in Figure 4.26 of variables to compute, separating
the classic R, TT and TRT lobes for hair and new scattered lobes TT s, TRT s.

When near field rendering is required, the azimuthal lobes are queried at specific o↵set
h. On the other hand, for far field approximation or multi-scale rendering, queries happen
on the ends of all segments. Note again that every step in the tree of Figure 4.26 is either
analytic or queried, thanks to the unification of IORs.

Importance sampling. Similar to d’Eon et al. [17], our importance sampling works in
four steps as follows:
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Figure 4.28: We compare our method with our previous method in (a) convergence and (b) frame
rendering time. The experiments are conducted on the central 32⇥ 32 patch of the hair lock scene.
Our near field model converges twice as fast as previous, and our multi-scale model converges an
order of magnitude faster. Also, our near field model performs 2⇥ faster. Moreover, since our
far field and multi-scale models require solving integrals rather than querying the integrand as near
field models do, a slight performance drop is expected. However, they still outperform our previous
model even though it is near field, indicating that our analytic integration is e�cient. Also note
that since the scene is viewed from far away, our far field and multi-scale models converge almost
as fast in this case.

• Choosing azimuthal o↵set h. For near field scattering, since it is fixed, there’s no need
to choose. For far field approximation and multi-scale rendering, we randomly pick an
h from the corresponding range, i.e. [�1, 1] for far field and [h1, h2] for multi-scale.

• Choosing a lobe p to sample. The lobes are weighted according to the energy they
carry. Since the longitudinal integral of Mp is always 1, and the azimuthal integral of
the distribution term Dp is also 1 for any selected h, the energy that lobe p carries
depends on its attenuation term Ap. So, we calculate the attenuation term for all 5
lobes, and choose one with the probabilities in proportion to their values.

• Sampling azimuthally. Once the azimuthal o↵set h and the lobe p have been selected,
for unscattered lobes, we immediately know how they distribute with center �p and
standard variance �p. We perform a Gaussian sampling according to this distribution
to get the relative exiting azimuth �. Then the actual outgoing azimuth �r = � + �i

can be computed. For scattered lobes, since they’re smooth, we sample them uniformly
over all azimuthal angles.

• Sampling Longitudinally. This is very similar to the azimuthal case. Since we know
which lobe is to be sampled, for unscattered lobes, we just need to sample according
to the Gaussian Mp. For scattered lobes, we use cosine sampling.

• Calculating PDF and sampling weight. The final probability density function (PDF)
is the product of PDFs sampling the selected lobe p azimuthally and longitudinally,
followed by a conversion from (✓,�)-measure to solid angle measure. The final sampling
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Figure 4.29: A Hamster model rendered under studio lighting with a di↵use backdrop, using our
near field model. Insets compare (b) our improved method with our previous method for (a) equal
time (ET) and (c) equal quality (EQ) (E in the sub-captions stands for RMS error). The two
models have di↵erent parameter spaces, thus small di↵erences can be found in the EQ comparison.
In the ET comparison, noise can be clearly seen when zoomed in. For equal quality, our method
performs 3.5⇥ faster.

weight is the BCSDF value of the selected lobe p over the final PDF, then divided by
the probability of selecting it. Since the unscattered lobes are importance sampled and
the scattered lobes are usually smooth, the sampling weight is usually smaller than 2
in practice.

With the importance sampling scheme, we perform standard path tracing to determine
accurate global illumination.

While our importance sampling method is similar to our previous method, one important
di↵erent to notice is that our previous model has 11 lobes, most of which make a very small
contribution to the final image. When a lobe with low energy is selected with low probability,
the sampling weight will be large, and the result will be noisy (have high variance). In
contrast, our reflectance model has only 5 lobes, each of which carries a significant amount
of energy. Thus, even when comparing only our near field results, our method still has less
noise (Figures 4.30, 4.28 and 4.29).
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Figure 4.30: (Top row) A rendering of a raccoon model using our practical 5-lobe reflectance model
(illustrated bottom right) and our multi-scale rendering scheme with 1K samples per pixel. (Bottom
row) Insets rendered using di↵erent methods. We use 256 samples per pixel for equal sample (ES)
comparison, and show equal quality (EQ) comparison with our previous model. Our multi-scale
model performs more than 8⇥ faster for equal quality while being practical and e�cient. Even our
near field model has significantly less noise than previous work.

Results

In this subsection, we show rendering results generated using our practical reflectance model,
and compare them with previous work. We implement our model in the Mitsuba renderer
[51]. Scene configurations, including number of hair or fur fibers and samples per pixel, are
listed in Table 4.8. Parameters for raccoon, cat and human hair/fur models are taken from
our best fit results in Table 4.7. The hamster model uses parameters from mouse. Since the
measured data is grayscale only, to introduce color, we convert colored textures at di↵erent
positions to absorption coe�cients �c,a in the cortex as before. All scenes are rendered
using path tracing on an Amazon EC2 c4.8xlarge instance with 36 vCPUs. The source code
and compressed pre-computed data are available on http://viscomp.ucsd.edu/projects/

fur2.
We measure and compare the entire frame rendering time, including BVH traversal and

ray-cylinder intersections. Even so, our near field reflectance model still performs around
3.5⇥ faster than before in terms of equal quality comparison, and our multi-scale rendering
scheme performs even better with up to a 8⇥ speed-up. Note that since the parameter
space in our reflectance model is di↵erent from our previous model, slight di↵erences can be

http://viscomp.ucsd.edu/projects/fur2
http://viscomp.ucsd.edu/projects/fur2
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Figure 4.31: A Cat model rendered multi-scale with an area light in front. We compare with our
previous model for equal time and equal quality (same RMSE). For the same quality, our multi-scale
BCSDF achieves a 6.0⇥ speed-up.

observed in their rendering results.11

Hair lock. Figure 4.21 shows decomposed renderings from each of the 5 lobes in our
model, using the fitted parameters of human hair in Table 4.7. We can clearly see di↵erent
lobes’ contribution, indicating that our model is concise and e↵ective. Figure 4.28 compares
the convergence curves and rendering time using di↵erent methods. Previously, it is near field
and does not require integration. However, our multi-scale model not only evaluates slightly
faster, but also converges fastest among all the models. Our near field model evaluates
fastest, but still converges 2⇥ faster than before.

Raccoon. The raccoon scene is rendered with an HDR environment map. We use a
ground projection scheme similar to Autodesk Fusion 360’s implementation, so that the
raccoon stands on an actual ground rather than floating. As shown in Figure 4.30, our
near field model is capable of generating very similar di↵usive appearance as compared to
our previous model, but is much simpler and has less noise. Furthermore, our multi-scale
rendering scheme converges significantly faster with minimum overhead. This is because the

11Hence, errors are computed with respect to the converged result for each reflectance model separately.
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Figure 4.32: A hair model rendered with and without medulla using our multi-scale model. Our
model unifies hair and fur rendering with the same light paths, regardless of the medulla’s size. The
di↵erence between these two renderings is clearly visible, indicating the importance of the medulla
as well as our scattered lobes TT s and TRT s, even with a small .

fur fibers are so thin that near field sampling is very ine�cient, while multi-scale rendering
integrates e�ciently, successfully removing the high frequency noise.

Hamster. This scene (Figure 4.29) shows a hamster model, rendered under studio
lighting with several area lights on top. The hamster model is located inside a capsule-like
di↵use backdrop, encompassing the top, bottom and back sides. Since everything is di↵use,
near field reflectance is e�cient enough. We compare our near field model with our previous
model which is also near field, showing that our model has better convergence because of its
simplicity.

Cat. The cat model (Figure 4.31) is rendered using an area light in front. We compare
our multi-scale model with our previous model. Our scene is rendered noise-free with only
256 samples per pixel.

Hair. Our reflectance model and multi-scale integration also work on human hair. As
shown in Figure 4.32, even a small medulla ( = 0.15) makes a di↵erence in hair’s overall
appearance. Intuitively, this is because the light that goes through the medulla is spread
more, making each hair more di↵usive. The result indicates the importance of the medulla
even for human hair, showing that the di↵usive appearance comes not only from global
illumination between hair fibers, but also within hair fibers. Note that the same light paths
are computed through hair or fur fibers regardless of the medulla. Moreover, our multi-scale
integration benefits both hair and fur rendering.
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Figure 4.33: Rendering of the Pelt scene using di↵erent methods, with a sphere casting a shadow
onto it. The various colors are defined using a texture so that each fiber has a di↵erent color.
(a) The classic dual scattering method fails to capture the scattered lobes from fur fibers, resulting
in a dark appearance. (b) Our extended dual scattering handles scattered lobes, but is brighter
and still produces hard and solid appearance, and does not have color bleeding e↵ects. (c) Our
method introduces a BSSRDF solution to the complex scattering, closely matching (d) the path
traced reference, but is an order of magnitude faster.

4.11 E�cient Fur Global Illumination Model

So far, we have completely introduced our double cylinder model. With our model, we are
able to render animal fur accurately within a modern renderer, which simulates how light
interacts with materials (local illumination) and bounces between objects (global illumina-
tion).

The global illumination part is responsible for the overall di↵usive and saturated ap-
pearance of the hair or fur volume. In fact, compared to local illumination that considers
how light interacts inside individual fibers, global illumination caused by light scattering
within the fur volume is usually brighter and more visible, composing the main part of the
appearance.

However, global illumination rendering is slow. It requires accurate simulation of hun-
dreds of bounces of the light between individual fur fibers. Therefore, approximate methods
are common, the most popular of which is the dual scattering technique [154], as intro-
duced in Chapter 2. However, dual scattering does not work well for animal fur rendering.
This motivates us to develop a novel BSSRDF (Bidirectional Surface Scattering Reflectance
Distribution Function) solution to global illumination, addressing many of dual scattering’s
limitations. In this section, we will briefly analyze the failure cases of dual scattering to
motivate our global illumination method. Then we provide a high level overview of our full
global illumination model, specifying di↵erent components it consists of.

Failure of dual scattering

In dual scattering, there is an important assumption that the longitudinal lobes from hair
BCSDFs (thus the averaged forward and backward lobes) are sharp. This is why it is
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Figure 4.34: (a) Averaged forward/backward scattering internsities āf |b and variances �̄2
f |b for a

single hair fiber. (b) All 5 longitudinal lobes in Yan et al. [141]. Note the scattered lobes TT s and
TRT s that are too smooth and wide to follow the main path assumption. (c) Simple extension of
dual scattering by calculating the contribution of scattered lobes to the forward/backward scattered
lobes anyway.

Figure 4.35: Classic dual scattering (a) works well on traditional hair models without medulla
compared with path traced reference (b), but cannot capture scattered lobes from fur models with
medulla (c). Our extended dual scattering (d) approximately handles the medulla and resolves the
energy loss, but still doesn’t match path traced reference (f) as well as our method (e).

reasonable that the light only transports along main paths. While generally true for human
hair, when applied to animal fur, the model will break. The medullas within fur fibers
produce smooth and di↵usive scattered lobes, which do not exist in previous hair models
and are not suitable to be abstracted using a forward and a backward lobe, as shown in
Figure 4.34.

Even if we do assume light scattering only along main paths, the rendering results in
Figures 4.33 and 4.46 indicate that dual scattering still cannot get us the correct light spread
or color bleeding around the shading point x. This is because dual scattering always adds
approximate global illumination only to x. Intuitively, the di↵erence is analogous to BRDFs
vs. BSSRDFs. This observation motivates us to model global illumination using BSSRDFs,
as will be elaborated in Section 4.11.3 and 4.12.
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Extending dual scattering

Since dual scattering only works for specular unscattered lobes, simply applying it to these
lobes will result in energy loss from scattered lobes (see Figures 4.33 (a) and 4.35 (c)). To
guarantee fair comparison with our approach later, we extend dual scattering to approxi-
mately handle the scattered lobes.

Our extension is to simply average the attenuation and spread of all lobes, regard-
less of whether they are spread or not (Figure 4.34 (c)). We calculate the averaged for-
ward/backward attenuation āf |b using Equation 2.18, but using all lobes including TT s and
TRT s. We average the lobe-weighted average spread similar to Sadeghi et al. [a]s:

�̄f |b =

´
⌦f |b

P
p2{R,TT,TRT,TT s,TRT s} Sp�p d!´

⌦f |b

P
p2{R,TT,TRT,TT s,TRT s} Sp d!

, (4.34)

assuming the stardard variances of the TT s and TRT s lobes as �TT s = �TRT s = ⇡/4, since
they are approximately uniformly distributed in the longitudinal section. The spread is
pre-computed by uniformly sampling ✓ and � and numerically calculating the integrals.

Note that, our extension to dual scattering is a bold assumption. It will result in un-
reasonably wide forward and backward lobes, but at least allows for energy conservation
(See Figure 4.34). Moreover, it still makes the main path assumption, thus resulting in no
color bleeding e↵ects, as pointed out in Figure 4.33 (b). Furthermore, the brightness of the
extended dual scattering is not stable (with fixed df = db = 0.7). Sometimes it will generate
much brighter appearance than the reference (Figure 4.33) while sometimes being darker
(Figure 4.44).

We compare the classic and our extended dual scattering in Figure 4.35 (a)-(d). We
first use the classic dual scattering on human hair without medulla (a) together with local
illumination. Since no scattered lobes exist, this is a case where the classic dual scattering
works well, compared to the reference (b). Then we apply the classic dual scattering and
our extended dual scattering with a medulla of width  = 0.36 (c)-(d), also with local
illumination, and compare them with our method (e) and reference (f). We find that the
classic dual scattering su↵ers from severe energy loss. The extended dual scattering alleviates
this issue, but generates a flat appearance. In contrast, our BSSRDF model, introduced next,
generates a close match with the reference, as will be introduced next.

Model overview

To break the main path constraint, we represent our global illumination model as a com-
bination of a BCSDF and a BSSRDF. The BCSDF also contains two components: direct
illumination and dual scattering for multiple scattering from only specular lobes. The BSS-
RDF is responsible for all other multiple scattering events.

The direct illumination component describes light interaction with single hair or fur
fibers. It is thus the hair or fur’s BCSDF Sc in Equation 2.13. We name this part as the
local illumination component.
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Figure 4.36: Decomposed components in our global illumination model. (a) Local illumination
component Sc, including all 5 lobes: R, TT , TRT , TT s and TRT s. (b) Unscattered component
Sds captured by classic dual scattering, including R, TT and TRT lobes. (c) Scattered component
Sss represented using BSSRDF, including all light interactions that are related to TT s and TRT s

lobes. (d) Our full model with all components.

Another part is the dual scattering of specular lobes Sds. This is part of the global
illumination. Since there are no scattered lobes, the main path assumption still holds.
Specifically, we convert only R, TT and TRT lobes into forward and backward lobes using
Equation 2.18, and use them to compute dual scattering’s contribution. We define this part
as the unscattered component. This part is slightly more accurate than the classic dual
scattering method, since we also take the R lobe into account.

For the rest of the energy, at least one scattered lobe contributes. Since the scattered
lobes are usually smooth and more isotropic than unscattered specular lobes, significant
scattering happens. Thus, we use subsurface scattering to capture the scattering e↵ects.
Specifically, given the parameters of hair or fur, we convert them to subsurface parameters,
then use the dipole method for rendering. We name this part as the scattered component.
Note that, for hair which doesn’t have a medulla, this component becomes zero. In this case,
our method reduces to classic dual scattering.

Our final model can be represented as:

SBCSDF = Sc(!i,!r) + Sds(!i,!r), (4.35)

SBSSRDF = Sss(xi,!i, xo,!r), (4.36)

where Sc is individual hair or fur fiber’s BCSDF. Sds is the dual scattering approximated
unscattered component, which is essentially another BCSDF. Sss is our estimated BSSRDF
scattered component12. For an intuitive illustration of di↵erent components, we visualize the
decomposed appearance of each component in Figure 4.36.

12The BCSDF and BSSRDF components are defined in di↵erent domains, and they are integrated using
Eqns. 2.13 and 2.3, respectively.
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Figure 4.37: Rendering of scattered component using di↵erent methods. Our empirical BSSRDF
model fits the path traced reference much closer, compared to the physically derived microflake model.

Though the idea of using a BSSRDF model to represent the scattered component may
sound straightforward, it is far from easy, both in theory and in practice. First, BSSRDFs
work only with actual surfaces. However, when it comes to hair or fur fibers, there is no
concept of a surface. For this reason, distributing dipole samples for hair and fur and calcu-
lating associated areas with them is di�cult. Second, there is no existing theory to convert
physically based hair and fur properties into parameters of BSSRDFs. Third, the dipole
solution to BSSRDFs only transports light locally in the shading point’s neighbourhood. So,
indirect lighting from the same hair or fur volume cannot be accounted for, resulting in dark
areas with energy loss. In Section 4.12 and 4.13, we elaborate how to deal with all these
di�culties.

Physically-based derivation of BSSRDF parameters

Theoretically, there is no existing BSSRDF model that is suitable to represent hair and fur
volumes, since the hair and fur fibers define rather anisotropic scattering behavior. The
closest match is the microflake model [54, 46], where the volume is assumed to be filled with
randomly oriented flakes according to some distribution. Deriving a physically based model
based on the microflake theory is not impossible. However, we find it does not work well in
practice, and we turn to a data-driven approach to solve the problem, as will be introduced
in the next section. Here we assume that the microflake model is the natural first step to
try, so we describe it below and compare it with our BSSRDF model in Figure 4.37.

We think of each hair/fur fiber as a series of small “flakes” with their BCSDFs as phase
functions [54]. However, this simple conversion is not well-defined in practice, mainly because
of the high complexity of hair/fur fibers. The BCSDF of a hair/fur fiber consists of 5 lobes, R,
TT , TRT , TT s and TRT s, which all have rather complicated shape and large variation with
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the incoming light direction. However, in microflake theory, each microflake is completely
opaque and mirror reflective. Nevertheless, it is still possible for us to derive microflake
parameters by assuming local similarity, as discussed in the supplementary material.

We apply the derived parameters to render an actual scene, as shown in Figure 4.37. As
expected, the result is still far from the path traced reference. The di↵erent shading distri-
bution demonstrates the inability of individual flakes to represent hair/fur fiber segments,
as analyzed above. Moreover, we also find a color di↵erence as compared to the reference.
This is because the color mainly comes from the absorption coe�cient �a, which is usually
two orders of magnitude smaller than the scattering coe�cient �s. So, a slight inaccuracy
in �a will result in significant color di↵erence.

4.12 BSSRDF Approximation for Scattered
Components

As discussed in Sec. 4.11, since deriving a practical physically based model to estimate
the dipole parameters from the hair/fur parameters is challenging, we turn to a data driven
approach. We propose a neural network structure to solve the parameter conversion problem.
We chose a neural network over other methods because the dimensionality of the input and
output spaces of the problem is high and the conversion function is likely to be non-linear,
making simple fitting methods impractical.

In this section, we first generalize the dipole model for hair/fur geometry in Section 4.12
to be able to use the model in the first place. Then, in Section 4.12, we describe our neural
network architecture for the parameter conversion problem. In Section 4.12, we describe how
to train the neural network e�ciently.

Generalizing BSSRDF for Fur/Hair Geometry

We extend the 2-pass algorithm introduced in Chapter 2 to enable hair/fur models in dipole
rendering. The only missing component here is how to perform point sampling on a hair/fur
geometry.

Figure 4.38(a) shows a hair/fur geometry representation, where each hair/fur fiber is
represented by an array of vertices v0, ..., v3 with associated radiuses r0, ..., r3. The geometry
represented by each 2 consecutive vertices is a frustum. To generate a sample point, we first
randomly select a frustum from all frustums in the hair/fur geometry with a probability
proportional to its side surface area. Then, a sample point can be obtained by a uniform
sampling on the selected frustum’s side surface as in Figure 4.38(b). Since the sample points
generated this way may be highly occluded from the environment as illustrated in Figure
4.38(c), we remove those points that have zero estimated irradiance in the first pass in the
octree construction process for e�ciency.
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Figure 4.38: Sample placement for hair/fur geometry.

Neural Network for Parameter Conversion

In this section, we now describe our neural network architecture to estimate the parameters
of a dipole model given the parameters of a fur/hair model. The appearance of a fur/hair
model is decided by the 9 material parameters listed in Table 4.1. From our experiments,
we find that only 5 parameters, , �c,a, �m,s, ⌘ and l out of all 9 parameters have observable
impact on the appearance of the scattered component. Intuitively, this is because g and ↵ are
often very close to zero in realistic fur/hair models, so they only have very subtle impact on
the scattered component. The roughness parameter of unscattered lobes � is small compared
with the roughness of scattered lobes, so its e↵ect is minimal in the scattered component
where each path has at least one scattered interaction. We don’t use �m,a as input because
it is correlated with  and �c,a.

On the other hand, the parameters of a dipole model include �a and �s as we introduced
in Chapter 2. To enhance the flexibility of the dipole model, we add another brightness
scaling parameter w, which is multiplied with the rendered dipole component at the end.
Note that for the dipole model, the anisotropy parameter g and �s are correlated. Therefore,
we only change �s as in the dipole model and always set g to zero. We do not have any
special restriction on the value of w in order to have more flexibility in the model.

Given the high dimensionality of the parameter spaces, we use a multi-layer perceptron
neural network (MLPNN) as our model for the parameter conversion problem. Figure 4.39
shows our model structure. For the input parameters, we first apply a preprocessing step
to map them into an appropriate range that is easy for neural networks to train. The
preprocessing function for each input is listed in the figure. Then, we feed the 5 preprocessed
input parameters, X = {x0, ..., x4} into a MLPNN with 2 10-node fully connected hidden
layers using tanh activation function to produce 3 output parameters, Y = {y0, y1, y2}.
Finally, we apply a post-process to convert the output to dipole model parameters �a, �s

and w as follows:

�a = 23 tanh(y0)+5, �s = 23 tanh(y1)+5, w = 5 tanh(y2) + 5. (4.37)
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Figure 4.39: Our neural network structure for the parameter conversion problem.

Note that the mapping we choose in post-processing is to fit our training scene settings,
which we will elaborate in Section 4.12.

We chose a very simple neural network structure instead of deep neural networks mainly
for two reasons. First, the parameter conversion function should be very smooth given that
the appearances of both models vary smoothly with changing input parameters. Therefore,
using a simple structure is su�cient and avoids over fitting. Second, the neural network
needs to be evaluated at each shading point during rendering to support heterogeneous fur
models. Using a simple structure makes sure that the evaluation is relatively cheap compared
to ray tracing. We validate in Section 4.13 that the neural network evaluation time is less
than 10% of the total render time. Our neural network also has negligible memory footprint,
since it only has about 200 parameters.

Training the Neural Network

To train the neural network, we need to quantitatively measure the quality of each input-
output pair it generates. To do this, as illustrated in Figure 4.39, we compare the ren-
dered image using the hair/fur model with input parameters and the rendered image using
the dipole model with output parameters under the same scene settings. The resemblance
between the 2 images should be a good indicator of how good the parameter conversion
predicted by the neural network is.

Scene Settings. We use a single scene to train our neural network. Figure 4.39 shows
an example of renderings produced by an input-output pair using the training scene. The
model in our training scene is a piece of fur pelt directly facing the camera. We use the same
camera and light settings and only change the material properties of the model throughout
the training process. We show in Section 4.14 that although our model is only trained on
one scene, it generalizes to many other scenes with di↵erent geometry, lighting, etc. This is
because the parameter conversion function is not sensitive to the scene settings, and is an
intrinsic property of the materials from the 2 models (hair/fur and dipole) that we try to
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match. Here, we only use the training scene to find a good approximation to the parameter
conversion function.

The output dipole parameters of the neural network fit the training scene well. However,
if we scale the training scene by a factor, �a and �s need to be scaled accordingly to obtain
correct results. In Section 4.13, we describe how to do this in scenes with di↵erent scales.

Loss Function. Suppose X is an input parameter set and Rf (X) is its rendered image
using the hair/fur model with only the scattered component. Recall that the unscattered
component is handled separately using the traditional dual scattering in our model as intro-
duced in Section 4.11. Therefore, we use path traced scattered components as the reference
image for the dipole model to fit. Y = f(X) is the output parameter set predicted by the
network, where f is the parameter conversion function approximated by the neural network.
Rs(Y ) is the rendered image using the dipole model and the output parameter set. Our loss
function is defined as:

Loss = �L1(Rf (X), Rs(Y )) + Ls(Rf (X), Rs(Y )), (4.38)

where L1 is the L1 norm between 2 images. Ls(Rf (Y ), Rs(X)) = 1 � SSIM(Rf (Y ), Rs(X))
is the structural loss term, where SSIM is the structural similarity index [136] between 2
images. � is a parameter to weight the relative impact. In our training, we set � = 0.1 to
stress more on the structural loss term. This is because the structural loss term has much
more impact on the overall visual quality than the L1 term.

Approximate rendering using bilinear interpolation. For e�cient training, Rs

needs to have a fast evaluation method and be di↵erentiable in order to do gradient back-
propagation. This is extremely di�cult, if not impossible, for a dipole rendering system.
To solve this, we approximate Rs using a bilinear interpolation method as in Figure 4.40.
Specifically, we pre-render and store images with di↵erent �a and �s on a regular 2D grid
in log space, covering the potential range of the 2 parameters. Then, for a given output
parameter set �a, �s and w, we first use �a and �s to perform a bilinear interpolation on the
2D grid to approximate the rendered image and then use w to scale the overall brightness
of the image. This way, Rs becomes di↵erentiable and can be evaluated e�ciently through
a bilinear interpolation. For the training scene, where the model is bounded in a unit radius
sphere, we find that a �a and a �s both in the range [22, 28] are su�cient. Therefore, we
define our post-processing mapping in Equation 4.37 such that the two parameters both fall
in the range. Similarly for w, a range in [0, 10] is su�cient.

At this point, we have all the ingredients to train the neural network. We generated a
dataset with random input parameters and corresponding rendered images. In each training
iteration, we randomly select a subset of the training examples from the dataset and minimize
the loss function using gradient descent. We will provide more details about our training
settings in Section 4.13.
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Figure 4.40: We approximate Rs using bilinear interpolation. Before training the neural network,
we store a 2D grid of pre-rendered images with varying �a and �s in log space. Given the 3 dipole
parameters, �a, �s and w, we first use �a and �s to perform bilinear interpolation to obtain the
appearance of the rendered image. Then, we scale the interpolated image by w to obtain the final
approximated rendering.

4.13 Implementation of Fur Global Illumination

In this section, we provide key implementation details of two relevant aspects: training and
rendering.

Neural Network Settings

We generate both the training samples and the 2D grid of output rendered images in Fig-
ure 4.40 using the Fur pelt scene. For training samples, we rendered 1000 images in 128x128
resolution with 1024 samples per pixel using di↵erent input parameter sets randomly sam-
pled from the 5D input space. Note that for each image, we use di↵erent �c,a in the RGB
channels to increase diversity. Figure 4.41 shows some of the examples. We list our sampling
strategies for each input dimension in Table 4.9. For fixed parameters, we set �m and �n

to 0.1 and the rest to 0. As introduced in Section 4.12, these fixed parameters do not have
observable impact on scattered components. For the 2D grid of rendered images, we generate
a 15x15 uniform grid in the log space of �a and �s.

We trained our neural network using Tensorflow with Adam gradient descent optimizer.
Training takes about 20 minutes to converge on our data set. We obtained 0.90 structural
similarity and 0.070 L1 norm on average in our training set. We also tested the neural network
in a validation set, where we generated 100 images using the same sampling strategy. In the
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(0.3, 0.9) �c,a(0.01, 4) �m,s(0.25, 4) ⌘(1.2, 1.7) l(0.3, 2.5)
0.6u+ 0.3 29u�7 24u�2 0.5u+ 1.2 2.2u+ 0.3

Table 4.9: Sampling strategies used for our data set generation, where u is a uniform random
number in range [0, 1]. Please refer to Table 4.1 for the meaning of each parameter. Note that we
choose these strategies to cover the range of realistic hair/fur parameters for the hair/fur model in
Yan et al. [141], which we list in the parenthesis next to each parameter.

validation set, we obtained 0.89 structural similarity index and 0.072 L1 norm. Note that a
structural similarity index around 0.9 suggests fairly high resemblance between two images.
We show more validation of our neural network in Section 4.14.

Rendering

Parameter Scaling. The dipole model parameters we obtained in Section 4.12 is for the
scale of our training scene. To generalize to scenes with di↵erent scales, we use the estimated
mean free path to scale �a and �s, since these 2 parameters are inversely proportional to the
mean free path. Specifically, for a given input scene, we estimate the average surface density
d of the hair/fur fibers. The mean free path of the hair/fur volume is inversely proportional
to

p
d. This is because if we scale the scene up by a factor of 2, the average distance between

2 closest hair/fur fibers also scales up by 2 and the surface density of the hair/fur fiber
becomes 1/4 of the original. Suppose the training scene’s estimated hair/fur fiber density is
d0, we scale both �a and �s by

p
d0/d for rendering the scene. As we show in Section 4.14,

this simple scaling scheme generalizes very well with di↵erent scene scales.

Heterogeneous hair/fur parameters. To support heterogeneous hair/fur parameters,
we simply perform the parameter conversion using the neural network introduced in Section
4.12 at each shading point and evaluate the dipole model using local parameters. Note that
the size of our neural network structure is very small, so that the overhead of the evaluation is
minimal compared to the ray tracing cost. We validate this using the hair with medulla scene
shown in Figure 4.35(e). The hair scene is homogeneous, so the neural network only needs to
be evaluated once at the beginning. For comparison, we render the scene with/without re-
evaluating the neural network at each shading point. The render time without re-evaluation
is 99s and the render time with re-evaluation is 105s. This suggests that the overhead of the
neural network evaluation is less than 10% of the total render time.

Multi-bounce Illumination For multi-bounce illumination with dual scattering, we
designed an importance sampling scheme for the dual scattering shading which we provide
in our supplemental materials. With the importance sampling scheme, we can follow the
traditional path tracing routine by recursively sampling rays and computing shading with
dual scattering models. However, one issue is that strictly following the original path tracing
routine would overestimate energy. This is because the dual scattering model already handles
local multiple scattering in a neighborhood. This way, if the next bounce is a nearby hair
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0.085 0.154 0.206 0.166 0.101 0.080 0.090 0.039

0.120 0.124 0.074 0.180 0.072 0.132 0.157 0.132

0.099 0.064 0.071 0.096 0.084 0.069 0.032 0.098

Figure 4.41: Validation of our neural network training. Odd numbered rows are rendered with
path tracing of actual hair/fur fibers as reference. Even numbered rows are rendered using best
fitted/predicted parameters as BSSRDF. Top two rows: selected training set and fitting. Middle
two rows: selected test set with same geometry but di↵erent lighting conditions. Bottom two rows:
selected test set on another scene. Our trained neural network predicts a perceptually similar match,
compared to the reference. The numbers in the figures show the loss value of each fitted image. Recall
that the loss function is defined in Section 4.12.

fiber, the energy would be over estimated. To solve this we set a threshold dm for the distance
between 2 consecutive bounces with dual scattering material. If the distance is smaller than
dm, we stop the recursive path tracing since the next bounce has already been considered
by the dual scattering shading at the current bounce, otherwise we continue tracing the ray
as usual. We apply the same strategy for the recursive irradiance sampling in the dipole
model for the same reason. For all our test scenes, we set dm = 100r, where r is the average
hair/fur fiber radius of the hair/fur model at the current bounce point.

4.14 Results of Fur Global Illumination

In this section, we first validate our trained neural network, then show rendering results with
full global illumination generated using our BSSRDF model, and compare them with previous
work. We implement our model in the Mitsuba renderer [mitsuba], and generate all results
using an Intel 6-core i7 4960X CPU, hyperthreaded to 12 threads. Upon publication, we will
release the source code for both neural network training and BSSRDF model implementation,
as well as our trained neural network.

Validation of the training. As a typical shape of fur growth, the Fur pelt scene is
used to train the neural network. We first validate the trained neural network with the same
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Figure 4.42: Parameter conversion curves learned by our MLPNN.

Figure #Strands #Segs #Samples Time
Pelt 4.33 12.5K 4 42 7.0min

Raccoon 4.43 260K 22 64 5.4min
Wolf 4.44 1.9M 5 17 5.8min

Hamster 4.45 580K 15 31 5.0min
curly 4.46 53K 64 42 5.0min

Table 4.10: Statistics for all our scenes, rendered in 720p resolution. For each scene, there are #
Strands hair/fur fibers, each with # Segs line segments. Each scene is rendered using # Samples
using our 3-component global illumination model. Pre-distributing dipole samples usually takes less
than 1/10 of the overall rendering time, so we do not list these timings here.

scene geometry but di↵erent lighting conditions and di↵erent fur fiber parameters. Then
we validate using a new hair geometry, also with di↵erent lighting and fiber parameters, to
demonstrate that it is su�cient to train on only one scene and use the result to predict other
scenes. Figure 4.41 shows some of the validation results. We also include all validations in
the supplemental material.

Figure 4.42 shows curves learned by the MLPNN structure. In Figure 4.42 (a), we show
how the dipole parameters vary with the absorption coe�cient in the cortex, while keeping
other input parameters fixed. As �c,a increases, each hair fiber absorbs more energy. This
would result in a darker and sharper looking appearance of the hair model. In this case,
we can see that the dipole model decreases w to match the darker appearance and increases
�s to match the sharper look. In Figure 4.42 (b), we show how the dipole parameters vary
with the medulla index, while keeping other input parameters fixed. Increasing the medulla
size would produce more scattering events between hair fibers, which leads to a brighter and
more smooth looking appearance. The learned dipole model responds by increasing w and
decreasing �s in this case, which produces similar e↵ects. Note that �a stays relatively flat in
the learned function. This is probably because some correlations exist among the 3 output
parameters. For example, increasing �a and decreasing w would both decrease the brightness
of the rendered model. For this reason, the MLPNN probably finds it easier to fix one of
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Figure 4.43: (Top row) A rendering of the Raccoon model using our e�cient 3-component global
illumination model. (Bottom row) Insets showing decomposed renderings of di↵erent components,
compared to path traced reference with 64 samples and 1024 samples per pixel, respectively. We
find that the main source of noise is the unscattered component using dual scattering. The scattered
component converges much faster. Overall, our full model produces much less noise than path
tracing for equal samples.

them in the learning process. However, we should note that the learned relatively constant
values of �a are still crucial to the appearance of the dipole model and all 3 parameters are
essential.

Scene configurations. After validation of our neural network training, we now use the
trained neural network to convert parameters for actual scenes. Most of our scenes are taken
from Yan et al. [141] to enable direct comparison to their method. We list all the scene
configurations including geometry complexity and performance in Table 4.10. We compare
the scenes with our extended dual scattering and Yan et al. [141] with path-traced global
illumination as reference, and we describe them next. In all our scenes, we use 3 recursive
bounces for our dipole approximation and 4 indirect samples for irradiance estimation.

Fur pelt. We render the Fur pelt with a blocking sphere casting a shadow onto it,
and compare our rendering with dual scattering. As demonstrated in Figure 4.33, dual
scattering only lights the un-blocked regions, resulting in hard shadow boundaries and no
color bleeding. However, significant scattering e↵ects are observed in the reference, and our
BSSRDF model matches that much more accurately.

Raccoon. The Raccoon scene is rendered with a uniform sky environment map with a
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Figure 4.44: The Wolf scene rendered using a point light. We compare our method with 1 bounce
and 3 bounces with the extended dual scattering method and the path traced reference. Our method
with 1 bounce is already better than the extended dual scattering method in terms of more accurate
color and softer appearance. Moreover, our method with 3 bounces enables inter-reflections between
fibers in the same fur volume, filling shadows on the belly and the limbs and producing a similar
appearance as the reference, but still achieves a minimum of 3⇥ speed up. The path tracing with
256 spp is still noisy, as the inset shows.

sharp point approximating the sun. Figure 4.43 shows decomposed components and corre-
sponding rendering time. We can see that, most energy is captured by the BSSRDF part,
which soon becomes noiseless as the number of samples increases, thanks to the smoothness
of the dipoles’ contribution.

Wolf. The Wolf scene is to show our dipole model with multiple global illumination
bounces. In Figure 4.44, we show side by side comparisons with and without multiple
bounces using our method, rendered using a point light, and compare with the extended dual
scattering, roughly for the same rendering time (⇠ 5 min). The extended dual scattering
cannot handle multiple bounces, thus leaving hard shadows around regions near the belly
and the limbs. Furthermore, it has a significant color di↵erence with the reference, and it
generates hard and solid appearance, especially on the head. Our method with 1 bounce can
already capture accurate color and soft appearance. With 3 bounces, we are able to generate
similar appearance with the reference. The rendering time increases roughly linearly with
the number of bounces, but we are still at least 3 times faster, since the path traced result
at 256 spp is still noisy when zooming in.

Hamster. The Hamster scene is rendered using a spot light in Figure 4.45. We also
compare with the extended dual scattering method, and we can see that the dense fur fibers
soon diminish global scattering from dual scattering, resulting in an overly-dark appearance.
Conversely, our method with 3 bounces matches the reference much closer and is still fast.
Furthermore, in the accompanying video, we rotate the camera and demonstrate that our
model doesn’t have to re-generate all dipole samples over frames, as long as the relative
lighting condition of the model doesn’t change.

Curly hair. Our trained neural network can also predict the appearance of hair. We
compare renderings of Curly hair using our model with medullary index  = 0.36 against
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Figure 4.45: The Hamster scene rendered using a spot light. The extended dual scattering method
still has the color mismatching issue. However, our method with 3 bounces closely resembles the path
traced reference, but requires many fewer samples and is an order of magnitude faster. Significant
noise can be observed for equal time path tracing when zooming in. The higher bounces result in
an overhead for our method, since further bounces also require significant dipole queries. However,
since the dipoles’ contributions are smooth, even with the reduced sampling rate, our method still
converges fast.

Figure 4.46: The Curly hair scene rendered with a point light. We compare our method (b) with the
extended dual scattering method (a) and Yan et al. [141] (c). Alhough the overall color/intensity is
generated by the extended dual scattering, it completely fails to capture the correct color distribution.
The highlight is shifted towards the bottom left. In contrast, our method is able to produce a much
more accurate appearance, as compared with the ground truth, yet is still an order of magnitude
faster.

dual scattering and the path traced reference, as shown in Figure 4.46. It demonstrates that
dual scattering fails to capture the actual highlight positions from scattering, and it always
produces a flat shading distribution.
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4.15 Summary

In this Chapter, we describe an example of innovatively revealing the world’s appearance—
animal fur’s reflectance. We start from the observation that human hair reflectance models
are not suitable for animal fur rendering, then we tackle this problem by comparing mi-
crostructures between human hair and animal fur fibers. We come up with a double cylinder
model accordingly to describe the optical properties of animal fur fibers, then we improve it
by deriving a simplified near field model and an e�cient far field model. Finally, we solve
a related global illumination problem, by approximating multiple bounces of light with sub-
surface scattering. We propose a novel neural network solution to connect these two di↵erent
ways of rendering.

In the future, apart from modeling more types of real world appearance, we propose two
high-level directions for the future of appearance modeling. First, structure determines func-
tion. It is worth exploring general mathematical methods that not only describe individual
micro-structure’s properties, but are also able to aggregate them to an overall appearance.
Second, it is possible to combine appearance modeling with geometry modeling, so that ge-
ometries can also be range-queried, filtered and anti-aliased with level of detail. In general,
we believe that appearance modeling is urgently required to achieve photorealism, and to
liberate artists and graphics designers in the industry.
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Chapter 5

Real-time Ray Traced Realism

5.1 Introduction

In Chapters 3 and 4, we have introduced detailed rendering and detailed appearance from
microstructures. Both of these topics are intended for next-generation realism. However,
even without the details, current rendering still su↵ers from low performance with the state
of the art rendering method—Monte Carlo distribution ray tracing.

Monte Carlo ray tracing is an accurate and physically correct way to render realistic
images. However, even for a simple scene with basic materials (e.g. di↵use or glass mate-
rials) and common e↵ects (e.g. depth-of-field, soft shadows and indirect illumination), its
convergence to a noise-free image is still prohibitively slow for interactive applications such
as video games. With the level of details that we bring to Computer Graphics, performance
is becoming even more urgent and challenging. We need real-time ray traced realism.

Fortunately, there is a considerable interest in fast adaptive sampling and filtering ap-
proaches, taking advantage of significant coherence in the intensity between pixels. In this
chapter, we present our fast sheared filtering work, based on the 4D sheared filtering methods
as introduced in Chapter 2. These methods perform a careful frequency analysis to deter-
mine near-optimal sampling rates for a number of di↵erent e↵ects, such as motion blur, soft
shadows and spherical harmonic/ambient occlusion [Egan et al. 2011a; Egan et al. 2011b].
While the sample count reductions are dramatic, with very few additional assumptions,
these sheared filtering techniques are usually memory intensive and have high reconstruction
overheads. One of the key challenges is the irregular search for samples. Even if the initial
samples are stratified, they are distributed irregularly once one considers the footprint of the
4D sheared filter for each pixel. Therefore, inspite of numerous e↵orts to accelerate the basic
sheared filtering algorithm, it remained a slow process taking several minutes per frame for
reconstruction, often dwarfing the cost of even o✏ine raytracing.

Thus, sheared reconstruction was established as a theoretically sound technique that
reduced sample counts by one to two orders of magnitude. But it was not practical for fast
or interactive raytracing systems, since irregular sampling and high memory usage made
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Figure 5.1: We can render soft shadows (CARS, two area lights), defocus blur (POOL, two point
lights, modified from NVIDIA OptiX SDK) and di↵use global illumination (ROOM, one point
light) at interactive speeds by fast 4D sheared filtering on a sparsely sampled Monte Carlo (MC)
input, which is very noisy as seen in the insets. We require very low sampling rates, often under
16 samples per pixel (spp). Compared to axis-aligned filtering (AAF) with adaptive sampling [78,
80], we perform 4⇥ faster, and reduce the sampling rate required by 5-8⇥.

reconstruction too expensive. Methods based on axis-aligned filtering [78, 80, 79] were
developed in the past three years in response to this, to bring sampling and filtering into the
real-time domain. There is a significant tradeo↵ in sample count, with axis-aligned filtering
requiring an order of magnitude more samples than 4D sheared filtering. Nevertheless, the
simplicity of the filter and its natural separability in pixel-light, pixel-time or equivalent space
can be exploited to minimize filtering time, and enable inclusion in interactive raytracing
systems. However, one needs many more input ray samples, since the simple filter doesn’t
bound the frequency spectrum tightly.

In the rest of this chapter, we describe a solution to the now long-standing problem of fast
4D sheared filtering, showing that the sample count tradeo↵ in axis-aligned filtering methods
is no longer needed, for the common visual e↵ects of soft shadows, depth of field, and di↵use
global illumination. Indeed, we achieve the best of both worlds—the low sampling rates of
sheared filtering, and reconstruction times comparable with axis-aligned filtering.

We start from the 4D pixel-light sheared filter [Egan et al. 2011b] in the primal domain
for soft shadows (a similar analysis applies to depth of field and indirect illumination).
Inspired by the natural separability of axis-aligned filtering, we come up with a solution
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that handles the high-dimensional sheared filtering by factorizing it into lower-dimensional
forms. This overcomes the problem of expensive irregular search for samples, caused by the
shearing that couples pixel and light dimensions [Egan et al. 2011b]. Besides the theoretical
contribution of fast high dimensional filtering, that bridges sheared and axis-aligned filtering
algorithms, we dramatically reduce the practical computational cost, achieving a 4x faster
implementation compared to Mehta et al. [78, 80], and orders of magnitude faster than Egan
et al. [32, 31]. Specifically, we make the following contributions:

Factoring 4D sheared filter into four 1D filters: We first observe that the 4D
sheared filter is a product of two 2D sheared filters along orthogonal pixel-light planes, and
develop a two step factored algorithm. We then derive a further factorization into four 1D
integrals, that separate the 2D sheared shape into a pre-convolution and a collection. The
computational complexity1 per pixel is reduced from O(n2l2) to O(nl), where n is the linear
filter size (along one dimension) and l2 is the number of samples per pixel (so l is the number
of samples along each dimension of the lens or light). In sheared filtering, l can be very small,
typically l  4 and the samples per pixel (spp) l2  16. Thus, the complexity is comparable
to the O(n) cost of (fully factored) axis-aligned filtering.2

E�cient GPU Implementation of Sheared Filter: With an e�cient GPU (CUDA)
implementation of the factored sheared filter, we reduce filtering time per frame to about 70
ms. In comparison, a direct implementation of the 4D sheared filter takes one to two orders
of magnitude longer. This is the first general implementation of fast 4D sheared filtering that
gives interactive performance.

Interactive Rendering of Distribution E↵ects: We demonstrate accurate results
for soft shadows, depth of field, and di↵use global illumination with only 6-16 samples per
pixel (spp), as shown in Figure 5.1. (In the main body of this chapter, we consider only
single e↵ects at a time; handling multiple e↵ects simultaneously as in [79] is discussed briefly
in the Appendix, with example images). Even though the input data is very noisy, we
are able to perform high quality reconstruction. Our results match ground truth closely,
which is typically obtained with 100⇥ the number of samples per pixel (see Figs. 5.5-
5.7). We implement our filtering algorithm on the GPU-based real-time Optix raytracer,
and demonstrate a 4⇥ speedup in framerate over equal quality axis-aligned filtering, while
reducing sample counts by 5� 8⇥.

5.2 Previous Work

Our work builds on a recent history of methods for adaptive image filtering to remove noise
in ray traced solutions, but most of these methods were not intended for real-time use. Our

1The full complexity is O(nl + l3) but the O(nl) term is dominant, as explained later.
2The fast sheared filter is still somewhat more expensive, both from the l factor, and because of the larger

size n of the sheared filter. This is more than made up for, by the much smaller number of ray samples that
are needed by our method, as compared to axis-aligned filtering.
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approach also relates to Fourier and light field reconstruction techniques, as well as initial
approaches for fast sheared filtering for depth of field and motion blur.

Image and Adaptive Filtering: Image filtering has a long history, including [105, 77].
Adaptive image sampling also has a long history, with seminal work by Mitchell [81]. Re-
cently, Hachisuka et al. [39] presented multi-dimensional adaptive sampling and anisotropic
reconstruction, that has inspired much follow-on work. Recent work also includes adaptive
wavelet rendering [91], the A-Trous wavelet transform [19], cross bilateral filters [94, 92] and
filtering of stochastic bu↵ers [109]. A significant advance is random parameter filtering [108]
which seeks to separate variation from random parameters and geometric signals. Other
recent works are based on statistical theories like SURE [72] and non-local means filter-
ing [103]. Recently, Kalantari and Sen [62] developed a method to locally identify noise in
di↵erent parts of the image, followed by standard adaptive sampling and denoising, while
Delbracio et al. [23] use ray color histograms. However, these methods do not exploit the
Fourier structure of the higher-dimensional light field, and typically require high sampling
rates with o✏ine reconstruction; they are not interactive.

Real-time Distribution E↵ects: Real-time soft shadows are commonly produced
using soft shadow maps that consider occlusion from the entire area source [37, 2]. As noted
in [59], these methods make various tradeo↵s of speed and accuracy. Soler and Sillion [114]
provide an analytic solution, but only for geometry in parallel planes. Shadow volumes [14]
can also be extended to soft shadows using geometric ideas like penumbra wedges [3] and
shadow volumes [65]. Another body of work is precomputed relighting [112], but it is usually
limited to static scenes lit by environment maps. Analogously, for real-time depth of field,
the general approach is to rasterize layers using a pinhole camera [67, 70], and then splat and
gather the samples on the image plane to approximate defocus blur for a particular focus
depth. There are also simpler post-processing algorithms [96, 149] that use a single pinhole
rendering and depth bu↵er to simulate defocus blur.

Real-time approximate global illumination techniques (a survey can be found in [101])
include voxel-based cone tracing [13] on the GPU. Point-based approaches include micro-
rendering such as [102] which raytraces shading points and partitions them by k-means, and
then does a final gather using GPU-based photon mapping.

Although these approaches are commonly used for their high performance, they make
approximations that can produce aliasing and other artifacts. Our method is based on
unbiased Monte-Carlo sampling, and can o↵er high-quality results with nearly the same
speed.

Fourier and Light Field Analysis: Our goal is to obtain low sample counts from
sheared filtering [32, 31, 30], while achieving interactive filter times comparable to axis-
aligned filtering methods [78, 80]. Our method applies to any sheared filtering approach;
we demonstrate soft shadows, depth of field, and di↵use global illumination, but it could be
easily extended to motion blur [32].3 We also support multiple distribution e↵ects [79], as

3 We do not include motion blur, since the real-time GPU Optix framework does not natively support
raytracing with motion. However, it can be easily implemented within a CPU renderer such as PBRT or
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we briefly discuss in the appendix.
Both sheared and axis-aligned filtering are based on a frequency analysis of the light

field [9, 98, 29]. Other recent work in the area includes Fourier depth of field [115] and
covariance tracing [6] that uses a covariance representation of the 5D space-angle-time light
field. In terms of light field reconstruction, Lehtinen et al. [69, 68] proposed a reconstruction
method for motion and defocus blur from sparse sampling of the 3D/5D (spatial position,
lens and time) light field, but with a high memory and computation overhead. In general,
these methods are not intended for interactive use, except for axis-aligned filtering that
requires higher sample counts. In contrast, we provide accurate results with very low sample
counts and interactive frame rates using fast sheared filtering.

Fast Sheared Filtering: We are inspired by Vaidyanathan et al. [126], who demon-
strate a fast sheared filtering approach for defocus blur. This method was later extended
by Munkberg et al. [85] to handle both defocus blur and motion blur at the same time, for
which Clarberg and Munkberg [11] proposed an e�cient implementation. However, these
methods assume a fixed filter for a small range of depths, and therefore require separation
of the scene into multiple layers. They use a two-step approach—first project all samples
through the center of the lens to neighboring pixels, accumulate per-layer color and alpha,
and then do a screen-space convolution (further separated along image axes into two passes).
In contrast, we pre-convolve sampled radiance at each pixel individually along the sampling
dimension, and then perform a sheared spatially-varying convolution by picking up appro-
priate pre-convolved samples from neighboring pixels—in a total of 4 steps. Our sheared
filter implementation works for multiple distribution e↵ects (soft shadows, defocus blur, dif-
fuse global illumination), with no need for separating the scene into multiple depth planes.
Visual comparisons are made in Figure 5.9. We also analyze the computational complexity
of our method, showing how it improves on the basic sheared filtering algorithm.

5.3 Motivation

In this section, we describe the basic motivation and challenges involving factorization as a
solution for fast sheared filtering.

The idea is to speed up the integrals for computing the sheared filter, similar to speed-ups
obtained by factoring function transforms—for example when converting an image into basis
coe�cients such as spherical harmonics, fourier or wavelets. In that canonical case, an image
of N ⇥N pixels is transformed into N2 function coe�cients,

h(u, v) =

¨
f(x, y)w(x, y; u, v) dx dy, (5.1)

where f(x, y) is the image or function on a 2D domain, h(u, v) are the basis coe�cients, and
w(x, y; u, v) are the basis functions. A direct implementation has cost O(N4). However, if

Intel’s Embree.
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the basis is separable along x and y as wx(x; u)wy(y; v) , we can write:

h(u, v) =

ˆ ✓ˆ
f(x, y)wx(x; u)dx

◆
wy(y; v)dy. (5.2)

A two-stage factored algorithm can reduce complexity:

g(u, y) =

ˆ
f(x, y)wx(x; u) dx

h(u, v) =

ˆ
g(u, y)wy(y; v) dy,

(5.3)

where both steps are now O(N3).4

Axis-aligned filtering methods that first integrate samples and then perform image-space
convolutions exploit a similar speedup. However, sheared filtering is a slow algorithm because
the filter is not separable. Unlike in equation 5.2, y is not an independent variable in equation
2.25. Hence, we cannot directly separate the dimensions of the sheared filter. Also note that
for di↵erent x, we have varying ⌘x values in equation 2.25. This prevents us from separately
integrating along the y0-axis, because the filter’s center y is uncertain.

5.4 Fast 4D Sheared Filtering

We now describe our fast sheared filtering algorithm in its full four-dimensional form. Our
key insight is that with an appropriate factorization, the general 4D sheared filter can be
made separable into a two-stage 2D integral. By further factoring these 2D integrals into 1D
integrals, greater speedups are obtained. We enable interactive frame rates, with overhead
not significantly di↵erent from axis-aligned filtering, but with much lower sample counts.
Table 5.1 gives the computational complexity of the various steps.

4D sheared filtering

Consider the 4D form of equation 2.23, with both x and y split into two dimensions each.
The sheared filtering integral becomes,

h(x1, x2) =

˘
f(x0

1, x
0
2, y

0
1, y

0
2)wx(x

0
1 � x1)wx(x

0
2 � x2)

wy(y
0
1 � y1(x1, x

0
1))wy(y

0
2 � y2(x2, x

0
2)) dx

0
1dy

0
1dx

0
2dy

0
2,

(5.4)

where we have omitted the standard deviations for clarity.
Following the definitions in flatland, here (x1, x2) represent receiver space coordinates

(pixel coordinates) and (y1, y2) represents the light space coordinate. The wx(x0
1 � x1),

4Further speed-ups may of course be obtained by a Fast Fourier Transform or an in-place wavelet trans-
form, but are not immediately relevant to the sheared Gaussian filters used in this chapter.
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wx(x0
2 � x2) are (spatially-varying) convolutions for each pixel (x1, x2), while wy(y01 � y1),

wy(y02 � y2) are integrals which eliminate y01 and y02.
Similar to [Egan et al. 2011b], we require that the area light is parameterized with

orthogonal basis vectors, guaranteeing that (x1, y1) and (x2, y2) span orthogonal 2D subspaces
of the 4D light field. For the simplicity of derivation and implementation, x1 and y1 are
arranged as parallel, and the same for x2 and y2.

Solving this 4D sheared filtering integral e�ciently is a long-standing problem. There are
two main challenges. First, the convolution center on the y-plane (y1, y2) is determined by
the relative deviation on the x-plane, or (x0

1 � x1, x0
2 � x2). This indicates that y1 and y2 are

functions of x0
1 and x0

2 respectively, making the filter non-separable between x and y. Second,
the visibility function f is sampled over the entire 4D space. Unlike the 2D x-plane, which
is regularly divided as a pixel grid over the output image, the 2D y-plane is continuous, over
which di↵erent pixels (x1, x2) could (and should) sample at di↵erent locations. This means
separating samples on y1 and y2 is di�cult. Hence, neither the filters nor the samples can
be easily separated.

To analyze the computational complexity, we define the image resolution in (x1, x2) as
N ⇥ N = O(N2), where a typical N ⇠ 1000. We define the extent of the sheared filter in
w(x � x0), corresponding to the integrals in x0

1 and x0
2 as n, where we use n  32. The

number of light samples along y01 or y
0
2 is small and can almost be taken as a constant, since

sheared filtering works with very low sample counts. We define this as l, where typically
l  4.

As shown in Table 5.1, the input dimensionality (of f) is 4D, and the output is a 2D
image. The computational complexity is O(N2) for the output, and O(n2l2) for the integral
for each pixel. The e↵ective complexity is thus O(N2n2l2), or O(n2l2) per pixel. In contrast,
the spatially-varying image-space convolutions in axis-aligned filtering can be performed
in O(N2n) time or O(n) per pixel, using image-space separable Gaussian filters. We will
show that our final separated sheared filtering algorithm has only slightly higher O(N2nl)
complexity or O(nl) per pixel instead of O(n2l2).

Separating into two 2D integrals

The last section showed that neither the filters nor the samples are easily separable, which
would suggest that accelerating the 4D sheared filter is very di�cult. Our key insight is
that while separating (x1, x2) and (y1, y2) dimensions directly is not possible, we can try
to separate the (x1, y1) and (x2, y2) dimensions as shown in Figure 5.2. In this section, we
show how the 4D sheared filter becomes a product of two independent 2D sheared filters
applied over the (x1, y1) and (x2, y2) planes respectively, and we develop a two step factored
algorithm. We keep the samples and reduce their dimension at each filtering step, eliminating
the dependency between y1 and y2 by integrating them one by one.

Step 1: We first apply one sheared filter in the x1y1 plane, e↵ectively evaluating the
inner two integrals in Equation 5.4. Since y1 and x0

1 are related by equation 2.25, we also
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Method Input Output Integral Complexity

dim. dim. dim.

4D sheared filtering 4 2 4 O(n2l2)

Axis-aligned filtering 2 2 2 O(n)

2D factoring, Step 1 4 3 2 O(nl2)
2D factoring, Step 2 3 2 2 O(nl)

Our Method, Step 1a 4 4 1 O(l3)
Our Method, Step 1b 4 3 1 O(nl)
Our Method, Step 2a 3 3 1 O(l2)
Our Method, Step 2b 3 2 1 O(l)

Table 5.1: Computational complexity (per-pixel) and input/output dimensions of various methods.
The integral dim. column is the number of dimensions we integrate over. Bold is the overall
complexity (most expensive step for the factored algorithms). Here n is the linear filter size, and
l2 is the number of samples per pixel.

Figure 5.2: Separating a 4D sheared filter into a product of two independent 2D sheared filters in
(x1, y1) and (x2, y2). Note that, as discussed in Section 5.4, separating a 4D sheared filter into 2D
filters over x-plane and y-plane respectively is more intuitive, but not feasible in theory.

remove y1. We denote the three dimensional filtered integral of f as g:

g(x1, x
0
2, y

0
2) = (5.5)¨

f(x0
1, x

0
2, y

0
1, y

0
2)wx(x

0
1 � x1)wy(y

0
1 � y1(x1, x

0
1)) dx

0
1dy

0
1.

Once again, we omit the standard deviations on the Gaussians for clarity. The complexity
of this step is O(N2nl2), since g needs to be evaluated at O(N2l) points, and the integral
has complexity O(nl). The per-pixel cost is thus reduced from O(n2l2) to O(nl2).

Step 2: Once g is computed, we apply the second sheared filter. We integrate along x0
2

and y02 to determine the final pixel irradiance h(x1, x2). Similarly, y2 is eliminated since it is
determined by the value of x0

2 � x2,:

h(x1, x2) =

¨
g(x1, x

0
2, y

0
2)wx(x

0
2 � x2)wy(y

0
2 � y2(x2, x

0
2)) dx

0
2dy

0
2 (5.6)

The complexity of this step is O(N2nl) or O(nl) per pixel. It is less than step 1, since
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we only need to produce a 2D output, and the dimensionality of g is already less than that
of f .

In theory, the separation of the 4D filter into a product of two 2D filters in equations 5.5
and 5.6 is exact only when the filter kernels remain constant over the image plane. However,
similar to separating a 2D box filter over an image into a two-pass orthogonal linear filter,
the inaccuracy when this approximation is violated is usually negligible in practice. We
will evaluate our approximation against brute force 4D sheared filtering in Section 5.6, and
limitations are shown in Figure 5.10.

Separating into 1D integrals

While the separation into two 2D integrals provides savings, the first step in equation 5.5 is
still expensive, with complexity O(nl2) per pixel. We derive a further factorization into 1D
integrals, with a two-step computation of each 2D step. Both 2D filters have a sheared shape
in the xy plane. The basic idea is to separate the sheared filter’s shape into a pre-convolution
and a collection as in Figure 5.3.

(a) Step a (b) Step b

Figure 5.3: We first separate the 4D sheared filter into two 2D sheared filters, and then evaluate
each 2D filter in two 1D integration steps. As shown in (a), we first convolve along the y-axis and
compute a y-dependent function (we show the visibility samples with open circles, and reconstruc-
tion locations with filled black circles, and the red circle shows an example convolution). Then in
(b), we convolve along the x-axis to remove the y-dependence, e↵ectively collecting pre-convolved
samples along the shear direction, using the nearest neighbor pre-convolved values (shown in red).

Step 1a: To compute g in Step 1 e�ciently, we first perform a pre-convolution for each
y1 (outer integral in Equation 5.5), to produce an intermediate result p:

p(x0
1, x

0
2, y1, y

0
2) =

ˆ
f(x0

1, x
0
2, y

0
1, y

0
2)wy(y

0
1 � y1) dy

0
1. (5.7)

There are several important points to note here. Unlike elsewhere in this section, y1 is an
independent variable, and p is precomputed (pre-convolved) for each y1 in preparation for
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step 1b, where y1 will be expressed as usual in terms of x1 and x0
1. p is calculated for each

pixel (x0
1, x

0
2) and each value of y02.

Since y1 is a continuous parameter, we discretize (stratify) the range of y1 into O(l) bins.5

In practice, accurate reconstruction requires about 4l bins. Since l  4 in our case, we use
16 bins.

Note that p needs to be stored at O(N2l2) points, and the cost of the integral is O(l), so
that the total complexity is O(N2l3) or O(l3) per pixel. While this is still cubic, note that
l ⌧ n is a small constant (typically l  4), and this cost is generally less than the O(nl2)
per-pixel complexity of equation 5.5.6 In practice, step 1a is not even the most expensive in
our implementation.

Step 1b: After this pre-convolution step, we can finally compute g by applying the filter
in the x-dimension (inner integral in Equation 5.5 as follows:

g(x1, x
0
2, y

0
2) =

ˆ
p(x0

1, x
0
2, y1(x1, x

0
1), y

0
2)wx(x

0
1 � x1) dx

0
1. (5.8)

This is a 1D integral that does a “gather” around x1. Since p is already computed, it can
be quickly queried. Note that the parameter y1 on right, is a function of x0

1 � x1 as usual,
and is also integrated out in this step. Since we still need to filter and integrate g along y02,
we also discretize y02 into O(l) bins, similar to y1.7

The complexity of this step is O(N2nl) since we need to store g at O(N2l) values, and the
integral has complexity O(n). The per-pixel cost is thus O(l3 + nl) from combining steps 1a
and 1b. In practice, the sheared filter size n is about 32 pixels, while the number of samples
on the light l2 is usually about 16. Hence we have n > l2 and step 1b dominates, with the net
per-pixel complexity being O(nl). Note that this is the square root of the original O(n2l2)
complexity in equation 5.4.

Step 2a: As for step 1, we separate the sheared filter in step 2 into two 1D filters.
Similar to step 1a, we first pre-filter the result of step 1b, and determine the result q for
every possible y2:

q(x1, x
0
2, y2) =

ˆ
g(x1, x

0
2, y

0
2)wy(y

0
2 � y2) dy

0
2. (5.9)

Step 2b: Finally, we integrate on x0
2 while quickly querying q,

h(x1, x2) =

ˆ
q(x1, x

0
2, y2(x2, x

0
2))wx(x

0
2 � x2) dx

0
2. (5.10)

This last step also integrates out the y2 dependence, because y2 depends in the usual way on
x0
2�x2. Finally, we have evaluated the 4D integral of h in equation 5.4 using four 1D filters.

5In practice, we use uniform jittered sampling so the samples for a given pixel are o↵set the same way
in each stratum, but this is not critical for our method as long as stratified sampling is used.

6Just as in practice we must use ⇡ 4l bins, we need a similar number of bins for storing y02 in equation
5.5, since the jitter o↵sets for di↵erent pixels are di↵erent for the next step.

7Instead of enumerating each possible y02 value and searching for feasible p samples, we instead use an
inverse method by projecting di↵erent y02 values of the p samples onto the discretized y02 space.
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(a) (b)

Figure 5.4: (a) Since soft shadows must be filtered along x1, x2 axes as defined by the light source,
we first determine these axes in screen space, by projection from the light to the receiver and
then to image space. (b) We sample indirect illumination along the v-plane instead of the usual
cosine-hemisphere sampling.

The complexity of step 2a is O(N2l2) and of step 2b is O(N2n). Since n > l2, the
last step dominates and the net per-pixel cost is O(n) per pixel, as compared to O(nl) for
equation 5.6. Step 1b is the overall dominant cost, which is O(nl) per pixel. Since l is a small
constant, this is e↵ectively O(n) per pixel, and the computational complexity is comparable
to (but with higher constants than) axis-aligned filtering.

5.5 Implementation

Our implementation involves two basic components, as in most previous work: Sampling by
ray or path tracing to obtain the original noisy samples of f(·), and filtering or reconstruction
by fast sheared filtering. We implement our algorithm using OptiX 3.0 and CUDA 5.0 inter-
operation. We use OptiX to do the sampling step, and we store the result in OptiX bu↵ers.
Then we use four sequential CUDA pixel shader passes to perform our four-pass filtering.
We will release the source code online upon publication. Note that while we have described
filtering using integrals above, these map almost directly to discrete summations over a grid
of points. We now discuss a few important details of the implementation.

Ray Tracing and Sampling: To reduce memory footprint while avoiding banding
artifacts, we use uniform jittered sampling [97], so that a given pixel’s samples have the same
random o↵set on a regular stratifed sampling grid. This makes it easier for the filtering steps,
that can now operate on a regular grid, as well as in reducing memory in storing samples
for intermediate stages. For soft shadows and depth of field, we sample uniformly on the
light and lens respectively (and use Gaussian filter weights which account for the Gaussian
intensity and aperture respectively). For a given pixel, we store the jitter value (2 [0, 1]2), and
each sample’s visibility or radiance, i.e., discrete samples of the function f(·) for filtering.
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Figure 5.5: The CAMEL scene with soft shadows, rendered at 12.2 fps with 9 samples per pixel
(spp), demonstrates our ability to accurately reconstruct overlapping and thin-occluder shadows.
Comparisons show (b) noisy unfiltered MC input to our method (note that we store individual
samples for sheared filtering), (c) Equal time (ET) Axis-aligned filtering (AAF) retains some low-
frequency noise, and overblurs sharp shadow edges (since we use µ < 1) (d) Equal time (EQ) AAF
is 4⇥ slower, while (g) simple 4D sheared filtering is 50⇥ slower.

Table 5.2: Detailed timings of our scenes (in milliseconds) rendered at 720⇥ 720. Cars and Camel
show soft shadows, Pool and Still Life are depth of field, Room and Sibenik are di↵use global
illumination. We list triangles and samples per pixel for all six scenes (Pool uses spheres rather
than triangles). We also list the per-frame sampling time for raytracing in Optix, followed by
timings for various stages or our algorithm, and the total overhead for fast sheared filtering. For
comparison, we also list the total overhead for axis-aligned filtering. Finally, we list the total time
and frame rates. We achieve interactive frame rates of 3-12 fps on a variety of complex scenes.

These samples also determine the pixel’s frequency information, and ultimately the slope
bounds for the sheared filter, smin and smax. In contrast to previous work on axis-aligned
filtering, we use only a single (non-adaptive) sampling pass, since our sampling rates (4 to
16 samples per pixel) are so low; these samples determine both f(·) and the sheared filter.

Filtering: Our filtering algorithm was described in Section 5.4. We clamp the maximum
filtering range to a diameter of 32 pixels; this prevents rapid changes in rendering speed when
the view is changed. The number of discrete bins used in filtering steps 1a and 1b for storing
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y values is 16 ⇡ 4l. In steps 1b and 2b, it is required that we filter along x1, x2 directions
exactly—these are given by the projection of the light’s axes y1, y2 on the receiver for soft
shadows. So, we first compute each pixel’s x1 and x2 in the world coordinate frame, sample
along each direction, then project the sampled point back to the screen as shown in Figure
5.4(a). For indirect illumination, the filtering directions x1, x2 are orthogonal in world space
to the receiver normal, and locally aligned. For depth of field x1, x2 are exactly along the
screen’s row and column axes, so the filtering algorithm can be applied directly.

Slope Smoothing for Soft Shadows: After the initial sampling, many pixels on the
edges of shadows do not have valid smin, smax values (if none of the samples hit occluders),
which causes edge artifacts. Hence, similar to [78], we obtain the slope range for unoccluded
pixels by smoothing over a 5 ⇥ 5 window. The (small) time for this operation is shown as
pre-filtering in Table 5.2, and included in the total overhead of our algorithm.

Adaptive Sampling for Depth of Field: For depth of field, for some pixels, the slope
bounds smax and smin could be of opposite signs. In such cases, the shear value can be close
to zero, and the filtering is inaccurate. As in [126], we find that using axis-aligned filtering
gives better results for pixels with smax · smin < 0. These pixels usually need more samples
even with filtering, so we trace a fixed 36 more samples for such pixels in a second sampling
pass (and then do standard axis-aligned filtering—this small post-filtering time is reported
as part of the overhead in Table 5.2). In most cases, the fraction of the image that requires
further sampling is very small. For the scene of Figure 5.6, the first pass requires 9 spp and
the average from the second pass is 2.2 spp.

Sampling/Filtering for Indirect Illumination: As described in Chapter 2, indirect
illumination must be filtered in v-space, and hence we also sample on the v plane. For a single
pixel, we map a uniform jittered sample with a cubic function and a scaling, to approximate
the non-uniform PDF of the di↵use transfer function �(v1, v2) on (v1, v2) 2 [�5, 5]2, and then
compute the ray direction, as shown in Figure 5.4(b). Theoretically, the range of (v1, v2) is
the infinite plane, but our truncation contains over 99% of the total energy of �(·) and only
introduces a very small bias. Note that we apply the BRDF weight to each sample (v1, v2)
and also account for the sampling PDF. Finally while filtering in steps 1a and 2a, we use a
box function instead of a Gaussian as for soft shadows and depth of field, since the BRDF
transfer function is no longer a Gaussian. Steps 1b and 2b (spatial filtering) can still use
Gaussian weights.

5.6 Results

Our results are produced on an Intel 6-core 3.6GHz i7-4960X CPU, with a NVIDIA GTX
Titan video card. We show results for interactive soft shadows in Figs. 5.1(a) and 5.5;
depth of field in Figs. 5.1(b) and 5.6; and di↵use indirect illumination in Figs. 5.1(c)
and 5.7. We compare to stratified Monte Carlo sampling without filtering, unaccelerated 4D
sheared filtering [Egan et al. 2011b], and to axis-aligned filtering [78, 80]. The accompanying
video shows animations and screen captures with moving light source, viewpoint and some
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Figure 5.6: The STILL LIFE with depth of field is illuminated by two point lights and rendered
at 4.3 fps with only 11.2 average samples per pixel (spp). Comparisons show (b) noisy unfiltered
MC input to our method, (c) Equal time (ET) Axis-aligned filtering (AAF) retains some low-
frequency noise, (d) Equal quality (EQ) AAF is 6⇥ slower, while (g) simple 4D sheared filtering
is 45⇥ slower. Our method (and 4D SHF) produces slight overblur for background regions and
underblur for foreground ones, and transition artifacts near the focal plane where AAF and our
method switch. However, our method reduces most noise and requires the least number of samples.

examples of dynamic geometry. We require no precomputation except the ray-tracer BVH,
and each frame is rendered independently.

Accuracy and Speedup over Monte Carlo

The accuracy of our method, and the benefit of filtering over stratified Monte Carlo is evident
from the figures, for all three visual e↵ects (soft shadows, defocus, di↵use global illumination)
in a number of di↵erent situations. We take as input a Monte Carlo result with 4-9 average
samples per pixel for depth of field and soft shadows, and 16 samples per pixel for indirect



CHAPTER 5. REAL-TIME RAY TRACED REALISM 145

Figure 5.7: The SIBENIK scene showing only 1-bounce di↵use indirect lighting with one point
light, rendered with only 16 samples per pixel at 3.2 fps. Monte Carlo input in (b) is noisy, while
equal time axis-aligned filtering in (c) has artifacts at this low sample count. Equal quality AAF
in (d) requires 6⇥ as many samples as our method in (e), and is 4⇥ slower. While there are a few
artifacts remaining, our method significantly reduces noise to the level of ground truth in (f) and
simple 4D sheared filtering in (g), but is more than an order of magnitude faster.

illumination. As shown in the insets of Figure 5.1, and Figs. 5.5(b)-5.7(b), this input is very
noisy, but our fast sheared filtering technique produces visually accurate results compared to
ground truth Monte Carlo with 1024-4096 samples, which is 100-200⇥ slower. A quantitative
comparison is in the graph of Figure 5.8. While the quantitative errors are somewhat higher
than from a visual comparison, our method converges with more samples, and for equal RMS
error, reduces the number of samples needed by over an order of magnitude compared to
Monte Carlo, and about 6⇥ relative to axis-aligned filtering.

Timings

In Table 5.2, we show timings for steps of our algorithm on di↵erent scenes, rendered at a
resolution of 720⇥720. The CARS scene in Figure 5.1 has 4K triangles with soft shadows
from two area lights, each sampled with 4 samples per pixel (total 8 spp). The CAMEL is a
more complex example of soft shadows, rendered with 9 spp for the light. The POOL (which
uses spheres, rather than triangles as primitives) and STILL LIFE show depth of field e↵ects,
while ROOM and SIBENIK are complex scenes with over 105 triangles, that demonstrate
di↵use indirect illumination with 16 spp. The raytracing time using OptiX varies with scene
complexity, from 39ms for POOL to 310ms for ROOM. The total overhead of our method is
about 40-60ms for soft shadows and depth of field, and about 80ms for indirect illumination.
This is less than the cost of raytracing in most cases, and about 25% of the total cost for
the more complex ROOM and SIBENIK scenes, resulting in only a modest decrease in the
overall performance of the real-time raytracer. Step 1b, involving the gather operation is the
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Figure 5.8: RMS error of the CAMEL scene as a function of sampling rate for our method, unfiltered
stratified Monte Carlo and axis-aligned filtering with adaptive sampling. At very low sample counts,
we obtain an overall benefit of more than an order of magnitude over Monte Carlo (even better
visually), and around 4⇥ over axis-aligned filtering. Moreover, our method converges to ground
truth, and is always more accurate than axis-aligned filtering.

most expensive step, as discussed in the text, accounting for about half the total overhead.
Compared to axis-aligned filtering (AAF), our overhead is about 2⇥ as much for soft

shadows, 4⇥ for depth of field, and only 20% more for di↵use indirect illumination. While
equal time AAF can use slightly more samples (and adaptively sample), the many fewer
samples needed by our method provides a net win of 4⇥ in wall clock time and about
5 � 6⇥ sample count reduction for equal quality, as shown in the figures. Our algorithm
does require more memory compared to the axis-aligned approach, since we need to store
intermediate results. However, since we usually need low sampling rates, GPU memory is
usually adequate. Even for visually indistinguishable convergence, we usually need no more
than 25 samples per pixel for soft shadows and depth of field e↵ects, and 49 samples per
pixel for global illumination. We achieve interactive frame rates of 3-12fps for a wide range
of scenes.

Comparisons

Axis-aligned filtering: We use the authors’ code for soft shadows and indirect illumination,
and implement depth of field analogously. Their user-specified parameter µ is used to control
filter size and adaptive sampling rate. We use µ = 1 for equal quality comparisons in all six
of our scene figures, and this requires about 5 � 6⇥ the sampling rate of our method. For
equal-time comparisons in Figs. 5.5(c), 5.6(c), 5.7(c), we need to use µ < 1 to reduce the
sampling rate. This increases the filter sizes, and slightly overblurs the image. Low-frequency
noise is also retained in high-variance regions. For di↵use global illumination, much higher
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sample counts are needed, and the equal time comparison in Figure 5.7(c) shows artifacts.
Our method performs better; While inaccuracies exist in out-of-focus regions and artifacts
can be seen around discontinuous geometry in soft shadows and di↵use global illumination
situations, our method filters out most visible noise with significantly fewer samples.

Layered light field reconstruction: We use the source code of LLFR [126] to make
comparisons with our method both in terms of quality and speed for filtering depth-of-field
images. We use the GPU implementation of LLFR, with their default filter width of n = 16
pixels, rather than n = 32 as used in our results. Since the LLFR code takes as input only
uniformly sampled light fields, we disable adaptive sampling and use a constant 9 spp for
both depth-of-field scenes compared. LLFR requires segmentation of the scene into depth
layers, where the same filter can be applied within a layer. Our method makes no such
assumptions. As shown in Figure 5.9, LLFR produces more noise in some regions, because
the sheared spectrum it is using is not as compact as ours due to layering. However, LLFR
has a slightly lower reconstruction time than our method, which is partly due to their use of
half-precision floating point numbers for all stored data.

4D sheared filtering: Our method is equally accurate as the full 4D brute-force sheared
filter of [Egan et al. 2011b] (compare Figs. 5.5, 5.6, 5.7 (c) and (g)). We implemented the
simple 4D sheared filter without any of our factorizations in CUDA, so we could compare
using the same framework as our method. We used a single filtering pass for the 4D sheared
filter, which accumulates radiance from all samples in the neighborhood of a pixel. As
seen in the figures, this is about 40 � 50⇥ slower than our approach. For all the depth of
field results using 4D sheared filtering, adaptive sampling is used according to the general
sampling rate formula for sheared filters derived in [32]. At in-focus regions, since the shape
of the spectrum is no longer a double wedge, 4D sheared filtering falls back to brute force
Monte Carlo as described in [32].

5.7 Discussions and Limitations

Complexity: The actual complexity of our four-step filtering should beO(l3)+O(nl)+O(l2)+O(n).
Clearly, steps 1a and 1b have cost O(l3+nl) which is l more than steps 2a and 2b. In practice,
l2 < n, since l is typically 4 or less and n is 32. Therefore, step 1b dominates. Furthermore,
since the O(l3) step 1a happens within each pixel, an e�cient pixel-level parallelized imple-
mention is used to avoid much of the overhead caused by conflicts in pixel-access. Hence,
the O(l3) term can be absorbed into the numerical constant, and the total complexity would
be O(nl) per pixel.

Multiple E↵ects: Our method currently focuses on seperated single e↵ects. Simulta-
neously handling multiple e↵ects [79, 85], including soft shadows, depth of field and motion
blur, requires filtering higher dimensional (often 5D or 6D) data, while the spectrum of each
slice of the data for a single e↵ect still remains a sheared shape. This can be di�cult, since
it further increases dimensionality and non-separability of samples for di↵erent e↵ects. How-
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Figure 5.9: We compare insets of the STILL LIFE scene (top row) and the POOL scene (bottom
row) to LLFR [126], with a uniform 9 spp for both scenes and 12 layers for LLFR (the default).
Overall, LLFR has good quality and takes less reconstruction time than our method. However, it
usually produces more visible noise, as mentioned in Section 5.6, and is limited to depth of field
only. Our method makes no assumptions about depth layers and is general enough for soft shadows
and indirect illumination as well.

ever, by introducing a reasonable approximation, we demonstrate that multiple e↵ects could
be separated into a combination of several individual e↵ects. Please refer to the Appendix
for detailed derivations and results.

Limitations: For soft shadows, minor artifacts could emerge due to projections of world
space receivers to screen space, when the receiver becomes almost perpendicular to the
viewing direction (projection from receiver to screen space collapses to a single point), or
when the light becomes normal to the receiver (the x1, x2 axes become parallel). For depth
of field, inaccuracies may result when the slope range at a pixel is large. In di↵use indirect
lighting, a small bias is introduced in sampling due to using truncated v-plane sampling, but
the bias is usually not perceivable.

When a large filter is applied to locations where the filter sizes vary rapidly, inaccuracies
could occur since our method uses separable passes. This is often encountered when filtering
near in-focus regions for depth of field e↵ects, resulting in slight overblur around these regions.
We do not filter between neighboring pixels if they are distant in world space, or if they have
very di↵erent normals (angle threshold 20�). Pixels at which many such neighboring pixels
are rejected may retain noise or artifacts. Figure 5.10 shows some of these di�cult regions
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Figure 5.10: Comparisons of our method (top row) and the ground truth (bottom row) in di�cult
regions. Our method produces minor artifacts in certain regions as pointed out and discussed in
Section 5.7.

and points out the artifacts.
In depth of field rendering, our method falls back to axis-aligned filtering in regions where

smax · smin < 0. Therefore, ghosting artifacts may appear on the boundary where this switch
occurs, e.g., around the stem of the pear in the Still Life Scene (Figure 11 middle) and the
topmost apple. These transitions and ghosting artifacts also occur in the original 4D sheared
filtering, since the problem is not related to separability.

Our method also su↵ers from the general problem of sheared filtering — noisy occluding
geometry. Since we are using a fairly low number of sample rays, the occluding geometry
may not be accurately captured — thus the shape of the sheared filter itself could be inac-
curate and noisy. This will consequently lead to flickering between frames. However, video
comparisons show that our method still performs better than previous methods, even when
the previous approaches use many more samples and more time.

Similar to [32], our method needs to store and filter the entire 4D light field f(x1, x2, y1, y2),
which is of complexity O(N2l2). This introduces significant storage overhead, practically lim-
iting our method to about 25 spp for a resolution of 2K ⇥ 2K (for our specific hardware
configuration). For HD applications, a block-wise sampling and filtering configuration could
be derived from our work with an expected but small additional performance cost for inter-
block operations. We leave this for future work.

5.8 Summary

We demonstrate an interactive GPU-based method of sheared filtering for Monte-Carlo ren-
dering of distribution e↵ects. We propose a novel factorization of the 4D sheared filter into
two 2D filters, and we further split each 2D filter into two 1D filters. We show that our
method is 4⇥ faster than axis-aligned filtering for the same quality, with a 5 � 6⇥ reduc-
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tion in sample count. We believe that we have taken an important step towards real-time
physically accurate rendering, and expect many future developments that enable both low
sampling rates and high performance.
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Chapter 6

Conclusion and Future Work

In this dissertation, we aim at providing mathematically and physically correct solutions to
the two ends of the rendering spectrum—realism and speed. We model and render visual
appearance at real world complexity, while exploring theory and practical algorithms to
make it real-time.

In Chapter 3, we reveal the fundamental relationships between high-resolution specular
surfaces, small light sources, complex normal distributions and glints. These factors lead to
our detailed rendering together, producing important material appearance phenomena that
received minimal attention in previous research. We explained the failure of traditional
Monte Carlo approaches at reproducing this e↵ect, and introduced a new deterministic
approach for computing the underlying integrals. Our key idea is to shade a surface patch
seen through a pixel by evaluating the true normal distribution function of the patch for a
single normal, which can be done under Gaussian kernel assumptions. The problem leads
to integrals of bivariate Gaussians over triangles, which can be e�ciently approximated.
We showed complex, temporally varying specular reflections from materials such as bumpy
plastics, brushed and scratched metals, metallic paint and ocean waves.

We then extend our algorithm for e�cient rendering. We represent a surface as a position-
normal distribution, then approximate this 4D distribution as a mixture of Gaussian ele-
ments. Combined with a Gaussian query for a given surface footprint and half-vector, this
formulation admits an e�cient closed-form solution, which can be accelerated using a 4D
bounding box hierarchy. Our improved method is fast enough to be treated as a standard
BRDF in a typical Monte Carlo path-tracer, along with the benefits of supporting multiple
importance sampling, environment maps, and area lights (including ones with HDR emis-
sion textures). And our improved method will enable high-quality specular microstructure
rendering to be integrated in practical systems.

Finally, we take this process to a new level, introducing the first practical technique
for simulating full di↵raction e↵ects under wave optics in completely arbitrary micron-scale
height-field geometry. The result is a dramatic change in the predicted BRDF due to reflec-
tion from small areas of surface: the unrealistically sharply defined structures of geometric
optics give way to softer results that depend on wavelength, introducing color into the
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BRDF. In practice, the new model produces softer, more natural looking reflections from
microgeometry, with subtle color e↵ects visible under sharp lighting.

An exciting extension of our work is that it provides the ability to represent surface
features at all scales with the appropriate type of model: large features can be handled with
geometry; smaller ones down to a fraction of a millimeter can be represented using geometric
normal maps; and features down to wavelength scale are represented as di↵racting height
fields. Smaller features than that are not optically relevant and are not needed in any visual
simulation. It would also be interesting to bring our approach closer to interactivity with
further approximations. An extension to displacement maps would be possible as well. We
could also explore related glinty phenomena caused by refraction, seen e.g. in snow, hair,
waterfalls, fabrics or plant cellular structures.

In Chapter 4, we first present a physically-accurate fur reflectance model to accurately
capture the appearance of animal fur fibers. Our model treats fur fibers as double cylin-
ders, taking into account the existence of scattering medullas inside. We then derive a fast
evaluation algorithm for rendering, built upon precomputed empirical medulla scattering
profiles. We demonstrate that our rendering model fits the measured data well, with errors
comparable to a full volumetric simulation. We also introduce the first database in computer
graphics of reflectance measurements on a number of animal fur fibers, including both raw
2D scattering profiles and fit parameters. We show that our model is capable of generating
a variety of realistic animal fur appearances, with significantly more realistic results than
previous methods.

We then extend our first fur reflectance model for e�cient fur rendering. By unifying
the IORs of cortex and medulla, we simplify our model so that it is capable of representing
complex scattering within hair and fur fibers with only 5 lobes. By introducing medulla’s
absorption and di↵erent longitudinal and azimuthal roughness, and using tensor approxi-
mation to minimize the storage overhead, our model further achieves both accuracy and
practicality. Along with our improved model, we propose an analytic integration scheme for
e�cient far field appoximation, and extend it to handle multi-scale rendering for the first
time.

In addition to our reflectance model for individual fur fibers, we present the first scat-
tering model to e�ciently approximate global illumination within hair and fur volumes. We
analyze and point out failure cases of classic dual scattering, and organize our model as
three components: direct illumination, dual scattering for unscattered lobes, and BSSRDF
for all other scattering events. We convert properties from hair and fur fibers to BSSRDF
parameters by training a neural network on only one scene. Our model supports various
lighting conditions including environment maps, and enables hair to hair inter-reflections.
We show close matches of our predicted renderings using the dipole method, compared with
the path traced reference from Sections 4.8 and 4.9.

In summary, with our reflectance model and scattering model, we have presented a com-
plete state of the art solution to hair and fur rendering. In the future, an extension to
handle more features such as irregular fiber sections, complicated cuticle scale arrangements
and discontinuous medullas would be interesting. Introducing explicit eccentricity or irreg-
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ular shaped azimuthal sections would also help. And an artist-friendly perspective for our
models can benefit the industry. Another practical direction is to support SRBF lights [100,
140] to enable real-time hair and fur rendering under environment illumination.

In Chapter 5, we demonstrate an interactive GPU-based method of sheared filtering for
Monte-Carlo rendering of distribution e↵ects. We propose a novel factorization of the 4D
sheared filter into two 2D filters, and we further split each 2D filter into two 1D filters. We
also derive a complexity analysis for our method, and compare it to axis-aligned filtering.
Our results show soft shadows, depth of field and di↵use global illumination at interactive
speeds for complex scenes, and we are 4⇥ faster than axis-aligned filtering for the same
quality, with a 5� 6⇥ reduction in sample count.

We believe that sparse sampling, followed by sophisticated filtering and reconstruction,
has emerged as an important method to dramatically speed up Monte Carlo rendering. How-
ever, the slow performance of methods like sheared filtering have limited the performance
gains and interactivity. We have taken an important step towards real-time physically accu-
rate rendering, by developing the first factored GPU 4D sheared filtering method, and expect
many future developments that enable both low sampling rates and high performance.

In future work, we plan to extend our range of applications to environment lighting
or spherical harmonic occlusion [30], and generalize our method for filtering Monte Carlo
images involving higher dimensional integrals, including simultaneous primary and secondary
distribution e↵ects [79, 85]; initial results are shown in the appendix. A simple extension for
adaptive sampling could also be considered. Furthermore, it would be thrilling to combine
our reconstruction scheme with our detailed rendering methods and complex materials, so
that both realism and speed can finally be achieved.

In all, we study both the complexity of the real world for realistic appearance indis-
tinguishable from actual photographs, and the local smoothness of light transport for fast
rendering. We provide a general method to synthesize details in the micron level, a physically-
based way to understand appearance from microstructures, and a practical filtering method
with rigorous theorecial analysis. However, even with all our previous e↵orts, photorealistic
rendering is still far from solved. It is more and more demonstrated that both extremes have
to be satisfied in order to bring people believable virtual contents: it requires even deeper
studies of our current rich visual, mathematical and physical world, but this will probably
break many of the assumptions that we make to trade quality for performance. Thus, even
more interesting and open problems await us. We sincerely look forward to the day when
Computer Generated Imagery (CGI) finally overcomes these di�culties, and opens up a gate
for people to a new world.
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Appendix A

Solving Equation 3.23 Analytically

To compute Equation 3.23, we need to find the integral I:

I =

ˆ
R2

Gp(u)Gi(u, s) du.

The following three steps are required: 1) Turn the 4D Gaussian Gi(u, s) into a 2D Gaus-
sian by fixing s. 2) Analytically compute the product of the resulting 2D Gaussians. 3)
Analytically integrate the final 2D Gaussian. Below we describe these three steps in more
detail.

2D slice of a 4D Gaussian. Without loss of generality, we define this problem as
rewriting g = G(x; c,0,⌃) into g = G(u; c0,u0,⌃0), where x = (u, s) is a 4D column vector,
and s is a 2D column vector that is fixed. Note that, here we explicitly write a multivariate
Gaussian G(x; c, µ,⌃) with its scaling coe�cient c, center µ and covariance matrix ⌃. (Note:
in practice it is usually better to store inverse covariance matrices.)

Since ⌃ is symmetric, ⌃�1 is also symmetric. We first represent ⌃�1 using 2⇥ 2 blocks

⌃�1 =

✓
A B
BT C

◆
, (A.1)

Then the 4D Gaussian can be written as

g = c · exp
✓
�1

2

�
uTAu+ 2sTBTu+ sTCs

�◆
. (A.2)

Our goal is to write g as a 2D Gaussian in u:

g = c0 · exp
✓
�1

2
(u� u0)

T⌃0�1(u� u0)

◆
. (A.3)

Expanding Equation A.3 and comparing terms inside the exponential with Equation A.2,
we immediately have

⌃0�1 = A, u0 = �A�1Bs, c0 = c · exp
✓
�1

2
(sTCs� uT

0Au0)

◆
. (A.4)
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Product of two multivariate Gaussians. Given two multivariate GaussiansG(x; c1, µ1,⌃1)
and G(x; c2, µ2,⌃2), their product is another multivariate Gaussian G(x; c, µ,⌃), where

⌃�1 = ⌃�1
1 + ⌃�1

2 , µ = ⌃(⌃�1
1 µ1 + ⌃�1

2 µ2). (A.5)

To find the scaling coe�cient c, we just evaluate the original product at the new mean:

c = G(µ; c1, µ1,⌃1) ·G(µ; c2, µ2,⌃2). (A.6)

Integral of a multivariate Gaussian. Integrating a multivariate Gaussian over Rn

results in ˆ
Rn

G(x; c, µ,⌃) dx = c · (2⇡)n/2|⌃|1/2. (A.7)
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Appendix B

Alternate Wave Optics Method
Derivation

Here we briefly sketch an alternative, but mathematically equivalent, derivation of our
method. One can also view our method as approximating the rough surface by a set of
small planar elements, or flakes, with one per grid cell. These flakes have soft overlapping
boundaries in S̄, defined by a Gaussian flake shape function K(s) = l2

k
G2D(s; 0, �k), which

assuming a uniform grid, is the same for all flakes. K is normalized so that its integral is
equal to the grid cell area. The flakes are centered at the grid cell centers mk.

Approximating the coherence kernel as constant over a flake with wk = w(mk�xc), and
evaluating Equation 2.8 as a sum over the flake approximation of the surface gives:

fr(!i,!o) ⇡
⇠1
Ac

�����
X

k

wk

ˆ
S̄c

K(s�mk)R(s) e�i
2⇡
� ( ·s) ds

�����

2

(B.1)

Then we can expand R(s) using Equation 2.6, substitute the per-flake planar height approxi-
mation, H(s) = H(mk)+H

0(mk) · (s�mk), and after some rearranging of terms, recognize
that the integral has the form of a Fourier transform (Equation 2.10) of K. Combining these
steps we get:

fr(!i,!o) =
⇠1
Ac

�����
X

k

wk⇠2 e
�i2⇡�k eK

✓
⇠3H 0(mk) + 

�

◆�����

2

(B.2)

�k =
⇠3H(mk) + ( ·mk)

�
(B.3)

eK(v) = l2
k
e�2⇡2

�
2
kkvk

2

(B.4)

where we have assumed ⇠2 and ⇠3 are constant per flake.
Since eK is a Gaussian, the expression in the sum can be interpreted as evaluations of

Gabor kernels. If we expand out the expression inside the sum from our prior derivation
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(Equation 3.37), we find that they match exactly. This alternate derivation may provide
some additional intuition about our approximation and can also be applied to other types
of flake shape functions.
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Appendix C

Precomputing and Using Fur
Scattering Profiles

Precomputation and Compression: We enumerate scattering coe�cient �m,s 2 [0, 20]
and anisotropy g 2 [0.0, 0.8], and we vary an additional parameter specifying di↵erent in-
coming directions. For azimuthal profiles, it is the o↵set h0 2 [�1, 1] assuming all sub-paths
are entering the medulla horizontally (Fig. 4.13). For longitudinal profiles, it is the inci-
dent angle ✓0

i
2 [�⇡/2, ⇡/2]. We discretize the range of g into 16 steps, while for all other

parameters, we use 64 steps.
We separately simulate the medulla’s azimuthal and longitudinal scattering profiles using

volumetric path tracing in 2D, assuming that the incident path carries unit energy. We trace
a smooth unit circle azimuthally and a double slab with distance 2 in between longitudinally.
For all scattering events, we use the planar Henyey-Greenstein phase function [20]

⇢(✓, g) =

✓
1

2⇡

◆
1� g2

1 + g2 � 2g cos ✓
(C.1)

to consider anisotropy, where ✓ is the angle each scattering event deviates from its earlier
path.

Each precomputed outgoing profile is stored using 720 bins covering every direction,
recording the exiting energy. For longitudinal scattering, we further normalize the upper
and lower lobes respectively, making both of them PDFs. Then we accumulate their CDFs
for convenience in the next steps. Since these profiles are generally smooth, we further
compress each profile by dividing it into 4 segments, and fit each segment with a quadratic
function.

Refining azimuthal scattered lobes: Due to Fresnel e↵ects, the scattered lobe could
be reflected back by the surface of the medulla and the cuticle, thus undergoing further
scattering, making it even smoother. We approximate this proportion as � = 1 � (1 �
F (⇡/2))(1�F (⇡/2, l)), which is simply the leftover energy after perpendicularly transmitting
through two interfaces, ignoring multiple internal reflections. So the azimuthal scattered
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lobes can be extended to

N s

p
(h,�) = As

p
(h) ·

⇥
Ds

p
(h,�) · (1� �) + Is

j
· �
⇤
, (C.2)

where Is
j
= [1 � exp(��m,s · |pjpj+1|]/2⇡ is uniform distribution of the scattered energy,

under the assumption that the reflected back scattered lobe will become isotropic after more
scattering events. j is the location of the vertex where the path enters the medulla and
scatters, and As is the e↵ective attenuation for the scattered lobe.

Normalizing longitudinal scattered lobe: Since our final longitudinal scattered lobe
M s is normalized, we have

´
M s d✓r = 1. According to equation 4.17, we have

´
Ft·CM d✓r =

1/µ. Then, approximately we have
´
Ft d✓r ·

´
CM d✓r = 1/µ. Denoting these two separated

integrals as U and V , we found that U can be numerically calculated when a certain species
of fur is loaded in, which introduces no overhead when rendering on the fly. For V , we first
convert the integration domain into ✓0

r
, using d✓0r

d✓r
⇡ cos ✓r

⌘c cos ✓0r
by di↵erentiating the formula

for Snell’s law at P 0 and Q0. Then we know the range of ✓0
r
that CM should be integrated

in. Since the precomputed CM is a normalized PDF, the integration is a query on its CDF,
which is simply accumulated in the precomputation step. Thus, we have µ = (UV )�1 as our
normalization factor.
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Appendix D

Solving Equations 4.30 and 4.31
Analytically

Equations. 4.30 and 4.31 are piecewise integrations of a polynomial and the exponential of
a polynomial. The key to solving them analytically is to integrate the forms Q1 · exp(Q2)
and C · exp(L), where Q1 and Q2 are quadratic polynomials, C is cubic, and L is linear. For
simplicity, here we present the analytic result of both forms as indefinite integrations.

Integrating Q1 · exp (Q2):

ˆ
(dx2 + ex+ f) · exp(�ax2 + bx+ c) dx

=

p
⇡ exp

⇣
b
2

4a + c
⌘
erf
⇣

2ax�b

2
p
a

⌘
(4a2f + 2abe+ 2ad+ b2d)

8a5/2
�

exp(�ax2 + bx+ c)(2adx+ 2ae+ bd)/(4a2) +K

where erf is the error function, which can be approximated with high precision using poly-
nomials. K is the integration constant in the indefinite integral.

Integrating C · exp (L):

ˆ
(cx3 + dx2 + ex+ f) · exp(�ax+ b) dx

= � exp(�ax+ b)
⇣
a3cx3 + (a3d+ 3a2c)x2

+ (a3e+ 2a2d+ 6ac)x+ a3f + a2e+ 2ad+ 6c
⌘
/a4 +K

where K is a constant.
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Appendix E

Separating and Filtering Multiple
E↵ects

(a) Our method, 9

spp, 580 ms

(b) Ground truth,

12288 spp

(c) Unfiltered (d) Filtered visibility (e) Filtered indirect

illumination

Figure E.1: The TOASTERS scene rendered with an area light, depth of field and global illumina-
tion. Our method achieves visually plausible results but uses only 9 samples per pixel, each sample
with 1 ray for depth of field, 1 ray for soft shadows and 1 ray for indirect illumination.

Here we focus on how to e�ciently separate multiple e↵ects (soft shadows, depth of field
and di↵use global illumination) into independent single e↵ects. Similar to [79], we observe
that soft shadows and di↵use global illumination represent direct and indirect lighting re-
spectively, and they could therefore be naturally separated. Thus, without loss of generality,
we demonstrate the derivation of our separation scheme only for the combination of soft
shadows and depth of field e↵ects. Figure E.1(e) shows a separate pass for the filtered indi-
rect illumination (using the algorithm in the main text), that is added to the final result in
Fig. E.1(a).

We refer to a simplified notation, using x as (2D) screen coordinate, u as lens coordinate,
and y as light coordinate. Intuitively, the pixel radiance due to direct illumination is a two-
step integral. The first or inner step filters out the correct outgoing radiance due to the area
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light, and the second or outer step filters for the lens. The equation is given by

Ldir(x) =

ˆ
u

✓ˆ
y

f(x, u, y)V (x, u, y) dy

◆
k(x, u) du. (E.1)

where f(x, u, y) is the BRDF term, V (x, u, y) is the visibility term, and k(x, u) represents
the texture or reflectance. Note that, this equation is di�cult to separate, because both the
BRDF term and the visibility term depend on samples from the lens and samples from the
area light.

To solve the problem, we first denote the product of the BRDF term and the visibility
term as F (x, u, y) = f(x, u, y) ·V (x, u, y). Then we introduce an approximation by replacing
F for each pixel with its average over every related lens sample u, or F (x, u, y) ⇡ F̄ (x, y)|u.
Then equation E.1 becomes

Ldir(x) ⇡
ˆ
u

✓ˆ
y

F̄ (x, y)|u dy
◆
k(x, u) du. (E.2)

We have essentially factored out the inner integral over the light for soft shadows, and
the outer integral over the lens for defocus.

We now propose a two-step filtering algorithm. For each pixel, we sample the lens to
shoot primary rays. For each valid hit, we shoot one (or more) secondary shadow rays and
compute the corresponding F term. After this, we average primary rays to get F̄ .

The following filtering steps are straightforward. We first filter the F̄ (x, y) light field
samples, using our proposed four-step fast sheared filtering. Then we filter the resulting
(x, u) light field from the previous step according to the lens to get the depth of field e↵ect,
again with our fast sheared filtering algorithm. Figure E.1 shows the final result as well as
di↵erent stages using our method. Compared to the claimed running time of 3.61 seconds for
the same scene using axis-aligned filtering in [79], we achieve a 6⇥ speed up, yet achieving
a visually convincing result, although di↵erences are noticeable as compared to the ground
truth.

Note that, the approximation we proposed is almost as conservative as that introduced
in [79]. In practice, it also guarantees accuracy. When the e↵ect of u range is small, the
approximated F̄ is accurate. This indicates that the closer to the focal plane, the more
accurate the approximation is. For those areas far from the focal plane, since the outer
integral (lens filter) dominates, the output image is largely blurred, so minor inaccuracies of
the visibility approximation could be neglected.

The time complexity of our separation scheme is still O(nl), because we simply perform
our fast sheared filtering twice. For the storage, the approximation allows us to store the
samples for each e↵ect separately, i.e. the storage cost is still 4D rather than 6D. So we
consider it practical and e�cient for our algorithm to handle multiple e↵ects.
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