Lecture 1:
Introduction and Overview
Welcome!
Who Am I?

• Lingqi Yan
 - Pronunciation: ling—chi—yen
 - Assistant Professor
 - Web: www.cs.ucsb.edu/~lingqi/
 Email: lingqi@cs.ucsb.edu
 - Research: Computer Graphics — rendering — photorealism & speed
 - Hobbies: video games, piano and NBA

• What about you?
What is CS291A about?

Real-Time High Quality Rendering
What is CS291A about?

- Real-Time High Quality Rendering
 - What is Rendering?

3D scene (meshes, lights, etc.) → Image

Calculating light -> eye
What is CS291A about?

• So, we will not cover 3D modeling or game development using Unreal Engine (where can I learn them?)

Modeling character animation in Maya

CSGO PoV Cam set up in Unreal Engine
[https://www.youtube.com/watch?v=3TQ18SmQSv0]
What is CS291A about?

• And we will not cover physically-based animation/simulation (where can I learn this?)

Adaptive Anisotropic Remeshing for Cloth Simulation, Narain et al.
What is CS291A about?

- **Real-Time High Quality Rendering**
 - Speed: more than 30 FPS (frames per second), even more for Virtual / Augmented Reality (VR / AR): 90 FPS
 - Interactivity: Each frame generated on the fly

- **Real-Time High Quality Rendering**
 - Realism: advanced approaches to make rendering more realistic
 - Dependability: all-time correctness, no tolerance to (uncontrollable) failures
What is CS291A about?

- So, we will **not** cover expensive (but more accurate) light transport techniques in movies / animations (where can I learn this?)

Manifold Metropolis Light Transport
Jakob et al.

Gradient Domain Path Tracing
Kettunen et al.
What is CS291A about?

- And we will **not** cover Computer Vision / Deep Learning topics, e.g. XYZ-GAN (where can I learn this?)

GAN 2.0: NVIDIA’s Hyperrealistic Face Generator (both are fake)
Course Topics
Course Topics

• Shadow and Environment Mapping

Real-Time, All-Frequency Shadows in Dynamic Scenes
Annen et al.
Course Topics

• Interactive Global Illumination Techniques

Micro-Rendering for Scalable, Parallel Final Gathering
Ritschel et al.
Course Topics

- Precomputed Radiance Transfer

Global Illumination with Radiance Regression Functions
Ren et al.
Course Topics

- Sampling and Reconstruction

Fast 4D Sheared Filtering for Interactive Rendering of Distribution Effects
Yan et al.
Course Topics

- Real-Time Ray Tracing
Course Topics

- Image-based Rendering and Light Fields

Composition with input image and textures of virtual objects

Filtering Environment Illumination for Interactive Physically-Based Rendering in Mixed Reality
Mehta et al.
Course Topics

• Participating Media Rendering, Image Space Effects, etc.

Multiple scattering

Image space reflection
Questions?
Today’s Lecture
Outline

• Motivation

• Evolution of real-time rendering

• Technological and algorithmic milestones
 - Programmable graphics hardware
 - Precomputation-based methods
 - Interactive Ray Tracing

• Course Logistics

• Project 0
Motivation

• Today, Computer Graphics is able to generate **photorealistic** images
 - Complex geometry, lighting, materials, shadows
 - Computer-generated movies/special effects (difficult or impossible to tell real from rendered…)

[Artist: Teruyuki and Yuka] [Artist: Hyun Kyung]
Motivation

- But accurate algorithms (esp. ray tracing) are very slow
 - So they are called offline rendering methods
 - Guess how long does it take to render one frame in Zootopia?
Motivation

- With proper approximations, we can generate plausible results but runs much faster

Toyota 2000GT, from TurboSquid (offline rendering)

Need for Speed: Payback (real-time rendering)
Evolution of Real-Time Rendering

- Interactive 3D graphics pipeline as in OpenGL
 - Earliest SGI machines (Clark 82) to today
 - Most of focus on more geometry, texture mapping
 - Some tweaks for realism (shadow mapping, accum. buffer)

SGI Reality Engine 93
(Kurt Akeley)
Evolution of Real-Time Rendering

• 20 years ago
 - Interactive 3D geometry with simple texture mapping, fake shadows (OpenGL, DirectX)

Final Fantasy VII (1997)

Counter Strike (1999)
Evolution of Real-Time Rendering

• 20 -> 10 years ago
 - A giant leap since the emergence of programmable shaders (2000)
 - Complex environment lighting, real materials (velvet, satin, paints), soft shadows

Assassin’s Creed II (2009)
Resident Evil 5 (2009)
Evolution of Real-Time Rendering

• Today
 - Extended to Virtual Reality (VR) and even movies
 - “Stunning graphics”

Beat Saber, VR Game

Zafari, animation series rendered completely using Unreal game engine
Evolution of Real-Time Rendering

• Today
Evolution of Real-Time Rendering

• Today
Evolution of Real-Time Rendering

- In the future

The Matrix (1999 movie)
Evolution of Real-Time Rendering

- In the future

Ready Player One (2018 movie)
Technological and Algorithmic Milestones

- Programmable graphics hardware (shaders) (20 years ago)

A New Dawn demo, NVIDIA
https://www.geforce.com/games-applications(pc-applications/a-new-dawn/videos)
Technological and Algorithmic Milestones

- Programmable graphics hardware (shaders)
Technological and Algorithmic Milestones

• Precomputation-based methods (15 years ago)
 - Complex visual effects are (partially) pre-computed
 - Minimum rendering cost at run time
Technological and Algorithmic Milestones

- Precomputation-based methods

All-Frequency Rendering of Dynamic, Spatially-Varying Reflectance
Wang et al.
Technological and Algorithmic Milestones

• Precomputation-based methods: Relighting
 - Fix geometry
 - Fix viewpoint
 - Dynamically change lighting

[Ng, Ramamoorthi, Hanrahan 04]
Technological and Algorithmic Milestones

• Interactive Ray Tracing (8-10 years ago: CUDA + OptiX)
 - Hardware development allows ray tracing on GPUs at low sampling rates (~1 samples per pixel (SPP))
 - Followed by post processing to denoise

Car interactively rendered using NVIDIA OptiX
Pixar’s real-time previewer
Technological and Algorithmic Milestones

• What do you think [is / will be] the milestone of CG today and in the future?
 - Deep learning?
 - Real-Time Ray Tracing?
 - VR with realistic graphics?

• Let’s re-look at this slide several years later!
Questions?
Course Logistics
Class Philosophy

• We want a very active class

• Come to class

• Follow, think, discuss and question
Prerequisites

- **Strong interest** in graphics, rendering

- Computer graphics experience (CS180 or equivalent)
 - A brief survey
 - What if lacking prerequisites? Next slide

- Course will move quickly
 - Covering recent and current active research
 - Some material quite technical
 - Many topics.

 Need not to fully follow each one, but doing so will be most rewarding.
If Lacking Prerequisites

• You have this week to catch up with basic OpenGL (and general Computer Graphics) knowledge this week

• The next lecture will briefly review related topics

• Project 0 will help you warm up quickly

• Practice makes perfect!
Course Logistics

• Course Website
 - Everything’s there!

• No required textbooks
 - Related papers will available online before lectures
 - Lecture slides will be available right after class
 - The book “Real-Time Rendering (3rd ed or later)” by Moller and Haines may be helpful (we will not follow it, though)
Course Logistics

• No TA for this class
 - Sign up on Piazza for student discussion

• Office hour
 - Tuesdays 1PM - 2PM, HFH 5102
 - Please don’t ask me to debug…

• Academic integrity
 - Work alone except for the final project (no copy-pasting from others)
 - Do not publish your code (on Github, etc.)
 - Other details on the website, strictly enforced
Assignments and Grading

• Assignments
 - One paper presentation (15%)
 - Projects 0 - 3 (15% each)
 - Final project (25%, in groups of two)
 - NO EXAMS!

• Grading
 - Submit your project by 11:59PM on/before the due dates via Gauchospace
 - Each late day = 10% off
Assignments and Grading

• More words about projects
 - Getting a “working example” is the most important
 - Minimize distractions w.r.t. C++ syntax and OpenGL usage, and focus on core shader implementations
 - Software engineering is not necessary
 - Hard code is definitely acceptable
 - START EARLY!
Questions?
Announcement

- Project 0 is out today

- Next lecture: recap some important concepts
 - Hardware Graphics Pipeline
 - Shader Language
 - Radiometry
 - Rendering Equation
 - etc.
Thank you!