Introduction to Computer Graphics

GAMES101, Lingqi Yan, UC Santa Barbara

Lecture 5: Rasterization 1 (Triangles)

Announcements

- Homework 0 188 submissions
 - No worries if you did not submit
- Homework 1 will be released today
 - Containing basic and advanced requirements (graded separately)
 - Pass or not pass depends on basic requirements only
- Asking on BBS

GAMES101

- Please try to describe your question more clearly
- Today's lecture is pretty easy

Last Lecture

- Viewing (观测) transformation
 - View (视图) / Camera transformation
 - Projection (投影) transformation
 - Orthographic (正交) projection
 - Perspective (透视) projection

Today

- Finishing up Viewing
 - Viewport transformation
- Rasterization
 - Different raster displays
 - Rasterizing a triangle
- Occlusions and Visibility

Perspective Projection

- What's near plane's I, r, b, t then?
 - If explicitly specified, good
 - Sometimes people prefer:
 vertical field-of-view (fovY) and
 aspect ratio

(assume symmetry i.e. I = -r, b = -t)

Aspect ratio = width / height

Perspective Projection

- How to convert from fovY and aspect to I, r, b, t?
 - Trivial

What's after MVP?

- Model transformation (placing objects)
- View transformation (placing camera)
- Projection transformation
 - Orthographic projection (cuboid to "canonical" cube [-1, 1]³)
 - Perspective projection (frustum to "canonical" cube)
- Canonical cube to ?

- What is a screen?
 - An array of pixels
 - Size of the array: resolution
 - A typical kind of raster display
- Raster == screen in German
 - Rasterize == drawing onto the screen
- Pixel (FYI, short for "picture element")
 - For now: A pixel is a little square with uniform color
 - Color is a mixture of (red, green, blue)

- Defining the screen space
 - Slightly different from the "tiger book"

Pixels' indices are in the form of (x, y), where both x and y are integers

Pixels' indices are from (0, 0) to (width - 1, height - 1)

Pixel (x, y) is centered at (x + 0.5, y + 0.5)

The screen covers range (0, 0) to (width, height)

- Irrelevant to z
- Transform in xy plane: [-1, 1]² to [0, width] x [0, height]

- Irrelevant to z
- Transform in xy plane: [-1, 1]² to [0, width] x [0, height]
- Viewport transform matrix:

$$M_{viewport} = egin{pmatrix} rac{width}{2} & 0 & 0 & rac{width}{2} \ 0 & rac{height}{2} & 0 & rac{height}{2} \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

Next: Rasterizing Triangles into Pixels

Drawing Machines

CNC Sharpie Drawing Machine

Aaron Panone with Matt W. Moore

http://44rn.com/projects/numerically-controlled-poster-series-with-matt-w-moore/

Laser Cutters

Different Raster Displays

Oscilloscope

Oscilloscope Art

Jerobeam Fenderson

https://www.youtube.com/watch?v=rtR63-ecUNo

Cathode Ray Tube

Television - Raster Display CRT

Cathode Ray Tube

Raster Scan (modulate intensity)

Frame Buffer: Memory for a Raster Display

Image = 2D array of colors

Flat Panel Displays

Low-Res LCD Display

Color LCD, OLED, ...

H&B fig. 2-16]

LCD (Liquid Crystal Display) Pixel

Principle: block or transmit light by twisting polarization

Illumination from backlight (e.g. fluorescent or LED)

Intermediate intensity levels by partial twist

LED Array Display

Light emitting diode array

Electrophoretic (Electronic Ink) Display

Rasterization: Drawing to Raster Displays

Polygon Meshes

Triangle Meshes

28

Triangle Meshes

29

Triangles - Fundamental Shape Primitives

Why triangles?

- Most basic polygon
 - Break up other polygons

- Unique properties
 - Guaranteed to be planar
 - Well-defined interior
 - Well-defined method for interpolating values at vertices over triangle (barycentric interpolation)

What Pixel Values Approximate a Triangle?

Input: position of triangle vertices projected on screen

Output: set of pixel values approximating triangle

A Simple Approach: Sampling

Sampling a Function

Evaluating a function at a point is sampling.

We can discretize a function by sampling.

```
for (int x = 0; x < xmax; ++x)

output[x] = f(x);
```

Sampling is a core idea in graphics.

We sample time (1D), area (2D), direction (2D), volume (3D) ...

Rasterization As 2D Sampling

Sample If Each Pixel Center Is Inside Triangle

Sample If Each Pixel Center Is Inside Triangle

Define Binary Function: inside (tri, x, y)

x, y: not necessarily integers

```
Point (x, y)
                       in triangle t
inside(t, x, y)
                       otherwise
```

Rasterization = Sampling A 2D Indicator Function

Recall: Sample Locations

Sample location for pixel (x, y)

Inside? Recall: Three Cross Products!

Edge Cases (Literally)

Is this sample point covered by triangle 1, triangle 2, or

both?

Checking All Pixels on the Screen?

Use a **Bounding Box!**

Incremental Triangle Traversal (Faster?)

suitable for thin and rotated triangles

Rasterization on Real Displays

Real LCD Screen Pixels (Closeup)

Notice R,G,B pixel geometry! But in this class, we will assume a colored square full-color pixel.

Aside: What About Other Display Methods?

Color print: observe half-tone pattern

Assume Display Pixels Emit Square of Light

So, If We Send the Display the Sampled Signal

The Display Physically Emits This Signal

Compare: The Continuous Triangle Function

What's Wrong With This Picture?

Jaggies!

Aliasing (Jaggies)

Is this the best we can do?

Thank you!

(And thank Prof. Ravi Ramamoorthi and Prof. Ren Ng for many of the slides!)