Lecture 6:
Rasterization 2
(Antialiasing and Z-Buffering)

Announcements

• Homework 1
 - Already 49 submissions so far!
 - In general, start early

• Today’s topics are not easy
 - Having knowledge on Signal Processing is appreciated
 - But no worries if you don’t
Last Lectures

• Viewing
 - View + Projection + Viewport

• Rasterizing triangles
 - Point-in-triangle test
 - Aliasing
Today

• Antialiasing
 - Sampling theory
 - Antialiasing in practice

• Visibility / occlusion
 - Z-buffering
Recap: Testing in/out Δ at pixels’ centers
Pixels are uniformly-colored squares
Compare: The Continuous Triangle Function
What’s Wrong With This Picture?

Jaggies!
Aliasing

Is this the best we can do?
Sampling is Ubiquitous in Computer Graphics
Rasterization = Sample 2D Positions
Photograph = Sample Image Sensor Plane

![Image of a crab on sand with a magnifying lens]
Video = Sample Time

Harold Edgerton Archive, MIT
Sampling Artifacts (Errors / Mistakes / Inaccuracies) in Computer Graphics
Jaggies (Staircase Pattern)

This is also an example of “aliasing” – a sampling error
Moiré Patterns in Imaging

[mwɑː]
Wagon Wheel Illusion (False Motion)
Sampling Artifacts in Computer Graphics

Artifacts due to sampling - “Aliasing”

• Jaggies – sampling in space
• Moire – undersampling images
• Wagon wheel effect – sampling in time
• [Many more] …

Behind the Aliasing Artifacts

• Signals are changing too fast (high frequency), but sampled too slowly
Antialiasing Idea: Blurring (Pre-Filtering) Before Sampling
Rasterization: Point Sampling in Space

Note jaggies in rasterized triangle where pixel values are pure red or white
Rasterization: Antialiased Sampling

Pre-Filter
(remove frequencies above Nyquist) (?)

Sample

Note antialiased edges in rasterized triangle where pixel values take intermediate values
Point Sampling
Antialiasing
Point Sampling vs Antialiasing
Antialiasing vs Blurred Aliasing

(Sample then filter, WRONG!) (Filter then sample)
But why?

1. Why undersampling introduces aliasing?
2. Why pre-filtering then sampling can do antialiasing?

Let’s dig into fundamental reasons
And look at how to implement antialiased rasterization
Frequency Domain
Sines and Cosines

\[\cos 2\pi x \]

\[\sin 2\pi x \]
Frequencies $\cos 2\pi f x$

$$f = \frac{1}{T}$$

$\cos 2\pi x$

$\cos 4\pi x$

$f = 1$

$f = 2$
Fourier Transform

Represent a function as a weighted sum of sines and cosines

\[f(x) = \frac{A}{2} + \frac{2A \cos(t \omega)}{\pi} - \frac{2A \cos(3t \omega)}{3\pi} + \frac{2A \cos(5t \omega)}{5\pi} - \frac{2A \cos(7t \omega)}{7\pi} + \ldots \]
Fourier Transform Decomposes A Signal Into Frequencies

\[f(x) \quad \rightarrow \quad F(\omega) = \int_{-\infty}^{\infty} f(x)e^{-2\pi i \omega x} \, dx \quad \rightarrow \quad f(x) = \int_{-\infty}^{\infty} F(\omega)e^{2\pi i \omega x} \, d\omega \]

Recall \(e^{ix} = \cos x + i \sin x \)
Higher Frequencies Need Faster Sampling

Periodic sampling locations

Low-frequency signal: sampled adequately for reasonable reconstruction

High-frequency signal is insufficiently sampled: reconstruction incorrectly appears to be from a low frequency signal
Undersampling Creates Frequency Aliases

High-frequency signal is insufficiently sampled: samples erroneously appear to be from a low-frequency signal

Two frequencies that are indistinguishable at a given sampling rate are called “aliases”
Filtering = Getting rid of certain frequency contents
Visualizing Image Frequency Content
Filter Out Low Frequencies Only (Edges)

High-pass filter
Filter Out High Frequencies (Blur)

Low-pass filter
Filter Out Low and High Frequencies
Filter Out Low and High Frequencies
Filtering = Convolution
(= Averaging)
Convolution

Signal: 1 3 5 3 7 1 3 8 6 4
Filter: 1/4 1/2 1/4

Point-wise local averaging in a “sliding window”
Convolution

Signal: 1 3 5 3 7 1 3 8 6 4

Filter: \(\frac{1}{4} \) \(\frac{1}{2} \) \(\frac{1}{4} \)

Result: 3

\[1 \times \left(\frac{1}{4} \right) + 3 \times \left(\frac{1}{2} \right) + 5 \times \left(\frac{1}{4} \right) = 3 \]
Convolution

Signal: 1 3 5 3 7 1 3 8 6 4

Filter: $\frac{1}{4} \quad \frac{1}{2} \quad \frac{1}{4}$

Result: $\frac{3 \times (1/4) + 5 \times (1/2) + 3 \times (1/4) = 4}$
Convolution Theorem

Convolution in the spatial domain is equal to multiplication in the frequency domain, and vice versa

Option 1:

• Filter by convolution in the spatial domain

Option 2:

• Transform to frequency domain (Fourier transform)
• Multiply by Fourier transform of convolution kernel
• Transform back to spatial domain (inverse Fourier)
Convolution Theorem

Spatial Domain

Fourier Transform

Frequency Domain

$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

\ast

\times

Inv. Fourier Transform
Box Filter

Example: 3x3 box filter
Box Function = "Low Pass" Filter
Wider Filter Kernel = Lower Frequencies
Sampling = Repeating Frequency Contents
Sampling = Repeating Frequency Contents

Aliasing = Mixed Frequency Contents

Dense sampling:

Sparse sampling:

\[-F_s/2 \quad F_s/2\]

\[-F_s/2 \quad F_s/2\]
Antialiasing
How Can We Reduce Aliasing Error?

Option 1: Increase sampling rate

• Essentially increasing the distance between replicas in the Fourier domain
• Higher resolution displays, sensors, framebuffers…
• But: costly & may need very high resolution

Option 2: Antialiasing

• Making Fourier contents “narrower” before repeating
• i.e. Filtering out high frequencies before sampling
Antialiasing = Limiting, then repeating

Filtering

Then sparse sampling
Regular Sampling

Note jaggies in rasterized triangle where pixel values are pure red or white
Antialiased Sampling

Pre-Filter
(remove frequencies above Nyquist)

Sample

Note antialiased edges in rasterized triangle where pixel values take intermediate values
A Practical Pre-Filter

A 1 pixel-width box filter (low pass, blurring)

Spatial Domain

Frequency Domain
Antialiasing By Averaging Values in Pixel Area

Solution:

• **Convolve** $f(x,y)$ by a 1-pixel box-blur
 - Recall: convolving = filtering = averaging

• **Then sample** at every pixel’s center
Antialiasing by Computing Average Pixel Value

In rasterizing one triangle, the average value inside a pixel area of \(f(x,y) = \text{inside(triangle,x,y)} \) is equal to the area of the pixel covered by the triangle.
Antialiasing By Supersampling (MSAA)
Supersampling

Approximate the effect of the 1-pixel box filter by sampling multiple locations within a pixel and averaging their values:

4x4 supersampling
Point Sampling: One Sample Per Pixel
Supersampling: Step 1

Take $N \times N$ samples in each pixel.

2x2 supersampling
Supersampling: Step 2

Average the NxN samples “inside” each pixel.
Supersampling: Step 2

Average the N x N samples “inside” each pixel.
Supersampling: Step 2

Average the NxN samples “inside” each pixel.
Supersampling: Result

This is the corresponding signal emitted by the display
Point Sampling
4x4 Supersampling
No free lunch!

- What’s the cost of MSAA?

Milestones (personal idea)

- FXAA (Fast Approximate AA)
- TAA (Temporal AA)

Super resolution / super sampling

- From low resolution to high resolution
- Essentially still “not enough samples” problem
- DLSS (Deep Learning Super Sampling)
Thank you!