
Introduction to Computer Graphics
GAMES101, Lingqi Yan, UC Santa Barbara

Shading 2 
(Shading, Pipeline and Texture Mapping)

Lecture 8:

http://www.cs.ucsb.edu/~lingqi/teaching/games101.html



GAMES101 Lingqi Yan, UC Santa Barbara

Announcements
• Homework 2


- 45 submissions so far 

- Upside down? No problem 

- Active discussions in the BBS, pretty good 

• Next homework is for shading


• Today’s topics

- Easy, but a lot

 2



GAMES101 Lingqi Yan, UC Santa Barbara

Last Lecture
• Shading 1


- Blinn-Phong reflectance model 

- Diffuse 

- Specular 

- Ambient 

- At a specific shading point

 3

v
l n

Q

^ ^

^



GAMES101 Lingqi Yan, UC Santa Barbara

Today

 4

• Shading 2


- Blinn-Phong reflectance model 

- Specular and ambient terms 

- Shading frequencies 

- Graphics pipeline 

- Texture mapping 

- Barycentric coordinates



GAMES101 Lingqi Yan, UC Santa Barbara

Recap: Lambertian (Diffuse) Term

Shading independent of view direction

 5

diffuse 
coefficient 

(color)

diffusely 
reflected light

energy arrived 
at the shading point

v
l n

Q
Ld = kd (I/r

2)max(0,n · l)

energy received 
by the shading point



GAMES101 Lingqi Yan, UC Santa Barbara

Recap: Lambertian (Diffuse) Term

Produces diffuse appearance

 6

[F
ol

ey
 e

t 
al

.]

kd



GAMES101 Lingqi Yan, UC Santa Barbara

Specular Term (Blinn-Phong)

Intensity depends on view direction 

• Bright near mirror reflection direction

 7

v
l n

R



GAMES101 Lingqi Yan, UC Santa Barbara

Specular Term (Blinn-Phong)

V close to mirror direction ⇔ half vector near normal 

• Measure “near” by dot product of unit vectors

 8

specular 
coefficient

specularly 
reflected 

light

n
v

h
A

l

h = bisector(v, l)

=
v + l
�v + l�

Ls = ks (I/r
2)max(0, cos↵)p

= ks (I/r
2)max(0,n · h)p

(半程向量)



GAMES101 Lingqi Yan, UC Santa Barbara

Cosine Power Plots

Increasing p narrows the reflection lobe

 9

[F
ol

ey
 e

t 
al

.]



GAMES101 Lingqi Yan, UC Santa Barbara

Specular Term (Blinn-Phong)

Blinn-Phong

 10

[F
ol

ey
 e

t 
al

.]

ks

p

Ls = ks (I/r
2)max(0, cos↵)p

= ks (I/r
2)max(0,n · h)pLs = ks (I/r
2)max(0, cos↵)p

= ks (I/r
2)max(0,n · h)p

Note: showing 
Ld + Ls together



GAMES101 Lingqi Yan, UC Santa Barbara

Ambient Term

Shading that does not depend on anything 

• Add constant color to account for disregarded 
illumination and fill in black shadows 

• This is approximate / fake!

 11

ambient 
coefficient

reflected 
ambient light

La = ka Ia



GAMES101 Lingqi Yan, UC Santa Barbara

Blinn-Phong Reflection Model

 12

Ambient Diffuse Specular Blinn-Phong 
Reflection+ + =

L = La + Ld + Ls

= ka Ia + kd (I/r
2)max(0,n · l) + ks (I/r

2)max(0,n · h)p



Questions?



Shading Frequencies



GAMES101 Lingqi Yan, UC Santa Barbara

Shading Frequencies
What caused the shading difference?

 15



GAMES101 Lingqi Yan, UC Santa Barbara

Shade each triangle (flat shading)

 Flat shading 

• Triangle face is 
flat — one normal 
vector 

• Not good for 
smooth surfaces 

 16



GAMES101 Lingqi Yan, UC Santa Barbara

Shade each vertex (Gouraud shading)

Gouraud shading 

• Interpolate colors 
from vertices across 
triangle 

• Each vertex has a 
normal vector (how?) 

 17



GAMES101 Lingqi Yan, UC Santa Barbara

Shade each pixel (Phong shading)

Phong shading 

• Interpolate normal 
vectors across each 
triangle 

• Compute full shading 
model at each pixel  

• Not the Blinn-Phong 
Reflectance Model

 18



Shading Frequency: Face, Vertex or Pixel

Image credit: Happyman, http://cg2010studio.com/

Num 
Vertices

Face 
Flat

Vertex 
Gouraud

Pixel 
Phong

Shading freq. : 
Shading type :



GAMES101 Lingqi Yan, UC Santa Barbara

Defining Per-Vertex Normal Vectors

Best to get vertex normals from 
the underlying geometry 

• e.g. consider a sphere 

Otherwise have to infer vertex 
normals from triangle faces 

• Simple scheme: average  
surrounding face normals

 20



GAMES101 Lingqi Yan, UC Santa Barbara

Defining Per-Pixel Normal Vectors

Barycentric interpolation (introducing soon)  
of vertex normals

 21

Don’t forget to normalize the interpolated directions



Graphics (Real-time Rendering) 
Pipeline



GAMES101 Lingqi Yan, UC Santa Barbara

Graphics Pipeline

 23

Vertex Processing

Triangle Processing

Rasterization

Fragment Processing

Framebuffer Operations

Display

 Application 1

2

3
4 Input: vertices in 3D space

Vertex Stream Vertices positioned in screen space

Triangle Stream Triangles positioned in screen space

Fragment Stream Fragments (one per covered sample) 

Shaded Fragments Shaded fragments

Output: image (pixels)



GAMES101 Lingqi Yan, UC Santa Barbara

Graphics Pipeline

 24

Vertex Processing

Triangle Processing

Rasterization

Fragment Processing

Framebuffer Operations

Shaded Fragments

Fragment Stream

Triangle Stream

Vertex Stream

Display

 Application

z

x

y

Model, View, Projection transforms



GAMES101 Lingqi Yan, UC Santa Barbara

Graphics Pipeline

 25

Vertex Processing

Triangle Processing

Rasterization

Fragment Processing

Framebuffer Operations

Shaded Fragments

Fragment Stream

Triangle Stream

Vertex Stream

Display

 Application

Sampling triangle coverage



GAMES101 Lingqi Yan, UC Santa Barbara

Rasterization Pipeline

 26

Vertex Processing

Triangle Processing

Rasterization

Fragment Processing

Framebuffer Operations

Shaded Fragments

Fragment Stream

Triangle Stream

Vertex Stream

Display

 Application

Z-Buffer Visibility Tests



GAMES101 Lingqi Yan, UC Santa Barbara

Graphics Pipeline

 27

Vertex Processing

Triangle Processing

Rasterization

Fragment Processing

Framebuffer Operations

Shaded Fragments

Fragment Stream

Triangle Stream

Vertex Stream

Display

 Application

+ Specular Blinn-Phong 
Reflectance Model

=

Ambient Diffuse+

Shading



GAMES101 Lingqi Yan, UC Santa Barbara

Graphics Pipeline

 28

Vertex Processing

Triangle Processing

Rasterization

Fragment Processing

Framebuffer Operations

Shaded Fragments

Fragment Stream

Triangle Stream

Vertex Stream

Display

 Application Texture mapping 
(introducing soon)



• Program vertex and fragment processing stages 
• Describe operation on a single vertex (or fragment)

Shader Programs

Example GLSL fragment shader program

uniform sampler2D myTexture; 
uniform vec3 lightDir; 
varying vec2 uv; 
varying vec3 norm; 

void diffuseShader() 
{ 
  vec3 kd; 
  kd = texture2d(myTexture, uv); 
  kd *= clamp(dot(–lightDir, norm), 0.0, 1.0); 
  gl_FragColor = vec4(kd, 1.0);    
} 

• Shader function executes 
once per fragment. 

• Outputs color of surface 
at the current fragment’s  
screen sample position. 

• This shader performs a 
texture lookup to obtain 
the surface’s material 
color at this point, then 
performs a diffuse 
lighting calculation.



• Program vertex and fragment processing stages 
• Describe operation on a single vertex (or fragment)

Shader Programs

Example GLSL fragment shader program

uniform sampler2D myTexture; // program parameter 
uniform vec3 lightDir;   // program parameter 
varying vec2 uv;    // per fragment value (interp. by rasterizer) 
varying vec3 norm;   // per fragment value (interp. by rasterizer) 

void diffuseShader() 
{ 
  vec3 kd; 
  kd = texture2d(myTexture, uv);    // material color from texture 
  kd *= clamp(dot(–lightDir, norm), 0.0, 1.0);  // Lambertian shading model 
  gl_FragColor = vec4(kd, 1.0);    // output fragment color 
} 



GAMES101 Lingqi Yan, UC Santa Barbara

Snail Shader Program

 31

Inigo Quilez
Procedurally modeled, 800 line shader. 
http://shadertoy.com/view/ld3Gz2 

http://shadertoy.com/view/ld3Gz2


Snail Shader Program

Inigo Quilez, https://youtu.be/XuSnLbB1j6E

https://youtu.be/XuSnLbB1j6E


Unreal Engine Kite Demo (Epic Games 2015)

Goal: Highly Complex 3D Scenes in Realtime

• 100’s of thousands to millions of triangles in a scene 
• Complex vertex and fragment shader computations 
• High resolution (2-4 megapixel + supersampling)  
• 30-60 frames per second (even higher for VR)



GAMES101 Lingqi Yan, UC Santa Barbara

Graphics Pipeline Implementation: GPUs

Specialized processors for executing graphics pipeline 
computations

 34

Discrete GPU Card 
(NVIDIA GeForce Titan X)

Integrated GPU:  
(Part of Intel CPU die)



GPU: Heterogeneous, Multi-Core Procesor

Modern GPUs offer ~2-4 Tera-FLOPs of performance for 
executing vertex and fragment shader programs Tera-Op’s of fixed-function 

compute capability over here



Texture Mapping



GAMES101 Lingqi Yan, UC Santa Barbara

Different Colors at Different Places?

 37

Pattern on ball Wood grain on floor

L_d = k_d * (I / r^2) * (n dot l)



GAMES101 Lingqi Yan, UC Santa Barbara

Surfaces are 2D

Surface lives in 3D world space 

Every 3D surface point also has a place  
where it goes in the 2D image (texture).

 38

x
y

z u

v
xs

ys

ڶ
δ

world spaceimage space texture spaceScreen space Texture spaceWorld space



GAMES101 Lingqi Yan, UC Santa Barbara

Texture Applied to Surface

 39

Rendering with textureRendering without texture Texture

Zo
om

Each triangle “copies” a piece of  
the texture image to the surface.



GAMES101 Lingqi Yan, UC Santa Barbara

Visualization of Texture Coordinates

 40

Visualization of texture coordinates

u

v
Triangle vertices in texture space

Each triangle vertex is assigned a texture coordinate (u,v) 



GAMES101 Lingqi Yan, UC Santa Barbara

Texture Applied to Surface

 41

u

v
Rendered result Triangle vertices in texture space



GAMES101 Lingqi Yan, UC Santa Barbara

Textures applied to surfaces

 42



GAMES101 Lingqi Yan, UC Santa Barbara

Visualization of texture coordinates

 43



GAMES101 Lingqi Yan, UC Santa Barbara

Textures can be used multiple times!

 44

example textures 
used / tiled



Thank you!
(And thank Prof. Ravi Ramamoorthi and Prof. Ren Ng for many of the slides!)


