
Introduction to Computer Graphics
GAMES101, Lingqi Yan, UC Santa Barbara

Shading 2 
(Shading, Pipeline and Texture Mapping)

Lecture 8:

http://www.cs.ucsb.edu/~lingqi/teaching/games101.html
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Announcements
• Homework 2


- 45 submissions so far 

- Upside down? No problem 

- Active discussions in the BBS, pretty good 

• Next homework is for shading


• Today’s topics

- Easy, but a lot
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Last Lecture
• Shading 1


- Blinn-Phong reflectance model 

- Diffuse 

- Specular 

- Ambient 

- At a specific shading point
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Today
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• Shading 2


- Blinn-Phong reflectance model 

- Specular and ambient terms 

- Shading frequencies 

- Graphics pipeline 

- Texture mapping 

- Barycentric coordinates
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Recap: Lambertian (Diffuse) Term

Shading independent of view direction
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Recap: Lambertian (Diffuse) Term

Produces diffuse appearance
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Specular Term (Blinn-Phong)

Intensity depends on view direction 

• Bright near mirror reflection direction
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Specular Term (Blinn-Phong)

V close to mirror direction ⇔ half vector near normal 

• Measure “near” by dot product of unit vectors
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Cosine Power Plots

Increasing p narrows the reflection lobe
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Specular Term (Blinn-Phong)

Blinn-Phong
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Ld + Ls together
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Ambient Term

Shading that does not depend on anything 

• Add constant color to account for disregarded 
illumination and fill in black shadows 

• This is approximate / fake!
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Blinn-Phong Reflection Model
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Ambient Diffuse Specular Blinn-Phong 
Reflection+ + =

L = La + Ld + Ls

= ka Ia + kd (I/r
2)max(0,n · l) + ks (I/r

2)max(0,n · h)p



Questions?



Shading Frequencies
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Shading Frequencies
What caused the shading difference?
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Shade each triangle (flat shading)

 Flat shading 

• Triangle face is 
flat — one normal 
vector 

• Not good for 
smooth surfaces 
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Shade each vertex (Gouraud shading)

Gouraud shading 

• Interpolate colors 
from vertices across 
triangle 

• Each vertex has a 
normal vector (how?) 
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Shade each pixel (Phong shading)

Phong shading 

• Interpolate normal 
vectors across each 
triangle 

• Compute full shading 
model at each pixel  

• Not the Blinn-Phong 
Reflectance Model
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Shading Frequency: Face, Vertex or Pixel

Image credit: Happyman, http://cg2010studio.com/

Num 
Vertices

Face 
Flat

Vertex 
Gouraud

Pixel 
Phong

Shading freq. : 
Shading type :
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Defining Per-Vertex Normal Vectors

Best to get vertex normals from 
the underlying geometry 

• e.g. consider a sphere 

Otherwise have to infer vertex 
normals from triangle faces 

• Simple scheme: average  
surrounding face normals

 20



GAMES101 Lingqi Yan, UC Santa Barbara

Defining Per-Pixel Normal Vectors

Barycentric interpolation (introducing soon)  
of vertex normals
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Don’t forget to normalize the interpolated directions



Graphics (Real-time Rendering) 
Pipeline
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Graphics Pipeline
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Vertex Processing

Triangle Processing

Rasterization

Fragment Processing

Framebuffer Operations

Display

 Application 1

2

3
4 Input: vertices in 3D space

Vertex Stream Vertices positioned in screen space

Triangle Stream Triangles positioned in screen space

Fragment Stream Fragments (one per covered sample) 

Shaded Fragments Shaded fragments

Output: image (pixels)
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Graphics Pipeline
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Vertex Processing

Triangle Processing

Rasterization

Fragment Processing

Framebuffer Operations

Shaded Fragments

Fragment Stream

Triangle Stream

Vertex Stream

Display

 Application

z

x

y

Model, View, Projection transforms
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Graphics Pipeline
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Vertex Processing

Triangle Processing

Rasterization

Fragment Processing

Framebuffer Operations

Shaded Fragments

Fragment Stream

Triangle Stream

Vertex Stream

Display

 Application

Sampling triangle coverage
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Rasterization Pipeline
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Vertex Processing

Triangle Processing

Rasterization

Fragment Processing

Framebuffer Operations

Shaded Fragments

Fragment Stream

Triangle Stream

Vertex Stream

Display

 Application

Z-Buffer Visibility Tests
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Graphics Pipeline
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Vertex Processing

Triangle Processing

Rasterization

Fragment Processing

Framebuffer Operations

Shaded Fragments

Fragment Stream

Triangle Stream

Vertex Stream

Display

 Application

+ Specular Blinn-Phong 
Reflectance Model

=

Ambient Diffuse+

Shading
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Graphics Pipeline
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Vertex Processing

Triangle Processing

Rasterization

Fragment Processing

Framebuffer Operations

Shaded Fragments

Fragment Stream

Triangle Stream

Vertex Stream

Display

 Application Texture mapping 
(introducing soon)



• Program vertex and fragment processing stages 
• Describe operation on a single vertex (or fragment)

Shader Programs

Example GLSL fragment shader program

uniform sampler2D myTexture; 
uniform vec3 lightDir; 
varying vec2 uv; 
varying vec3 norm; 

void diffuseShader() 
{ 
  vec3 kd; 
  kd = texture2d(myTexture, uv); 
  kd *= clamp(dot(–lightDir, norm), 0.0, 1.0); 
  gl_FragColor = vec4(kd, 1.0);    
} 

• Shader function executes 
once per fragment. 

• Outputs color of surface 
at the current fragment’s  
screen sample position. 

• This shader performs a 
texture lookup to obtain 
the surface’s material 
color at this point, then 
performs a diffuse 
lighting calculation.



• Program vertex and fragment processing stages 
• Describe operation on a single vertex (or fragment)

Shader Programs

Example GLSL fragment shader program

uniform sampler2D myTexture; // program parameter 
uniform vec3 lightDir;   // program parameter 
varying vec2 uv;    // per fragment value (interp. by rasterizer) 
varying vec3 norm;   // per fragment value (interp. by rasterizer) 

void diffuseShader() 
{ 
  vec3 kd; 
  kd = texture2d(myTexture, uv);    // material color from texture 
  kd *= clamp(dot(–lightDir, norm), 0.0, 1.0);  // Lambertian shading model 
  gl_FragColor = vec4(kd, 1.0);    // output fragment color 
} 
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Snail Shader Program
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Inigo Quilez
Procedurally modeled, 800 line shader. 
http://shadertoy.com/view/ld3Gz2 

http://shadertoy.com/view/ld3Gz2


Snail Shader Program

Inigo Quilez, https://youtu.be/XuSnLbB1j6E

https://youtu.be/XuSnLbB1j6E


Unreal Engine Kite Demo (Epic Games 2015)

Goal: Highly Complex 3D Scenes in Realtime

• 100’s of thousands to millions of triangles in a scene 
• Complex vertex and fragment shader computations 
• High resolution (2-4 megapixel + supersampling)  
• 30-60 frames per second (even higher for VR)
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Graphics Pipeline Implementation: GPUs

Specialized processors for executing graphics pipeline 
computations
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Discrete GPU Card 
(NVIDIA GeForce Titan X)

Integrated GPU:  
(Part of Intel CPU die)



GPU: Heterogeneous, Multi-Core Procesor

Modern GPUs offer ~2-4 Tera-FLOPs of performance for 
executing vertex and fragment shader programs Tera-Op’s of fixed-function 

compute capability over here



Texture Mapping
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Different Colors at Different Places?
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Pattern on ball Wood grain on floor

L_d = k_d * (I / r^2) * (n dot l)



GAMES101 Lingqi Yan, UC Santa Barbara

Surfaces are 2D

Surface lives in 3D world space 

Every 3D surface point also has a place  
where it goes in the 2D image (texture).

 38

x
y

z u

v
xs

ys

ڶ
δ

world spaceimage space texture spaceScreen space Texture spaceWorld space



GAMES101 Lingqi Yan, UC Santa Barbara

Texture Applied to Surface
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Rendering with textureRendering without texture Texture

Zo
om

Each triangle “copies” a piece of  
the texture image to the surface.



GAMES101 Lingqi Yan, UC Santa Barbara

Visualization of Texture Coordinates
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Visualization of texture coordinates

u

v
Triangle vertices in texture space

Each triangle vertex is assigned a texture coordinate (u,v) 
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Texture Applied to Surface
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u

v
Rendered result Triangle vertices in texture space
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Textures applied to surfaces
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Visualization of texture coordinates
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Textures can be used multiple times!
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example textures 
used / tiled



Thank you!
(And thank Prof. Ravi Ramamoorthi and Prof. Ren Ng for many of the slides!)


