Lecture 9:
Shading 3 (Texture Mapping cont.)
Announcements

• About homework
 - Homework 1 is being graded
 - Homework 2
 - 271 submissions so far
 - Homework 3 will be released soon
Last Lectures

- Shading 1 & 2
 - Blinn-Phong reflectance model
 - Shading models / frequencies
 - Graphics Pipeline
 - Texture mapping
Today

• Shading 3
 - Barycentric coordinates
 - Texture queries
 - Applications of textures

• Shadow mapping
Interpolation Across Triangles: Barycentric Coordinates

(重心坐标)
Interpolation Across Triangles

Why do we want to interpolate?

- Specify values at vertices
- Obtain smoothly varying values across triangles

What do we want to interpolate?

- Texture coordinates, colors, normal vectors, ...

How do we interpolate?

- Barycentric coordinates
Barycentric Coordinates

A coordinate system for triangles \((\alpha, \beta, \gamma)\)

\[(x, y) = \alpha A + \beta B + \gamma C\]

\[\alpha + \beta + \gamma = 1\]

Inside the triangle if all three coordinates are non-negative
Barycentric Coordinates

What’s the barycentric coordinate of A?

\[(\alpha, \beta, \gamma) = (1, 0, 0) \]
\[(x, y) = \alpha A + \beta B + \gamma C \]
\[= A \]
Barycentric Coordinates

Geometric viewpoint — proportional areas

\[
\alpha = \frac{A_A}{A_A + A_B + A_C}
\]

\[
\beta = \frac{A_B}{A_A + A_B + A_C}
\]

\[
\gamma = \frac{A_C}{A_A + A_B + A_C}
\]
Barycentric Coordinates

What’s the barycentric coordinate of the centroid?

\[(x, y) = \frac{1}{3} A + \frac{1}{3} B + \frac{1}{3} C\]
Barycentric Coordinates: Formulas

\[(x, y) = \alpha A + \beta B + \gamma C\]
\[\alpha + \beta + \gamma = 1\]

\[\alpha = \frac{-(x - x_B)(y_C - y_B) + (y - y_B)(x_C - x_B)}{-(x_A - x_B)(y_C - y_B) + (y_A - y_B)(x_C - x_B)}\]

\[\beta = \frac{-(x - x_C)(y_A - y_C) + (y - y_C)(x_A - x_C)}{-(x_B - x_C)(y_A - y_C) + (y_B - y_C)(x_A - x_C)}\]

\[\gamma = 1 - \alpha - \beta\]
Using Barycentric Coordinates

Linearly interpolate values at vertices

\[V = \alpha V_A + \beta V_B + \gamma V_C \]

However, barycentric coordinates are not invariant under projection!

\(V_A, V_B, V_C \) can be positions, texture coordinates, color, normal, depth, material attributes…
Applying Textures
for each rasterized screen sample \((x,y)\):

\((u,v) = \text{evaluate texture coordinate at } (x,y)\)

texcolor = \text{texture.sample}(u,v);

set sample’s color to texcolor;

Usually a pixel’s center

Using barycentric coordinates!

Usually the diffuse albedo \(K_d\)
(recall the Blinn-Phong reflectance model)
Texture Magnification
(What if the texture is too small?)
Texture Magnification - Easy Case

Generally don’t want this — insufficient texture resolution

A pixel on a texture — a **texel** (纹理元素、纹素)

- Nearest
- Bilinear
- Bicubic
Bilinear Interpolation

Want to sample texture value $f(x,y)$ at red point

Black points indicate texture sample locations
Bilinear Interpolation

Take 4 nearest sample locations, with texture values as labeled.
Bilinear Interpolation

And fractional offsets, (s,t) as shown
Bilinear Interpolation

Linear interpolation (1D)

$$\text{lerp}(x, v_0, v_1) = v_0 + x(v_1 - v_0)$$
Bilinear Interpolation

Linear interpolation (1D)
\[\text{lerp}(x, v_0, v_1) = v_0 + x(v_1 - v_0) \]

Two helper lerps (horizontal)
\[u_0 = \text{lerp}(s, u_{00}, u_{10}) \]
\[u_1 = \text{lerp}(s, u_{01}, u_{11}) \]
Bilinear Interpolation

Linear interpolation (1D)

\[\text{lerp}(x, v_0, v_1) = v_0 + x(v_1 - v_0) \]

Two helper lerps

\[u_0 = \text{lerp}(s, u_{00}, u_{10}) \]
\[u_1 = \text{lerp}(s, u_{01}, u_{11}) \]

Final vertical lerp, to get result:

\[f(x, y) = \text{lerp}(t, u_0, u_1) \]
Texture Magnification - Easy Case

Bilinear interpolation usually gives pretty good results at reasonable costs

Nearest Bilinear Bicubic
Texture Magnification (hard case)
(What if the texture is too large?)
Point Sampling Textures — Problem

Reference

Point sampled

Jaggies

Moire
Screen Pixel “Footprint” in Texture

Upsampling (Magnification) Downsampling (Minification)
Will Supersampling Do Antialiasing?

512x supersampling

Yes! But costly!
Antialiasing — Supersampling?

Will supersampling work?

- Yes, high quality, but costly
- When highly minified, many texels in pixel footprint
- Signal frequency too large in a pixel
- Need even higher sampling frequency

Let’s understand this problem in another way

- What if we don’t sample?
- Just need to get the average value within a range!
Point Query vs. (Avg.) Range Query
Different Pixels -> Different-Sized Footprints
Mipmap
Allowing (fast, approx., square) range queries
Mipmap (L. Williams 83)

“Mip” comes from the Latin “multum in parvo”, meaning a multitude in a small space

Level 0 = 128x128
Level 1 = 64x64
Level 2 = 32x32
Level 3 = 16x16

Level 4 = 8x8
Level 5 = 4x4
Level 6 = 2x2
Level 7 = 1x1
Mipmap (L. Williams 83)

What is the storage overhead of a mipmap?

“Mip hierarchy”
level = D

D = 0
D = 1
D = 2
Computing Mipmap Level D

Screen space (x,y)
Texture space (u,v)

Estimate texture footprint using texture coordinates of neighboring screen samples
Computing Mipmap Level D

\[D = \log_2 L \quad L = \max \left(\sqrt{\left(\frac{du}{dx} \right)^2 + \left(\frac{dv}{dx} \right)^2}, \sqrt{\left(\frac{du}{dy} \right)^2 + \left(\frac{dv}{dy} \right)^2} \right) \]
Computing Mipmap Level D

\[D = \log_2 L \quad \text{where} \quad L = \max \left(\sqrt{\left(\frac{du}{dx} \right)^2 + \left(\frac{dv}{dx} \right)^2}, \sqrt{\left(\frac{du}{dy} \right)^2 + \left(\frac{dv}{dy} \right)^2} \right) \]
Visualization of Mipmap Level

D rounded to nearest integer level
Trilinear Interpolation

![Diagram showing Trilinear Interpolation](image)

Linear interpolation based on continuous D value
Visualization of Mipmap Level

Trilinear filtering: visualization of continuous D
Mipmap Limitations

Point sampling
Mipmap Limitations

Supersampling 512x (assume this is correct)
Mipmap Limitations

Overblur
Why?

Mipmap trilinear sampling
Anisotropic Filtering

Better than Mipmap!
Irregular Pixel Footprint in Texture

Screen space Texture space
Anisotropic Filtering

Ripmaps and summed area tables

• Can look up **axis-aligned** rectangular zones
• Diagonal footprints still a problem
Anisotropic Filtering

Ripmaps and summed area tables

- Can look up axis-aligned rectangular zones
- Diagonal footprints still a problem

EWA filtering

- Use multiple lookups
- Weighted average
- Mipmap hierarchy still helps
- Can handle irregular footprints
Thank you!

(And thank Prof. Ravi Ramamoorthi and Prof. Ren Ng for many of the slides!)