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Shading 3 (Texture Mapping cont.) 
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Announcements
• About homework


- Homework 1 is being graded 

- Homework 2 

- 271 submissions so far 

- Homework 3 will be released soon
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Last Lectures

• Shading 1 & 2


- Blinn-Phong reflectance model 

- Shading models / frequencies 

- Graphics Pipeline 

- Texture mapping
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Today
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• Shading 3


- Barycentric coordinates 

- Texture queries 

- Applications of textures 

• Shadow mapping



Interpolation Across Triangles: 
Barycentric Coordinates

(重⼼坐标)
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Interpolation Across Triangles

Why do we want to interpolate? 

• Specify values at vertices 

• Obtain smoothly varying values across triangles 

What do we want to interpolate? 

• Texture coordinates, colors, normal vectors, … 

How do we interpolate? 

• Barycentric coordinates
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Barycentric Coordinates 

A coordinate system for triangles
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↵+ � + � = 1

A

B

C

(x, y) = ↵A+ �B + � C

(↵,�, �)

(x, y)
Inside the triangle if 
all three coordinates 

are non-negative
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Barycentric Coordinates

What’s the barycentric coordinate of A?
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A

B

C

(↵,�, �) = (1, 0, 0)

(x, y) = ↵A+ �B + � C

= A

(x, y)
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Barycentric Coordinates 

Geometric viewpoint — proportional areas
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A

B

C

↵ =
AA

AA +AB +AC

� =
AB

AA +AB +AC

� =
AC

AA +AB +AC

AAAB

AC
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Barycentric Coordinates

What’s the barycentric coordinate of the centroid?
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A

B

C

(x, y)

(↵,�, �) =
�
1
3 ,

1
3 ,

1
3

�

(x, y) = 1
3 A+ 1

3 B + 1
3 C
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Barycentric Coordinates: Formulas
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↵ =
�(x� xB)(yC � yB) + (y � yB)(xC � xB)

�(xA � xB)(yC � yB) + (yA � yB)(xC � xB)

� =
�(x� xC)(yA � yC) + (y � yC)(xA � xC)

�(xB � xC)(yA � yC) + (yB � yC)(xA � xC)

� = 1� ↵� �

A

B

C

↵+ � + � = 1

(x, y) = ↵A+ �B + � C

(x, y) = ↵A+ �B + � C
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Using Barycentric Coordinates

Linearly interpolate values at vertices
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VA, VB, VC can be 
positions, texture 
coordinates, color, 
normal, depth, 
material attributes…

V = ↵VA + � VB + � VC

V

VA

VB

VC

However, barycentric coordinates are not invariant under projection! 



Applying Textures
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Simple Texture Mapping: Diffuse Color
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for each rasterized screen sample (x,y): 

   (u,v) = evaluate texture coordinate at (x,y) 

   texcolor = texture.sample(u,v); 

   set sample’s color to texcolor;

Usually a pixel’s center

Usually the diffuse albedo Kd

(recall the Blinn-Phong reflectance model)

Using barycentric 
coordinates!



Texture Magnification 
(What if the texture is too small?)
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Texture Magnification - Easy Case

Generally don’t want this — insufficient texture resolution 

A pixel on a texture — a texel
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Nearest Bilinear Bicubic

(纹理元素、纹素)
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Bilinear Interpolation
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Want to sample 
texture value f(x,y) at 
red point  
 
Black points indicate 
texture sample 
locations
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Bilinear Interpolation

 18

u00

u01 u11

u10

Take 4 nearest sample 
locations, with texture 
values as labeled.
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Bilinear Interpolation
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u00

u01 u11

u10

t

s

And fractional offsets, 
(s,t) as shown



GAMES101 Lingqi Yan, UC Santa Barbara

Bilinear Interpolation
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u00

u01 u11

u10

t

s

lerp(x, v0, v1) = v0 + x(v1 � v0)

u0 = lerp(s, u00, u10)

u1 = lerp(s, u01, u11)

u = lerp(t, u0, u1)

Linear interpolation (1D)
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Bilinear Interpolation
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u00

u01 u11

u10

t

s

lerp(x, v0, v1) = v0 + x(v1 � v0)

u0 = lerp(s, u00, u10)

u1 = lerp(s, u01, u11)

u = lerp(t, u0, u1)

Linear interpolation (1D)

Two helper lerps (horizontal)

u0 = lerp(s, u00, u10)

u1 = lerp(s, u01, u11)

f(x, y) = lerp(t, u0, u1)

u0

u1
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Bilinear Interpolation
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u00

u01 u11

u10

t

s

lerp(x, v0, v1) = v0 + x(v1 � v0)

u0 = lerp(s, u00, u10)

u1 = lerp(s, u01, u11)

u = lerp(t, u0, u1)

Linear interpolation (1D)

Two helper lerps

u0 = lerp(s, u00, u10)

u1 = lerp(s, u01, u11)

f(x, y) = lerp(t, u0, u1)

u0

u1

Final vertical lerp, to get result:

u0 = lerp(s, u00, u10)

u1 = lerp(s, u01, u11)

f(x, y) = lerp(t, u0, u1)



GAMES101 Lingqi Yan, UC Santa Barbara

Texture Magnification - Easy Case

Bilinear interpolation usually gives pretty good results 
at reasonable costs
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Nearest Bilinear Bicubic



Texture Magnification (hard case) 
(What if the texture is too large?)
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Point Sampling Textures — Problem
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Jaggies

Moire

Point sampledReference
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Screen Pixel “Footprint” in Texture 
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upsampling
magnification

downsampling
minification

Upsampling 
(Magnification)

Downsampling 
(Minification)
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Will Supersampling Do Antialiasing?
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512x supersampling

Yes! But costly!
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Antialiasing — Supersampling？

Will supersampling work? 

• Yes, high quality, but costly 

• When highly minified, many texels in pixel footprint 

• Signal frequency too large in a pixel 

• Need even higher sampling frequency 

Let’s understand this problem in another way 

• What if we don’t sample? 

• Just need to get the average value within a range!
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Point Query vs. (Avg.) Range Query

 29

upsampling
magnification

downsampling
minification
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Different Pixels -> Different-Sized Footprints

 30



Mipmap 
Allowing (fast, approx., square) range queries
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Mipmap (L. Williams 83)
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Level 2 = 32x32 Level 3 = 16x16

Level 4 = 8x8 Level 5 = 4x4

Level 1 = 64x64Level 0 = 128x128

Level 6 = 2x2 Level 7 = 1x1

“Mip” comes from the Latin “multum in parvo", meaning a multitude in a small space
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Mipmap (L. Williams 83)
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“Mip hierarchy” 
level = D

u

v

What is the storage overhead of a mipmap?

D

D = 0

D = 1

D = 2
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Computing Mipmap Level D
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u

v

Estimate texture footprint using texture coordinates of 
neighboring screen samples

Screen space (x,y) Texture space (u,v)
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Computing Mipmap Level D
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L

u

v
du/dx

dv/dx

D = log2 L L = max

0
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Computing Mipmap Level D
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L

u

v
du/dx
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Visualization of Mipmap Level 
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D rounded to nearest integer level
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Trilinear Interpolation
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Mipmap Level D Mipmap Level D+1

Bilinear result Bilinear result

Linear interpolation based on continuous D value
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Visualization of Mipmap Level 
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Trilinear filtering: visualization of continuous D
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Mipmap Limitations
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Point sampling
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Mipmap Limitations
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Supersampling 512x (assume this is correct)
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Mipmap Limitations
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Mipmap trilinear sampling 

Overblur  
Why?
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Anisotropic Filtering
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Better than Mipmap!
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Irregular Pixel Footprint in Texture 
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image space texture space

Screen space Texture space
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Anisotropic Filtering

Ripmaps and summed area tables 

• Can look up axis-aligned  
rectangular zones 

• Diagonal footprints still a problem  

 45

Wikipedia
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Anisotropic Filtering

Ripmaps and summed area tables 

• Can look up axis-aligned  
rectangular zones 

• Diagonal footprints still a problem  

EWA filtering 

• Use multiple lookups 

• Weighted average 

• Mipmap hierarchy still helps 

• Can handle irregular footprints
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ellipse testing can be done with one function evaluation
(this is faster than point-in-quadrilateral testing, which
requires substitution into four line equations). The func-
tion for this test is a quadratic in the texture coordinates
u and v:

Q(u,v) = Au2 + Buv+ Cv2
where u = 0, v = 0 is the center of the ellipse. This
function is an elliptical paraboloid. Points inside the
ellipse satisfy Q (u,v) < Ffor some threshold F. In texture
space the contours of Q are concentric ellipses (Figure 8),
but when mapped to screen space, they are nearly circu-
lar. Since Q is parabolic it is proportional to r2, where r is
the distance from the center of a pixel in screen space.
This radius r is just the parameter needed when indexing
a kernel, so Q can serve two purposes: inclusion testing
and kernel indexing.
The kernel f(r) is stored in a weight lookup table,

WTAB. Rather than index WTAB by r, which would
necessitate the calculation of r =V at each pixel, we
define

WTAB[Q]=f( \fQ)
so that the array can be indexed directly by Q.
Warping a lookup table for computational efficiency is

a useful trick that has been applied by others3"7 A good
kernel to use is the Gaussian f(r) = e-ar, shown in Figure
9, for which WTAB[Q] = e-aQ. The Gaussian is preferred
to the theoretically optimal sinc kernel because it decays
much more quickly. By properly scaling A, B, C, and F, the
length of the WTAB array can be controlled to minimize
quantization artifacts (several thousand entries have
proven sufficient). The parameters F and a can be tuned
to adjust the filter cutoff radius and the degree of pixel
overlap.
To evaluate Q efficiently, we employ the method of

finite differences. Since Q is quadratic, two additions
suffice to update Q from one pixel to the next? The
following pseudocode implements the EWA filter for
monochrome pictures (it is easily modified for color).
Integer variables are lowercase; floating-point variables
are uppercase.

1* Let texture[v,uJ be a 2-dimensional array holding texture *1
< Compute texture space ellipse center (UO,VO)

from screen coordinates (x,y) >

. Compute (Ux,Vx) au av and (Uy,Vy) =
ai atax, ax J ay..]

/* Now find ellipse corresponding to a circular pixel: */
A - Vx*Vx+Vy*Vy
B - -2.*(Ux*Vx+Uy*Vy)
C - UX*UX+Uy*Uy
F - Ux*Vy-Uy*Vx
F - F*F
< scale A, B, C, and F equally so that F - WTAB length >

/* Ellipse is AU2+BUV+CV2=F, where U=u-UO, V=v-VO *1

EWA(UO,VO,A,B,C,F)

begin
< Find bounding box around ellipse: ul.u.u2, vl.v.v2 >
NUM = 0.
DEN - 0.
DDQ = 2.*A
U = ul-UO
1* scan the box */
for v-vl to v2 do begin
V = v-VO
DQ = A*(2.*U+l.)+B*V /* =Q(U+I,V)-Q(U,V) *1
Q = (C*V+B*U)*V+A*U*U
for u=ul to u2 do begin

1* ignore pixel if Q out of range *1
if Q<F then begin
WEIGHT = WTAB[floor(Q)]
1* read and weight texture pixel */
NUM - NUM+WEIGHT*texture[v,u]
/* DEN is denominator (for normalization) */
DEN = DEN+WEIGHT

end
Q = Q+DQ
DQ = DQ+DDQ

end
end
return(NUM/DEN)

end

This implementation can be optimized further by re-
moving redundant calculations from the v loop and, with
proper checking, by using integer variables throughout.
The EWA filter computes the weighted average of

elliptical areas incrementally, requiring one floating-point
multiply, four floating-point adds, one integerization, and
one table lookup per texture pixel. Blinn et al.'s method,
which is the most similar to EWA, appears to have

Figure 8. Contours of elliptical paraboloid Q and box
around Q = F. Dots are centers of texture space pixels.

June 1986 25

Greene & Heckbert ‘86

Wikipedia



Thank you!
(And thank Prof. Ravi Ramamoorthi and Prof. Ren Ng for many of the slides!)


