Introduction to Computer Graphics

GAMES101, Lingqi Yan, UC Santa Barbara

Lecture 11: Geometry 2 (Curves and Surfaces)

http://www.cs.ucsb.edu/~lingqi/teaching/games101.html

Announcements

- Homework 3 deadline has been extended
 - To Thursday 23:59PM, Beijing time
- COVID-19 is getting worse in the US
 - Be careful, dude
 - Have to stream at home, network & lighting are worse

Last Lecture

- Introduction to geometry
 - Examples of geometry
 - Various representations of geometry
 - Implicit
 - Explicit

Today

- Explicit Representations
- Curves
 - Bezier curves
 - De Casteljau's algorithm
 - B-splines, etc.
- Surfaces
 - Bezier surfaces
 - Triangles & quads
 - Subdivision, simplification, regularization

Explicit Representations in Computer Graphics

Many Explicit Representations in Graphics

triangle meshes

Bezier surfaces

subdivision surfaces

NURBS

point clouds

Point Cloud (Explicit)

Easiest representation: list of points (x,y,z) Easily represent any kind of geometry Useful for LARGE datasets (>>1 point/pixel) Often converted into polygon mesh Difficult to draw in undersampled regions

Polygon Mesh (Explicit)

Store vertices & polygons (often triangles or quads)

Easier to do processing / simulation, adaptive sampling

More complicated data structures

Perhaps most common representation in graphics

9

The Wavefront Object File (.obj) Format

Commonly used in Graphics research

Just a text file that specifies vertices, normals, texture coordinates **and their connectivities**

1	# This is a comment
2	
3	▼ 1.000000 -1.000000 -1.000000
4	v 1.000000 -1.000000 1.000000
5	v -1.000000 -1.000000 1.000000
6	v -1.000000 -1.000000 -1.000000
7	v 1.000000 1.000000 -1.000000
8	v 0.999999 1.000000 1.000001
9	v -1.000000 1.000000 1.000000
10	v -1.000000 1.000000 -1.000000
11	
12	vt 0.748573 0.750412
13	vt 0.749279 0.501284
14	vt 0.999110 0.501077
15	vt 0.999455 0.750380
16	vt 0.250471 0.500702
17	vt 0.249682 0.749677
18	vt 0.001085 0.750380
19	vt 0.001517 0.499994
20	vt 0.499422 0.500239
21	vt 0.500149 0.750166
22	vt 0.748355 0.998230
23	vt 0.500193 0.998728
24	vt 0.498993 0.250415
25	vt 0.748953 0.250920
26	

26	
27	vn 0.000000 0.000000 -1.000000
28	vn -1.000000 -0.000000 -0.000000
29	vn -0.000000 -0.000000 1.000000
30	vn -0.000001 0.000000 1.000000
31	vn 1.000000 -0.000000 0.000000
32	vn 1.000000 0.000000 0.000001
33	vn 0.000000 1.000000 -0.000000
34	vn -0.000000 -1.000000 0.000000
35	
36	f 5/1/1 1/2/1 4/3/1
37	f 5/1/1 4/3/1 8/4/1
38	f 3/5/2 7/6/2 8/7/2
39	f 3/5/2 8/7/2 4/8/2
40	f 2/9/3 6/10/3 3/5/3
41	f 6/10/4 7/6/4 3/5/4
42	f 1/2/5 5/1/5 2/9/5
43	f 5/1/6 6/10/6 2/9/6
44	f 5/1/7 8/11/7 6/10/7
45	f 8/11/7 7/12/7 6/10/7
46	f 1/2/8 2/9/8 3/13/8
47	f 1/2/8 3/13/8 4/14/8

Camera Paths

Flythrough of proposed Perth Citylink subway, <u>https://youtu.be/rIJMuQPwr3E</u>

Animation Curves

Maya Animation Tutorial: <u>https://youtu.be/b-o5wtZlJPc</u>

Vector Fonts

The Quick Brown Fox Jumps Over The Lazy Dog

ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz 0123456789

Baskerville font - represented as piecewise cubic Bézier curves

Bézier Curves

(贝塞尔曲线)

Defining Cubic Bézier Curve With Tangents

Evaluating Bézier Curves (de Casteljau Algorithm)

Consider three points (quadratic Bezier)

Pierre Bézier 1910 – 1999

Paul de Casteljau b. 1930

Insert a point using linear interpolation

Pierre Bézier 1910 – 1999

Paul de Casteljau b. 1930

Insert on both edges

Pierre Bézier 1910 – 1999

Paul de Casteljau b. 1930

Repeat recursively

Pierre Bézier 1910 – 1999

Paul de Casteljau b. 1930

Run the same algorithm for every t in [0,1]

Pierre Bézier 1910 – 1999

Paul de Casteljau b. 1930

Cubic Bézier Curve – de Casteljau

Four input points in total

Same recursive linear interpolations

Visualizing de Casteljau Algorithm

Animation: Steven Wittens, Making Things with Maths, <u>http://acko.net</u>

Evaluating Bézier Curves Algebraic Formula

Bézier Curve – Algebraic Formula

de Casteljau algorithm gives a pyramid of coefficients

Bézier Curve – Algebraic Formula

Example: quadratic Bézier curve from three points

$$\mathbf{b}_0^1(t) = (1-t)\mathbf{b}_0 + t\mathbf{b}_1$$
$$\mathbf{b}_1^1(t) = (1-t)\mathbf{b}_1 + t\mathbf{b}_2$$

$$\mathbf{b}_0^2(t) = (1-t)\mathbf{b}_0^1 + t\mathbf{b}_1^1$$

 $\mathbf{b}_0^2(t) = (1-t)^2 \mathbf{b}_0 + 2t(1-t)\mathbf{b}_1 + t^2 \mathbf{b}_2$

Bernstein form of a Bézier curve of order n:

$$\mathbf{b}^{n}(t) = \mathbf{b}^{n}_{0}(t) = \sum_{j=0}^{n} \mathbf{b}_{j} B^{n}_{j}(t)$$

$$\mathbf{b}^{n}_{j} = \mathbf{b}^{n}_{0}(t) = \sum_{j=0}^{n} \mathbf{b}^{n}_{j} B^{n}_{j}(t)$$

$$\mathbf{b}^{n}_{j} = \mathbf{b}^{n}_{0}(t) = \mathbf{b}^{n}_{0}(t)$$

$$\mathbf{b}^{n}_{j} = \mathbf{b}^{n}_{0}(t) = \mathbf{b}^{n}_{0}(t)$$

$$\mathbf{b}^{n}_{j} = \mathbf{b}$$

Bernstein polynomials:

$$B_i^n(t) = \binom{n}{i} t^i (1-t)^{n-i}$$

Bézier Curve – Algebraic Formula: Example

Bernstein form of a Bézier curve of order n:

$$\mathbf{b}^n(t) = \sum_{j=0}^n \mathbf{b}_j B_j^n(t)$$

Example: assume n = 3 and we are in R^3

i.e. we could have control points in 3D such as:

 $\mathbf{b}_0 = (0, 2, 3), \ \mathbf{b}_1 = (2, 3, 5), \ \mathbf{b}_2 = (6, 7, 9), \ \mathbf{b}_3 = (3, 4, 5)$

These points define a Bezier curve in 3D that is a cubic polynomial in t:

$$\mathbf{b}^{n}(t) = \mathbf{b}_{0} (1-t)^{3} + \mathbf{b}_{1} 3t(1-t)^{2} + \mathbf{b}_{2} 3t^{2}(1-t) + \mathbf{b}_{3} t^{3}$$

Cubic Bézier Basis Functions

Bernstein Polynomials

$$B_i^n(t) = \binom{n}{i} t^i (1-t)^{n-i}$$

Sergei N. Bernstein 1880 – 1968

Properties of Bézier Curves

Interpolates endpoints

• For cubic Bézier: $\mathbf{b}(0) = \mathbf{b}_0$; $\mathbf{b}(1) = \mathbf{b}_3$

Tangent to end segments

• Cubic case: $\mathbf{b}'(0) = 3(\mathbf{b}_1 - \mathbf{b}_0); \ \mathbf{b}'(1) = 3(\mathbf{b}_3 - \mathbf{b}_2)$

Affine transformation property

• Transform curve by transforming control points

Convex hull property

• Curve is within convex hull of control points

BTW: What's a Convex Hull

[from Wikipedia]

Piecewise Bézier Curves

Higher-Order Bézier Curves?

Very hard to control! Uncommon

Piecewise Bézier Curves

Instead, chain many low-order Bézier curve

Piecewise cubic Bézier the most common technique

Widely used (fonts, paths, Illustrator, Keynote, ...)

Demo – Piecewise Cubic Bézier Curve

David Eck, http://math.hws.edu/eck/cs424/notes2013/canvas/bezier.html

Piecewise Bézier Curve – Continuity

Two Bézier curves

Assuming integer partitions here, can generalize

Piecewise Bézier Curve – Continuity

C⁰ continuity: $\mathbf{a}_n = \mathbf{b}_0$

Piecewise Bézier Curve – Continuity

C¹ continuity: $\mathbf{a}_n = \mathbf{b}_0 = \frac{1}{2} (\mathbf{a}_{n-1} + \mathbf{b}_1)$

Other types of splines

- Spline
 - a continuous curve constructed so as to pass through a given set of points and have a certain number of continuous derivatives.
 - In short, a curve under control

A Real Draftsman's Spline http://www.alatown.com/spline-history-architecture/

Other types of splines

- B-splines
 - Short for basis splines
 - Require more information than Bezier curves
 - Satisfy all important properties that Bézier curves have (i.e. superset)

Important Note

- In this course
 - We do not cover B-splines and NURBS
 - We also do not cover operations on curves (e.g. increasing/decreasing orders, etc.)
 - To learn more / deeper, you are welcome to refer to Prof. Shi-Min Hu's course: <u>https://www.bilibili.com/video/</u> <u>av66548502?from=search&seid=65256805876131485</u>

Today

Curves

- Bezier curves
- De Casteljau's algorithm
- B-splines, etc.
- Surfaces
 - Bezier surfaces
 - Subdivision surfaces (triangles & quads)

Utah Teapot

renderspirit.com

44

Extend Bézier curves to surfaces

Bézier Surfaces

Bicubic Bézier Surface Patch

Bezier surface and 4 x 4 array of control points

Visualizing Bicubic Bézier Surface Patch

Animation: Steven Wittens, Making Things with Maths, <u>http://acko.net</u>

Evaluating Bézier Surfaces

Evaluating Surface Position For Parameters (u,v)

For bi-cubic Bezier surface patch, Input: 4x4 control points Output is 2D surface parameterized by (u,v) in [0,1]²

Method: Separable 1D de Casteljau Algorithm

Goal: Evaluate surface position corresponding to (u,v)

(u,v)-separable application of de Casteljau algorithm

- Use de Casteljau to evaluate point u on each of the 4 Bezier curves in u. This gives 4 control points for the "moving" Bezier curve
- Use 1D de Casteljau to evaluate point v on the "moving" curve

Method: Separable 1D de Casteljau Algorithm

Mesh Operations: Geometry Processing

- Mesh subdivision
- Mesh simplification
- Mesh regularization

Thank you!

(And thank Prof. Ravi Ramamoorthi and Prof. Ren Ng for many of the slides!)