Introduction to Computer Graphics

GAMES101, Lingqi Yan, UC Santa Barbara

Lecture 14: Ray Tracing 2 (Acceleration & Radiometry)

http://www.cs.ucsb.edu/~lingqi/teaching/games101.html

Announcements

- Grading of resubmissions we're working on that
- GTC news: DLSS 2.0
 - https://zhuanlan.zhihu.com/p/116211994
- GTC news: RTXGI
 - https://developer.nvidia.com/rtxgi
- Personal feeling
 - Offline rendering techniques will soon become real-time
 - Current real-time rendering techniques will still be useful
- Next lectures won't be easy

Last Lecture

- Why ray tracing?
- Whitted-style ray tracing
- Ray-object intersections
 - Implicit surfaces
 - Triangles
- Axis-Aligned Bounding Boxes (AABBs)
 - Understanding pairs of slabs
 - Ray-AABB intersection

Today

Using AABBs to accelerate ray tracing

- Uniform grids
- Spatial partitions
- Basic radiometry (辐射度量学)

Uniform Spatial Partitions (Grids)

Preprocess – Build Acceleration Grid

1. Find bounding box

Preprocess – Build Acceleration Grid

1. Find bounding box

2. Create grid

Preprocess – Build Acceleration Grid

- 1. Find bounding box
- 2. Create grid
- 3. Store each object in overlapping cells

Ray-Scene Intersection

Step through grid in ray traversal order

For each grid cell Test intersection with all objects stored at that cell

Grid Resolution?

One cell

• No speedup

Grid Resolution?

Too many cells

 Inefficiency due to extraneous grid traversal

Grid Resolution?

Heuristic:

• #cells = C * #objs

•
$$C \approx 27$$
 in $3D$

Uniform Grids – When They Work Well

Grids work well on large collections of objects that are distributed evenly in size and space

Uniform Grids – When They Fail

"Teapot in a stadium" problem

Spatial Partitions

Spatial Partitioning Examples

Note: you could have these in both 2D and 3D. In lecture we will illustrate principles in 2D.

KD-Tree Pre-Processing

KD-Tree Pre-Processing

KD-Tree Pre-Processing

Note: also subdivide nodes 1 and 2, etc.

Data Structure for KD-Trees

Internal nodes store

- split axis: x-, y-, or z-axis
- split position: coordinate of split plane along axis
- children: pointers to child nodes
- No objects are stored in internal nodes

Leaf nodes store

list of objects

Object Partitions & Bounding Volume Hierarchy (BVH)

Root →

Summary: Building BVHs

- Find bounding box
- Recursively split set of objects in two subsets
- **Recompute** the bounding box of the subsets
- Stop when necessary
- Store objects in each leaf node

Building BVHs

How to subdivide a node?

- Choose a dimension to split
- Heuristic #1: Always choose the longest axis in node
- Heuristic #2: Split node at location of median object

Termination criteria?

• Heuristic: stop when node contains few elements (e.g. 5)

Data Structure for BVHs

Internal nodes store

- Bounding box
- Children: pointers to child nodes

Leaf nodes store

- Bounding box
- List of objects

Nodes represent subset of primitives in scene

• All objects in subtree

BVH Traversal

Intersect(Ray ray, BVH node) {
 if (ray misses node.bbox) return;

if (node is a leaf node)
 test intersection with all objs;
 return closest intersection;

```
hit1 = Intersect(ray, node.child1);
hit2 = Intersect(ray, node.child2);
```

```
return the closer of hit1, hit2;
}
```


Spatial vs Object Partitions

Spatial partition (e.g.KD-tree)

- Partition space into non-overlapping regions
- An object can be contained in multiple regions

Object partition (e.g. BVH)

- Partition set of objects into disjoint subsets
- Bounding boxes for each set may overlap in space

Today

- Using AABBs to accelerate ray tracing
 - Uniform grids
 - Spatial partitions
- Basic radiometry (辐射度量学)
 - Advertisement: new topics from now on, scarcely covered in other graphics courses

Radiometry — Motivation

Observation

- In assignment 3, we implement the Blinn-Phong model
- Light intensity I is 10, for example
- But 10 what?

Do you think Whitted style ray tracing gives you CORRECT results?

All the answers can be found in radiometry

• Also the basics of "Path Tracing"

Radiometry

Measurement system and units for illumination

Accurately measure the spatial properties of light

- New terms: Radiant flux, intensity, irradiance, radiance

Perform lighting calculations in a physically correct manner

My personal way of learning things:

- WHY, WHAT, then HOW

Radiant Energy and Flux (Power)

Radiant Energy and Flux (Power)

Definition: Radiant energy is the energy of electromagnetic radiation. It is measured in units of joules, and denoted by the symbol:

Q [J = Joule]

Definition: Radiant flux (power) is the energy emitted, reflected, transmitted or received, per unit time.

$$\Phi \equiv \frac{\mathrm{d}Q}{\mathrm{d}t} \, \left[\mathrm{W} = \mathrm{Watt} \right] \left[\mathrm{lm} = \mathrm{lumen} \right]^*$$

Flux – #photons flowing through a sensor in unit time

From London and Upton

Important Light Measurements of Interest

Light Emitted From A Source Light Falling On A Surface Light Traveling Along A Ray

"Radiant Intensity"

"Irradiance"

"Radiance"

Radiant Intensity

Radiant Intensity

Definition: The radiant (luminous) intensity is the power per unit **solid angle (?)** emitted by a point light source.

(立体角)

The candela is one of the seven SI base units.

Angles and Solid Angles

Angle: ratio of subtended arc length on circle to radius

- $\theta = \frac{l}{r}$
- Circle has 2π radians

- $\Omega = \frac{A}{r^2}$
- \bullet Sphere has $4\pi\,$ steradians

Differential Solid Angles

Differential Solid Angles

$\boldsymbol{\omega}$ as a direction vector

Isotropic Point Source

Modern LED Light

Output: 815 lumens

(11W LED replacement for 60W incandescent)

Radiant intensity?

Assume isotropic: Intensity = 815 lumens / 4pi sr = 65 candelas

Thank you!

(And thank Prof. Ravi Ramamoorthi and Prof. Ren Ng for many of the slides!)