Real-Time High Quality Rendering

GAMES202, Lingqi Yan, UC Santa Barbara

Lecture 5: Real-Time Environment Mapping

Announcement

- Assignment 1 has been released
 - Due in 1.5 weeks

GAMFS202

- No class next week (traveling)
 - No streaming and no recording
 - Will resume when I'm back
- Will soon start recruiting GAMES101 graders

Last Lecture

- More on PCF and PCSS
- Variance soft shadow mapping
- MIPMAP and Summed-Area Variance Shadow Maps
- Moment shadow mapping

Today

- Finishing up on shadows
 - Distance field soft shadows
- Shading from environment lighting
 - The split sum approximation
- Shadow from environment lighting

Why Distance Field Soft Shadows

Some tweets by an indie game developer

Distance Field Soft Shadows

Soft shadow and penumbra computed using distance fields

Hard shadow

https://www.iquilezles.org/www/articles/rmshadows/rmshadows.htm

From GAMES101: Distance Functions

Distance functions:

At any point, giving the minimum distance (could be signed distance) to the closest location on an object

https://stackoverflow.com/questions/43613256/

From GAMES101: Distance Functions

An Example: Blending (linear interp.) a moving boundary

From GAMES101: Distance Functions

Can blend any two distance functions d1, d2

The Usages of Distance Fields

Usage 1

- Ray marching (sphere tracing) to perform ray-SDF intersection
- Very smart idea behind this:
- The value of SDF ==a "safe" distance around
- Therefore, each time at p, just travel SDF(p) distance

https://docs.unrealengine.com/en-US/BuildingWorlds/LightingAndShadows/MeshDistanceFields/index.html

The Usages of Distance Fields

Usage 2

- Use SDF to determine the (approx.) percentage of occlusion
- the value of SDF -> a "safe" angle seen from the eye

Observation

Smaller "safe" angle <-> less visibility

https://docs.unrealengine.com/en-US/BuildingWorlds/LightingAndShadows/MeshDistanceFields/index.html

Distance Field Soft Shadows

- During ray matching
 - Calculate the "safe" angle from the eye at every step
 - Keep the minimum
 - How to compute the angle?

Distance Field Soft Shadows

How to compute the angle?

$$\arcsin \frac{\text{SDF}(p)}{p-o} \qquad \min \left\{ \frac{k \cdot \text{SDF}(p)}{p-o}, 1.0 \right\}$$

[https://www.iquilezles.org/www/articles/rmshadows/rmshadows.htm]]

Distance Field: Visualization

https://docs.unrealengine.com/en-US/BuildingWorlds/LightingAndShadows/MeshDistanceFields/index.html

Pros and Cons of Distance Field

Pros

- Fast*
- High quality

Cons

- Need precomputation
- Need heavy storage*
- Artifact?

Another Interesting Application

Antialiased / infinite resolution characters in RTR

tion ullamco laboris nis
lat. Duis aute irure dolo
late velit esse cillum dolor
r. Excepteur sint occaece
culpa qui officia deseru

https://github.com/protectwise/troika/tree/master/packages/troika-three-text

Questions?

Today

- Finishing up on shadows
 - Distance field soft shadows
- Shading from environment lighting
 - The split sum approximation
- Shadow from environment lighting

Recap: Environment Lighting

- An image representing distant lighting from all directions
- Spherical map vs. cube map

Shading from Environment Lighting

- Informally named Image-Based Lighting (IBL)
- How to use it to shade a point (without shadows)?
 - Solving the rendering equation

$$L_o(\mathbf{p}, \omega_o) = \int_{\Omega^+} L_i(\mathbf{p}, \omega_i) f_r(\mathbf{p}, \omega_i, \omega_o) \cos \theta_i V(\mathbf{p}, \omega_i) d\omega_i$$

For all directions from the upper hemisphere

Shading from Environment Lighting

- General solution Monte Carlo integration
 - Numerical
 - Large amount of samples required
- Problem can be slow
 - In general, sampling is not preferred in shaders*
 - Can we avoid sampling?

Shading from Environment Lighting

Observation

- If the BRDF is glossy small support!
- If the BRDF is diffuse smooth!
- Does the observation remind you of something?

The Classic Approximation

- Recall: the approximation
 - Note the slight edit on Ω_G here

$$\int_{\Omega} f(x)g(x) dx \approx \frac{\int_{\Omega_G} f(x) dx}{\int_{\Omega_G} dx} \cdot \int_{\Omega} g(x) dx$$

Conditions for acceptable accuracy?

The Split Sum: 1st Stage

- BRDF satisfies the accuracy condition in any case
 - We can safely take the lighting term out!

$$L_o(p, \omega_o) \approx \frac{\int_{\Omega_{fr}} L_i(p, \omega_i) d\omega_i}{\int_{\Omega_{fr}} d\omega_i} \cdot \int_{\Omega^+} f_r(p, \omega_i, \omega_o) \cos \theta_i d\omega_i$$

Note: different usage in shadows (taking vis. out)

$$L_o(\mathbf{p}, \omega_o) \approx \frac{\int_{\Omega^+} V(\mathbf{p}, \omega_i) d\omega_i}{\int_{\Omega^+} d\omega_i} \cdot \int_{\Omega^+} L_i(\mathbf{p}, \omega_i) f_r(\mathbf{p}, \omega_i, \omega_o) \cos \theta_i d\omega_i$$

The Split Sum: 1st Stage

- Prefiltering of the environment lighting
 - Pre-generating a set of differently filtered environment lighting
 - Filter size in-between can be approximated via trilinear interp.

The Split Sum: 1st Stage

 Then query the pre-filtered environment lighting at the r (mirror reflected) direction!

The Split Sum: 2nd Stage

- The second term is still an integral
 - How to avoid sampling this term?

$$L_o(p, \omega_o) \approx \frac{\int_{\Omega_{fr}} L_i(p, \omega_i) d\omega_i}{\int_{\Omega_{fr}} d\omega_i} \cdot \int_{\Omega^+} f_r(p, \omega_i, \omega_o) \cos \theta_i d\omega_i$$

Idea

- Precompute its value for all possible combinations of variables roughness, color (Fresnel term), etc.
- But we'll need a huge table with extremely high dimemsions

Recall: Microfacet BRDF

 What kind of microfacets reflect wi to wo? (hint: microfacets are mirrors)

The Fresnel Term and the NDF

Fresnel term: the Schlick's approximation

$$R(heta) = R_0 + (1-R_0)(1-\cos heta)^5 \ R_0 = \left(rac{n_1-n_2}{n_1+n_2}
ight)^2$$

The NDF term: e.g. Beckmann distribution

$$D(h) = \frac{e^{-\frac{\tan^2 \theta_h}{\alpha^2}}}{\pi \alpha^2 \cos^4 \theta_h}$$

The Split Sum: 2nd Stage

- Idea & Observation
 - Try to split the variables again!
 - The Schlick approximated Fresnel term is much simpler: Just the "base color" R_0 and the half angle heta
- Taking the Schlick's approximation into the 2nd term
 - The "base color" is extracted!

$$\int_{\Omega^{+}} f_{r}(p, \omega_{i}, \omega_{o}) \cos \theta_{i} d\omega_{i} \approx R_{0} \int_{\Omega^{+}} \frac{f_{r}}{F} \left(1 - (1 - \cos \theta_{i})^{5} \right) \cos \theta_{i} d\omega_{i} + \int_{\Omega^{+}} \frac{f_{r}}{F} (1 - \cos \theta_{i})^{5} \cos \theta_{i} d\omega_{i}$$

30

The Split Sum: 2nd Stage

Both integrals can be precomputed

$$\int_{\Omega^{+}} f_{r}(p, \omega_{i}, \omega_{o}) \cos \theta_{i} d\omega_{i} \approx R_{0} \int_{\Omega^{+}} \frac{f_{r}}{F} \left(1 - (1 - \cos \theta_{i})^{5} \right) \cos \theta_{i} d\omega_{i} + \int_{\Omega^{+}} \frac{f_{r}}{F} (1 - \cos \theta_{i})^{5} \cos \theta_{i} d\omega_{i}$$

- Each integral produces one value for each (roughness, incident angle) pair
 - Therefore, each integral results in a 2D table (texture)

The Split Sum Approximation

- Finally, completely avoided sampling
- Very fast and almost identical results

Reference

Split sum

The Split Sum Approximation

- In the industry
 - Integral -> Sum

$$\frac{1}{N} \sum_{k=1}^{N} \frac{L_i(\mathbf{l}_k) f(\mathbf{l}_k, \mathbf{v}) \cos \theta_{\mathbf{l}_k}}{p(\mathbf{l}_k, \mathbf{v})} \approx \left(\frac{1}{N} \sum_{k=1}^{N} L_i(\mathbf{l}_k) \right) \left(\frac{1}{N} \sum_{k=1}^{N} \frac{f(\mathbf{l}_k, \mathbf{v}) \cos \theta_{\mathbf{l}_k}}{p(\mathbf{l}_k, \mathbf{v})} \right)$$

That's why it's called split sum rather than "split integral"

33

Questions?

Next Lecture

- Stepping into real-time global illumination!
 - In 3D
 - In the image space
 - By precomputation
- We'll start with 3D methods
 - LPV, VXGI, RTXGI, etc.

[VXGI by NVIDIA]

Thank you!