Real-Time High Quality Rendering

GAMES202, Lingqi Yan, UC Santa Barbara

Lecture 7: Real-Time Global Illumination (in 3D)

Announcements

- GAMES101 homework submission reopening soon!
 - Recruiting graders!
- Homework 2 will be released soon
 - Ideally by the end of this week
 - Will be about PRT for diffuse scenes

Last Lecture

- Shadow from environment lighting
- Background knowledge
 - Frequency and filtering
 - Basis functions
- Real-time environment lighting (& global illumination)
 - Spherical Harmonics (SH)
 - Prefiltered env. lighting
 - Precomputed Radiance Transfer (PRT)

Today

• Finishing up

- SH for glossy transport
- Wavelet
- Real-Time Global Illumination (in 3D)
 - Reflective Shadow Maps (RSM)
 - Light Propagation Volumes (LPV)
 - Voxel Global Illumination (VXGI)

Recap: PRT

 Precompute lighting and light transport for each individual shading point*

$$L_{o}(\mathbf{p},\omega_{o}) = \int_{\Omega^{+}} L_{i}(\mathbf{p},\omega_{i}) f_{r}(\mathbf{p},\omega_{i},\omega_{o}) \cos \theta_{i} V(\mathbf{p},\omega_{i}) d\omega_{i}$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$
Shading
result Lighting Light transport

Recap: Spherical Harmonics (SH)

- A set of 2D basis functions with different frequencies
- Any 2D function can be projected to SH

$$f(x) = \sum_{i} c_i \cdot B_i(x)$$

 Any 2D function can be reconstructed from (a truncated number of) SH

PRT (Diffuse Case)

- A slightly different derivation than in the last lecture
- Separately precompute lighting and light transport

$$L_o(\mathbf{p}, \omega_o) = \int_{\Omega^+} L_i(\mathbf{p}, \omega_i) f_r(\mathbf{p}, \omega_i, \omega_o) \, \cos \theta_i \, V(\mathbf{p}, \omega_i) \, \mathrm{d}\omega_i$$

PRT (Diffuse Case)

$$L_o(\mathbf{p}, \omega_o) = \int_{\Omega^+} L_i(\mathbf{p}, \omega_i) f_r(\mathbf{p}, \omega_i, \omega_o) \, \cos \theta_i \, V(\mathbf{p}, \omega_i) \, \mathrm{d}\omega_i$$

$$= \sum_{p} \sum_{q} c_p c_q \int_{\Omega^+} B_p(\omega_i) B_q(\omega_i) \,\mathrm{d}\omega_i$$

- Why is it a dot product? (This seems to be $O(n^2)$ rather than O(n)?)
 - Hint: a property of SH

$$L(\omega_i) \approx \sum_p c_p B_p(\omega_i)$$
$$T(\omega_i) \approx \sum_q c_q B_q(\omega_i)$$

• Rendering: vector-matrix multiplication

Time Complexity

- #SH Basis : 9/16/25
- Diffuse Rendering
 - At each point: dot-product of size 16
- Glossy Rendering
 - At each point: vector(16) * matrix (16*16)

Glossy Rendering Results

No Shadows/Inter

Shadows

Shadows+Inter

- Glossy object, 50K mesh
- Runs at 3.6 fps on 2.2Ghz P4, ATI Radeon 8500

Interreflections and Caustics

interreflections

Recall: Precomp. of light transport light transport $T_i \approx \int_{\Omega} B_i(\mathbf{i}) V(\mathbf{i}) \max(0, \mathbf{n} \cdot \mathbf{i}) d\mathbf{i}$

Just regular computation with some weird lighting

Arbitrary BRDF Results

Anisotropic BRDFs

Other BRDFs

Spatially Varying

Results

Acquired Environments

Geometry: 50k vertex mesh

Summary of [Sloan 02]

- Approximate Lighting and light transport using basis functions (SH)
 - Lighting -> lighting coefficients
 - light transport -> coefficients / matrices
- Precompute and store light transport
- Rendering reduced to:
 - Diffuse: dot product
 - Glossy: vector matrix multiplication

Limitations [Sloan 02]

- Low-frequency
 - Due to the nature of SH
- Dynamic lighting, but static scene/material
 - Changing scene/material invalidates precomputed light transport
- Big precomputation data

Follow up works

- More basis functions
- dot product => triple products
- Static scene => dynamic scene
- Fix material => dynamic material
- Other effects: translucent, hair, ...
- Precomputation => analytic computation

More basis functions

- Spherical Harmonics (SH)
- Wavelet
- Zonal Harmonics
- Spherical Gaussian (SG)
- Piecewise Constant

Wavelet [Ng 03]

- 2D Haar wavelet
- Projection:
 - Wavelet Transformation
 - Retain a small number of non-zero coefficients

All-frequency representation

Non-linear Wavelet Light Approximation

Wavelet Transform

Non-linear Wavelet Light Approximation

Non-linear Approximation

Retain 0.1% – 1% terms

low frequency vs all frequency Teapot in Grace Cathedral

Low frequency (SH)

All frequency (Wavelet)

My First Paper

- Accurate Translucent Material Rendering under Spherical Gaussian Lights
- Pacific Graphics 2012

Questions?

Today

- Finishing up
 - SH for glossy transport
 - Wavelet
- Real-Time Global Illumination (in 3D)
 - Reflective Shadow Maps (RSM)
 - Light Propagation Volumes (LPV)
 - Voxel Global Illumination (VXGI)

Introduction

• Global Illumination (GI) is important but complex

[Ritschel et al., The State of the Art in Interactive Global Illumination]

Introduction

• In RTR, people seek simple and fast solutions to one bounce indirect illumination

[Image courtesy of Prof. Henrik Wann Jensen]

Understanding

 From GAMES101 (Lecture 16): Any directly lit surface will act as a light source again

[Image courtesy of Prof. Henrik Wann Jensen]

Direct illumination

p

One-bounce global illumination (dir+indir)

6

Key Observations

- What are needed to illuminate any point *p* with indirect illumination?
- Q1: Which surface patches are directly lit
 - Hint: what technique tells you this?
- Q2: What is the contribution from each surface patch to *p*
 - Then sum up all the surface patches' contributions
 - Hint: each surface patch is like an area light

- Q1: Which surface patches are directly lit
 - Perfectly solved with a classic shadow map
 - Each pixel on the shadow map is a small surface patch
- The exact outgoing radiance for each pixel is known
 - But only for the direction to the camera
- Assumption
 - Any reflector is diffuse
 - Therefore, outgoing radiance is uniform toward all directions

Recall: Light Measurements of Interest

Light Emitted From A Source

Light Falling On A Surface Light Traveling Along A Ray

"Radiant Intensity"

"Irradiance"

"Radiance"

- Q2: What is the contribution from each surface patch to *p*
 - An integration over the solid angle covered by the patch
 - Can be converted to the integration on the area of the patch

$$L_{o}(\mathbf{p},\omega_{o}) = \int_{\Omega_{\text{patch}}} L_{i}(\mathbf{p},\omega_{i}) V(\mathbf{p},\omega_{i}) f_{r}(\mathbf{p},\omega_{i},\omega_{o}) \cos\theta_{i} d\omega_{i}$$
$$= \int_{A_{\text{patch}}} L_{i}(\mathbf{q}\rightarrow\mathbf{p}) V(\mathbf{p},\omega_{i}) f_{r}(\mathbf{p},\mathbf{q}\rightarrow\mathbf{p},\omega_{o}) \frac{\cos\theta_{p}\cos\theta_{q}}{\|q-p\|^{2}} dA$$

• For a diffuse reflective patch

-
$$f_r = \rho/\pi$$

- $L_i = f_r \cdot \frac{\Phi}{dA}$ (Φ is the incident flux or energy)

- Therefore,

$$E_p(x,n) = \Phi_p \frac{\max\{0, \langle n_p | x - x_p \rangle\} \max\{0, \langle n | x_p - x \rangle\}}{||x - x_p||^4}.$$
 (1)

- Not all pixels in the RSM can contribute
 - Visibility (still, difficult to deal with)
 - Orientation
 - Distance

Acceleration

- In theory, all pixels in the shadow map can contribute to p
- Can we decrease the number?
- Hint: Steps 1 and 3 in PCSS
- Sampling to the rescue

Figure 4: Sampling pattern example. The sample density decreases and the sample weights (visualized by the disk radius) increases with the distance to the center.

- What is needed to record in an RSM?
 - Depth, world coordinate, normal, flux, etc.

- Often used for flashlights in video games
 - Gears of War 4, Uncharted 4, The Last of US, etc.

https://www.gdcvault.com/play/1020475/In-Game-and-Cinematic-Lighting

• Pros

- Easy to implement

• Cons

- Performance scales linearly w/ #lights
- No visibility check for indirect illumination
- Many assumptions: diffuse reflectors, depth as distance, etc.
- Sampling rate / quality tradeoff

Questions?

Next Lecture

- Real-time global illumination cont.
 - In 3D (VXGI)
 - In the image space (SSAO, SSDO, SSR, etc.)

[SSDO]

[VXGI by NVIDIA]

Thank you!